
Solving Dynamic Constraint Satisfaction Problems:
Relations between Problem Alteration and Search

Performance
�

Richard J. Wallace, Diarmuid Grimes and Eugene C. Freuder

Cork Constraint Computation Centre and Department of Computer Science
University College Cork, Cork, Ireland

email:
�
r.wallace,d.grimes,e.freuder � @4c.ucc.ie

Abstract

This paper presents a new analysis of dynamic constraint satisfaction
problems (DCSPs) and a new approach to solving them. We first show that
even very small changes in a CSP, in the form of addition of constraints
or changes in constraint relations, can have profound effects on search per-
formance. These effects are reflected in the amenability of the problem to
different forms of heuristic action and in the promise and fail-firstness of
variable ordering heuristics applied to the problem. This may account for the
poor performance of classical DCSP methods. We then show that the same
changes do not markedly affect the locations of the major sources of con-
tention in the problem. A technique, called “random probing”, that performs
a careful assessment of this property and uses the information during sub-
sequent search, performs well even when it only uses information based on
the original problem in the DCSP sequence. The result is a new approach to
solving DCSPs that is based on a robust strategy for ordering variables rather
than on robust solutions.

1 Introduction

An important variant of the constraint satisfaction problem is the “dynamic con-
straint satisfaction problem”, or DCSP. In this form of the problem, an initial CSP is
subject to a sequence of alterations to its basic elements (typically, addition or dele-
tion of values or constraints). As a result of these changes, assignments that were
solutions to a previous CSP in the sequence may become invalid, which means that
search must be repeated to find a solution to the new problem.

Strategies that have been devised to handle this situation fall into two main
classes [VJ05]:

� Efficient methods for solving the new problem, using information about the
affected parts of the assignment.

� Methods for finding “robust” solutions that are either more likely to remain
solutions after change or are guaranteed to produce a valid solution to the
altered problem with a fixed number of assignment changes.

�
This work was supported by Science Foundation Ireland under Grant 00/PI.1/C075.

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

To date, methods that have been devised for solving DCSPs (first category
above) have not taken into account specific characteristics of problems - before and
after change. Some of this neglect is likely due to simple oversight, but it may also
be because methods have not been available for assessing problem characteristics
that change or do not change after problem alteration. Further advances in this
field may be possible if alterations in search across a sequence of altered problems
can be characterised. In particular, this kind of analysis may suggest new ways of
carrying over information learned before alteration to the altered problem.

In this work, we show that relatively small changes in the constraints of a CSP
can result in dramatic changes in the character of search. Thus, problems that are
relatively easy for a given search procedure can be transformed into much harder
problems, and vice versa. Then, using recently developed methods for evaluating
the performance of variable ordering heuristics [BPW05] [Wal08], we show that
these changes have effects on the amenability of problems to different forms of
heuristic action (specifically, build up of contention versus simplification of the
remaining, or future, part of the problem), as well as the quality of performance
when search is on a solution path and when it is not.

Next, we examine the performance of a standard algorithm for solving DCSPs.
This method attempts to conserve the original assignment, while still conducting a
complete search. This turns out to be a poor strategy, since partial assignments for
CSPs often ‘unravel’ when this procedure is used, leading to tremendous amounts
of thrashing.

We then show that there are problem features that are not significantly affected
by the changes we have investigated. In particular, the major places of contention
within a problem are not greatly changed. This discovery suggests that a heuristic
strategy that is based on evaluating these sources of contention can perform effi-
ciently even after problem change. We show this to be the case. More specifically,
we show that a heuristic procedure that uses failures during iterated sampling (that
we call “random probing”) continues to perform effectively after problem change,
using information obtained before such changes and thus avoiding the cost of fur-
ther sampling.

A discussion of terminology is given in the following section. Section 3 con-
tains a description of experimental methods. Section 4 present results on the extent
of change in search performance after relatively small changes in the problem.
Section 5 presents results based on a classical method for solving DCSPs, called
“local changes”. Section 6 then presents an analysis of random probing when this
procedure is applied to DCSPs. Section 7 gives conclusions.

2 Definitions and Notation

Following [DD88] and [Bes91], we define a dynamic constraint satisfaction prob-
lem (DCSP) as a sequence of static CSPs, where each successive CSP is the result
of changes in the preceding one. In the original definition changes could be due ei-

2

ther to the addition or deletion of constraints. While adhering to this definition, we
enlarge on it somewhat by defining restrictions on the type of change. In particular,
we allow either additions alone, deletions alone, additions and deletions together,
and finally a particular version of the latter where additions and deletions always
pertain to the same sets of variables (same scopes). The latter case can, therefore,
be described as changes in the tuples constituting particular relations. In addition,
we consider DCSPs with specific sequence lengths, where “length” is the number
of successively altered problems starting from the “base” problem. This allows us
to sample from the set of DCSPs whose original CSP is the same.

