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Abstract

The complexity of software package installations poses a number of
key challenges. Very often it is not possible to install all the desired
packages and a variety of solutions can be thought of. Recent work
has suggested the optimization of a user-provided objective function.
The present work aims at characterizing the CNF instances resulting
from the software package installation problem. Starting from a basic
configuration, different installations have been generated by adding a
subset of the most popular packages. We have studied the hardness of
satisfiable and unsatisfiable instances, as well as the unsatisfiable cores
of the unsatisfiable instances and the maximum number of packages
that can be installed when the instance is unsatisfiable. The obtained
results shed additional light on optimization criteria to solve installa-
tion conflicts.

1 Introduction

A complex software system is made of components which are related either
implicit or explicitly. Free and Open Source Software (FOSS) distributions
are an example of such systems, which are developed by distinct individu-
als or entities who share their work through fast and reliable connections.
FOSS represents the most revolutionary paradigm in software engineering
that is opposed to traditional systems which have a centralised and closed
development.

FOSS distributions are usually based on deployment units known as
packages. The relationships between these packages are called dependencies
and are expected to be handled in a consistent and efficient way. The man-
agement of package dependencies can be seen either from the server/distrib-
utor side or from the client side. In the former, the main goal is to assure
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that package repositories are consistent, and eventual errors and inconsis-
tencies are handled in an effective, fast and automatic way. In the latter,
the main goal is to install new packages (and its dependencies) on a system
of already installed packages.

Previous work in the area has applied Boolean satisfiability (SAT) based
tools to ensure the consistency of repositories as well as to solve consistently
package installation. In the context of the EDOS project [3], researchers
have introduced SAT-based tools to support distribution editors [11]. These
new tools are automatic and ensure completeness, which makes them more
reliable than ad-hoc and manual tools. In addition, the OPIUM tool [13] is
also a complete SAT-based tool' that optimizes a user provided objective
function (such as smaller packages should be preferred to larger ones).

This paper describes research work developed in the context of the Man-
coosi project [4]. Mancoosi is an European research project in the Sev-
enth Research Framework Programme (FP7) of the European Commission.
While the predecessor project EDOS had focused on tools for the distribu-
tion editor, the Mancoosi project aims at developing tools for the system
administrator by (i) developing mechanisms that provide rollbacks of failed
upgrade attempts, allowing the system administrator to revert the system to
the state before the upgrade and (ii) developing better algorithms and tools
to plan upgrade paths based on various information sources about software
packages and on optimization criteria.

Our work concerns the installation of new packages on a system of al-
ready installed packages. Although this work focus on a problem already
studied in the past [13], the objectives are different. We argue that the in-
stances of this problem have not yet been properly studied, and this should
be done regardless the optimization criterion provided by the user. More-
over, studying such instances can provide important information to drive
future research work.

This paper is organised as follows. Next section introduces the software
installability problem, and is followed by the description of the encoding of
this problem into conjunctive normal form (CNF). Next, the experimental
evaluation section analyses the generated CNF instances with respect to
its satisfiability. Unsatisfiable instances are then further analysed in terms
of unsatisfiable subformulas and maximum satisfiability. Finally the paper
concludes.

! Actually, OPTUM is based on Pseudo Boolean Optimization (PBO). PBO is a SAT
based technology that expresses constraints over Boolean variables as linear inequalities
with integer coefficients that are extended with an optimization function.



2 The software installability problem

The software installability problem can be naturally encoded as a SAT prob-
lem where problem instances are encoded using the CNF format. A CNF
formula is a conjunction of clauses, where a clause is a disjunction of literals
and a literal is either a Boolean variable (a positive literal) or its negation
(a negative literal). The SAT problem consists in finding whether there is
an assignment to the Boolean variables such that the formula is satisfied.
For a formula to be satisfied all of its clauses must be satisfied. For a clause
to be satisfied at least one of its positive literals must be assigned to true or
alternatively at least one of its negative literals must be assigned to false.

The software installability problem may be easily encoded into a CNF
formula, where the Boolean variables determine whether a package is in-
stalled.

The constraints of a package are defined by its constraints, also called
metadata, and the constraints of a software distribution are defined by the
constraints of all the packages in the software distribution. Basically, we
have two types of constraints between packages: dependencies and conflicts.
The dependencies of a package p are the packages needed by p in order to
make it work properly. Therefore, we have to satisfy all the dependencies of
p if we want to install package p in our system. The conflicts of a package
p are the packages conflicting with p, and cannot be installed in the system
at the same time. Therefore, conflicting packages may not be present in the
system in order to install p.