We use the notation ���	��

��� to indicate the � th member in the sequence for����� ����� , where � is the (arbitrary) number of the initial problem in a set of prob-
lems, and � denotes the � th DCSP generated from problem � . Since we are consid-
ering a set of DCSPs based on the same initial problem, this problem is sometimes
referred to as the “original” or “base” problem for these sequences.

3 Experimental Methods

DCSPs were prepared using either of the following models of generation:

1. Addition and deletion of � constraints from a base CSP.

2. Replacement of � relations in a base CSP.

In these models, an initial CSP is generated (the base problem), and then a
series of changes are made, in each case starting with the same base problem. In
these cases, therefore, each alteration produces a new DCSP of length 1, i.e. a
DCSP consisting of the base and a single altered problem. (Elsewhere, we discuss
models that involve a sequence of CSPs derived from a single base problem; the
issues raised are not materially different from those discussed here.) In all cases,
care was taken to avoid deleting and adding constraints with the same scope in a
single alteration, i.e. for each alteration the scopes for additions and deletions were
mutually exclusive. In both models the number of constraints remains the same
after each alteration.

The initial experiments were done with random problems generated in accor-
dance with Model B [GMP � 01]. The basic problems had 50 variables, domain size
10, graph density 0.184 and graph tightness 0.369. Problems with these parame-
ters have 225 constraints in their constraint graphs. Although they are in a critical
complexity region, these problems are small enough that they can be readily solved
with the algorithms used.

DCSP sequences were formed starting with 25 independently generated initial
problems. In most experiments, three DCSPs of length 1 were used, starting from
the same base problem. Since the effects we observed are so strong, a sample of
three was sufficient to show the effects of the particular changes we were interested
in.

3

In the initial experiments (next section), two variable ordering heuristics were
used: maximum forward degree (���) and the FF2 heuristic of [SG98] (�����). The
latter chooses a variable that maximises the formula
 �"!#
 �$!&%(')*�,+.-,�/'0- , where 12�
is the current domain size of 34� , �4� the future degree of 35� , 1 is the original domain
size, and %) is the original average tightness. These heuristics were chosen because
they are most strongly associated with different basic heuristic actions on this kind
of problem, as assessed by factor analytic studies of heuristic performance [Wal08]:
(i) buildup of contention as search progresses, and (ii) simplification of the future
part of the problem. Because of their associations, ����� can be referred to as a
contention heuristic, while ��� is a simplification heuristic, although it should be
borne in mind that the difference is one of degree. These heuristics were employed
in connection with the maintained arc consistency algorithm using AC-3 (MAC-3).
The performance measure was search nodes.

Most tests involved search for one solution. To avoid effects due to vagaries
of value selection that might be expected if a single value ordering was used, most
experiments involved repeated runs on individual problems, with values chosen
randomly. The number of runs per problem was always 100. In these cases, the
datum for each problem is mean search nodes over the set of 100 runs.

Later experiments were done with simplified scheduling problems, used in a
recent CSP solver competition (http:/www.cril.univ-artois.fr/ lecoutre/benchmarks/
benchmarks.html). These were “os-taillard-4” problems, derived from the Taillard
benchmarks [Tai93], with the time window set to the best-known value (os-taillard-
4-100, soluble) or to 95% of the best-known value (os-taillard-4-95, insoluble).
Each of these sets contained ten problems. For these problems, constraints prevent
two operations that require the same resource from overlapping; specifically, they
are disjunctive relations of the form, 67�98 �;:=< 6��?>@6��A8 �) < 6B� .
These problems had 16 variables, the domains were ranges of integers starting
from 0, with 100-200 values in a domain, and all variables had the same degree. In
this case, the original heuristics used were minimum domain/forward degree and
Brélaz.

Scheduling problems were perturbed by increasing the upper bound of six of
the domains by ten units. As a result, the altered problems had features intermedi-
ate between the os-taillard-4-95 and the os-taillard-4-100 problems. (In the latter
problems, the upper bounds of all domains are ten greater than their counterparts in
the 4-95 set.) All perturbed problems were also insoluble. Single or repeated runs
were carried out; in the latter case, value ordering was randomised by choosing
either the highest or lowest remaining value in a domain at random.