The constraints of each package can be defined by a tuple (p, D,C),
where p is the package, D are the dependencies of p, and C are the conflicts of
p. D is a set of dependency clauses. Each dependency clause is a disjunction
of packages. A dependency clause is satisfied if at least one of its packages
is installed in the system, and the dependencies D are satisfied if all the
dependency clauses are satisfied. C' is a set of packages conflicting with p.
The conflicts C' are satisfied if none of the packages in C' is installed in the
system. Figure 1 shows a real example of a package constraints.

Package: 91bresolution

Architecture: i386

Version: 0.5.2-9

Depends: 1libc6 (>= 2.3.6-6), vbetool (>= 0.6.1)
Conflicts: 85bresolution

Figure 1: Metadata for package 915resolution.



3 CNF encoding for the software installability prob-
lem

A software distribution is a set of package constraints. We can represent the
package constraints of a software distribution as a Boolean CNF formula as
follows:

e Each package of a software distribution with n packages is represented
by a Boolean variable. The set of variables is therefore {z1, z2, ..., 2, },
where each variable x; with 1 < ¢ < n represents a package p;. If x;
is assigned to true, it means that the package p; is installed in the
system; if x; is assigned to false, it means that the package p; is not
installed.

e For each package constraints (p, D, C) in the distribution, we can en-
code its dependencies using one Boolean clause for each dependency
clause in D. A dependency clause ¢ for package p;, that corresponds to
the Boolean variable x; with 1 < i < n, is encoded with the following
Boolean clause: —z; V c.

e For each package constraints (p, D, C) in the distribution, we can en-
code its conflicts using one Boolean clause for each package in C'. A
conflict between a package p; and package p; € C with 1 <14,7 <n is
encoded with the following Boolean clause: —x; V —z;.

Example 1 Given a set of package constraints S = {(p1, {p2,p5 V 06}, 0),
(p2,0,{p3}), (p3, {pa},{p1}), (P1,0,{p5,p6})}, its encoded CNF instance is
the following:

—x1 V Zo

—x1 Vx5V Tg

X9 V X3

-3V 24

—x3 V X

—x4 V X5

x4 V g

Example 1 shows the CNF encoding for a package distribution repre-
sented by the set of package constraints S. Note that this formula can be
easily satisfied assigning all the propositional variables to false (nothing is
installed), as all the clauses of the formula have at least one negative literal.

4 Experimental evaluation

In order to make the experimental evaluation as real as possible, we used a
well known FOSS distribution as a source of packages metadata: the Debian



distribution. Although using the instances from [13] would be desirable,
these instances were generated by a company and are not publicly available.

4.1 The Debian distribution

Debian [2] is a FOSS distribution based on GNU/Linux. The number of
packages in Debian has grown considerably in the recent years, and nowadays
its main/stable repository reaches more than 17,000 packages.

The Debian packages metadata for all its versions and architectures since
March 13th of 2005 are available at http://snapshot.debian.net. For the
experimental evaluation, we used a package metadata dated as of May 1st
of 2008 from a stable version of Debian?.

4.2 CNPF instances

In order to generate CNF instances for the installability problem on a basic
installation, we first need to extract the dependencies and conflicts for each
package in the Debian distribution. The clauses that encode the constraints
of a Debian distribution can be extracted from its metadata using the Ceve
parser [1] from the EDOS project [3]. Once we have the dependencies and
conflicts encoded as a CNF instance, we have to add the basic installation
to it, i.e. the unit clauses that represent the installed packages in a basic in-
stallation of the Debian distribution. After applying the unit clause rule [6],
also referred to as Boolean constraint propagation when applied iteratively,
we get a CNF instance that represents the constraints of a Debian distribu-
tion taking into account that it has the basic packages installed. This is the
Debian basic installation instance that we used to generate the instances for
the installability problem described in the following sections. This instance
has around 17,000 variables and 25,000 clauses.

4.3 Experimentation with the installability problem

The installation of new packages is one of the actions performed more often
by the users. The aim of this experimentation is to show the likelihood
that a user tries to get an invalid installation. The instances used for the
experimentation with the installability problem extend the basic installation
as follows:

1. Pick a subset of packages I to install from the distribution, using
the Debian Popularity Contest® statistics, to take into account the
most installed packages in Debian distributions. This way, a package

http:/ /snapshot.debian.net/archive/2008/05/01/debian /dists/stable/main /binary-
i386/Packages.gz
3http://popcon.debian.org/



installed 4,000 times has two times more possibilities of being picked
than another package that has been installed 2,000 times.

2. For each package p; € I, add a unit clause, with a positive literal z;, to
the basic installation instance. These unit clauses encode the packages
that we want to install in the system.

If the resulting instance is satisfiable, then the set of packages I is instal-
lable on a system with the basic installation. For the experimental investi-
gation, we generated 7,000 instances. These instances refer to installations
ranging from 10 to 700 additional packages, with an interval of 10, where
for each specific number of packages were generated 100 instances.

The experimentation with the installability problem? is shown in Fig-
ure 2. We used Minisat [7] version 2 to solve the instances. The left plot
shows the mean CPU time needed by Minisat to solve all the instances of
each set, and the right plot shows the ratio of satisfiable instances over the
total number of instances. Both plots report values with respect to the
number of packages to install.

We can appreciate that the time needed to solve the instances is always
very small, and also decreases when the number of packages increases. A
more detailed analysis was performed distinguishing the time to solve satisfi-
able and unsatisfiable instances. We observed that satisfiable instances take
around 0.04 seconds and unsatisfiable instances take around 0.015 seconds,
regardless the number of packages to be installed. Therefore, despite all the
instances being easy to solve, satisfiable instances are slightly harder than
unsatisfiable instances. This behaviour can be explained with the experi-
ments described in the following section.
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Figure 2: Installability problem. Mean CPU time to solve the instances (left
plot). Ratio of satisfiable instances over the total number of instances (right
plot).

4Experimentation performed on a Intel Core 2 Duo CPU P8400 2.26GHz with 4GB of
RAM.



4.4 Experimentation with unsatisfiable cores

Given the significant number of unsatisfiable instances, it should be inter-
esting to investigate what makes these instances unsatisfiable. One measure
commonly used to characterize unsatisfiable formulas is the analysis of un-
satisfiable subformulas. Given an unsatisfiable formula ¢, a formula ¢’ C ¢
that is still unsatisfiable is said to be an unsatisfiable subformula. Unsatis-
fiable subformulas are also named wunsatisfiable cores or simply cores.

More interesting is the analysis of minimal unsatisfiable subformulas
(MUS). An unsatisfiable subformula ¢’ is said to be minimal if and only if
Veeyw ¢ —{c} is satisfiable. Hence, the removal of any clause from a mini-
mal unsatisfiable subformula makes the formula to become satisfiable. The
shortest explanation for unsatisfiability is the smallest minimal unsatisfiable
core.

The knowledge of the number and the size of the minimal unsatisfiable
cores will give us a hint about the number of explanations of infeasibility
and the number of clauses that are involved in it.

In what follows, whenever we refer to unsatisfiable cores we will assume
that those unsatisfiable cores are minimal.

Example 2 Consider the following formula with five clauses:

w1 = 21V T2
wo =x1V Iy
W3 = X9
w4 = x3V X9
ws = x3 V X2

This formula is unsatisfiable and this may be explained by two minimal
unsatisfiable cores. The first one contains clauses w1, ws and w3. The second
one contains clauses wi,ws,ws and ws. The unsatisfiable core containing
clauses w1, ws and w3 is the smallest minimal unsatisfiable core.

In order to analyze the unsatisfiable cores contained in the unsatisfiable
instances from the installability problem, we have run the CAMUS tool [10]
on each of them. CAMUS is able to provide for a given formula all of its
minimal unsatisfiable cores.

Figure 3 gives the median number of unsatisfiable cores for each set of 100
instances, as well as the median size of the smallest and largest unsatisfiable
cores. The median number has been chosen instead of the mean number for
being the most consistent value. It has been observed that huge variations on
these values may occur. Most often, for instances with the same number of
packages we observe that the number and sizes of the unsatisfiable cores are
quite similar, with only a few exceptions. But given that these exceptions
can differ as much as one order of magnitude, they would have a strong
impact in the mean value.
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Figure 3: Unsatisfiable installability problem. Median number of unsatisfi-
able cores (left plot). Median smallest and largest unsatisfiable cores (right
plot).

Not surprisingly, the plot on the left shows that the number of unsat-
isfiable cores tends to increase as the number of packages to be installed
increases. In other words, the number of potential conflicts increases as the
number of packages to install increases.

On the other hand, from the plot on the right we conclude that the size
of the smallest unsatisfiable core does not depend on the number of packages
to install. With only a very few exceptions, the smallest unsatisfiable core
has size 3. An explanation for this number is straightforward: you have two
unit clauses representing two different packages to be installed that clash
with one binary clause that expresses that these two packages cannot be
both installed. Nonetheless, much larger minimal unsatisfiable cores can be
found, specially as the number of packages to be installed increases. Indeed,
the size of the largest unsatisfiable core tends to increase as the number of
packages to install increases. Having large unsatisfiable cores means that
unsatisfiability is explained by a large number of clauses, which in practice
represent more elaborated conflicts (when compared with those represented
with only three clauses).

We can clarify with these experiments the behaviour pointed out in the
last sentence of the previous section. Unsatisfiable instances are slightly
easier to solve than satisfiable instances because as we increase the number
of packages to install, we also increase the number of unsatisfiable cores.
This makes that most of the instances with a higher number of packages to
install can be shown to be unsatisfiable using only unit propagation.

Overall, these results indicate that in general there are many unsatisfi-
able cores of different sizes and therefore one may choose between a variety
of explanations for infeasibility.



4.5 Experimentation with the maximum installability prob-
lem

The analysis of the unsatisfiable cores characterises the infeasibility of the
problem but somehow not in a complete way. For example, the number
of minimal unsatisfiable cores does not suffice to determine the number
of clauses to be removed to achieve satisfiability. If there are no clauses
belonging to more than one core, then the number of clauses to be removed
corresponds to the number of cores. Otherwise the number of clauses to be
removed may be smaller as removing a clause that belongs to more than one
core will destroy the cores that clause belongs to. For example, the formula
given in Example 2 has two minimal unsatisfiable cores but it suffices to
remove one clause (either wy or wy) to make the formula satisfiable.

The goal of this section is to show the maximum number of packages we
can install for several installation profiles, and the mean CPU time needed
for installing each set of packages. Obviously, if a problem instance is satisfi-
able then all packages may be installed. On the other hand, for an unsatisfi-
able problem instance at least one package cannot be installed. Hence, from
this experimentation, we can get the minimum number of packages that we
need to remove from the original installation profile, in order to make the
installation satisfiable.

The installability problem becomes now a maximum satisfiability (Max-
SAT) instead of simply a satisfiability problem. This new problem will be
called maximum installability problem. The traditional Max-SAT prob-
lem consists in maximizing the number of clauses that can be satisfied. The
partial Max-SAT problem has additional expressiveness by distinguished be-
tween hard clauses (that must be satisfied) and soft clauses (for which the
traditional Max-SAT problem applies). The instances used for the experi-
mentation with the maximum installability problem have the same clauses
as the instances that were used for the installability problem. In addition,
the clauses of the basic installation are said to be hard clauses, whereas the
unit clauses encoding the packages to be installed are said to be soft clauses.

The experimentation with the maximum installability problem? is shown
in Figure 4. The left plot shows the mean CPU time needed by MSUn-
Core 4.0 [12] to solve all the instances of each set. We also tried other
solvers like MiniMaxSat [8] or W-MaxSatz [5] but the performance was not
as good as with MSUnCore with this benchmark. This comes as no sur-
prise as MSUnCore is known for being particularly competitive on solving
structured real-world instances.

In Figure 4 (left) we may observe that the time needed by MSUnCore
to solve the instances increases as we increase the number of packages to in-
stall, but even for the harder set of instances it does not exceed 1.2 seconds.
The right plot shows the mean number of packages we have to remove from

SExperimentation performed on a Intel Xeon CPU 5160 3.00GHz with 4GB of RAM.



the selected packages to install, in order to make the installation satisfiable.
When we want to install only a few packages, usually we do not need to
remove any package from the installation, as the instances are satisfiable.
When the number of packages to install is increased, the number of pack-
ages to remove in order to make the installation satisfiable also increases.
An interesting point is that, in general, by only removing 3 packages in in-
stallations of up to 700 additional packages, we can make the installations
to become satisfiable.
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Figure 4: Maximum installability problem. Mean CPU time to solve the
instances (left plot). Mean number of packages to remove to make the
installation satisfiable (right plot).

5 Conclusions and future research directions

The management of a complex package-based software system implies an
efficient handling of dependencies between packages. FOSS distributions
represent an additional challenge with respect to this issue, due to the de-
velopment being decentralised and being made by different individuals. As
a consequence, the installation of new packages by the user is not always
feasible.

In this work we have investigated instances from the software package in-
stallation problem. A complete characterization of these instances in terms
of their hardness may provide additional light to solve inconsistencies. Ex-
perimental results show that the installability problem for FOSS distribu-
tions, even though being a NP-complete problem, is in general easy to solve.
Hence, this problem should not have a negative impact in hypothetical users.
Note, however, that the whole process associated with the installability prob-
lem may consume some time, but this is due to other parts of the process,
such as reading the dependencies information from the repository.

As future work we plan to incorporate to our encoding some user pref-
erences on which packages are preferred to be uninstalled in case not all the

10



packages can be installed. Additional requirements should include informa-
tion about packages that the user wants to delete or update. This work will
extend previous work in the area [13].

Finally, we should point out that the results of this investigation may also

inspire the development of other SAT-based tools used in similar contexts [9].
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