4 Search Performance after Problem Alteration

Our first objective was to get some idea about the degree to which search perfor-
mance is altered after small to moderate changes in a problem. To the best of our
knowledge, data of this kind have not been reported previously in the literature.

4

The changes made in these experiments are well within the limits of previous ex-
periments in the literature (e.g. [VS94b] [VS94a]), and in some cases are much
smaller; in particular, we consider changes in existing relations as well as changes
in the constraint graph.

4.1 Changes in performance in altered problems

Table 1 shows results for the first five sets of DCSPs in an experiment on problem
alterations involving addition and deletion of constraints. (Similar patterns were
observed in the remaining 20 sets of DCSPs.) We see that pronounced changes
in performance can occur after a limited amount of alteration (deletion of 5 con-
straints out of 225 and addition of 5 new ones). In some cases where the original
problem was more amenable to one heuristic than the other, this difference was
reversed after problem alteration (e.g. ����� was more efficient than ��� for prob-
lem �DCFE0
HG4� , but for ��C)
 �I� , it was distinctly worse). This indicates that relative
amenability to one or the other form of heuristic action can also change after small
alterations in the constraints. Since the numbers in the table are means of 100 runs
per problem in which values were chosen randomly from the remaining candidates,
simple differences due to location of the first solution in a value ordering can be
ruled out as contributing to these variations in performance. (For purposes of com-
parison with results in Section 6, we note that grand means over all 75 altered
problems were 2601 for ��� and 3561 for ����� .)

Table 1. Examples of Performance Change
with Small Problem Perturbations

prob (J) K -MLONMPRQ K -TS.NHU.Q K -WVFNHU.Q K -WXRNHUYQZ\[
1 600 1303 705 1266
2 2136 4160 2407 1569
3 1682 1794 1697 2027
4 318 755 586 1507
5 2804 4996 1425 1270Z]Z]^
1 670 1280 1412 1004
2 3222 3990 2521 1582
3 924 1385 2385 968
4 713 1129 1027 941
5 3359 4549 2952 1780
Notes. _ 50,10,0.184,0.369 ` problems. Each datum is mean search nodes
for 100 runs with random value ordering. Problems were altered by adding
and deleting 5 constraints. K -TL�NMPFQ is base problem for each of three altered
problems found on the same row.

The number of solutions for each problem tested in Table 1 is shown in Table
2. In general, there is little correspondance between differences in number of so-
lutions and differences in performance. (Note, for example, the change in solution
count between �0:YE0
HG4� and �a:)
 �I� , which is more than an order of magnitude, and

5

Figure 1: Scatter plot of search effort (mean nodes over 100 runs) with ��� on
original versus �D�TC5
 �I� problems with five constraints added and deleted. (Overall
correlation in performance between original an altered problems is 0.24.)

the small change in performance [which is not in the expected direction].) Across
all 100 problems (including both original and perturbed), the correlation between
search effort and number of solutions was -0.2 for each heuristic, for either single
or repeated runs per problem. Although this is in the expected direction, the small
magnitude shows that very little of the variation in performance is related to this
factor.

Similar results were found for a corresponding set of problems without solu-
tions. (Parameter values were identical except for density which was 0.19.) Differ-
ences of 2-3:1 in search effort were common, although very large differences were
not as frequent as in solvable problems. In addition, noticeable effects were found
for solvable problems with the same problem parameters when only one constraint
was added and deleted, or 5 relations changed, or only 1 relation changed.

Table 2. Solution Counts for Problems
in Table 1

prob K -TL NMPFQ K -MS NHUYQ K -bV NHUYQ K -WX NHUYQ
1 7,846 43,267 109,480 12,065
2 18,573 29,722 47,392 79,147
3 65,735 3,550 8,843 28,427
4 26,505 37,253 17,751 7,282
5 20,156 16,434 12,033 79,384

To give a more concrete idea of the extent of variation between the original and
altered problems, a scatter plot is shown in Figure 1. This is for the �0�cC]
 �I� problem
set and includes all 25 problems.

6

4.2 Changes in promise and fail-firstness

Evidence concerning the basis of variation in performance for a given heuristic can
be obtained by using measures of search quality based on the Policy Framework of
[BPW04] [BPW05]. In this framework, quality is measured under two conditions:
(i) when search is on a solution path, i.e. the present partial assignment can be
extended to a solution, (ii) when a mistake has been made and search is in an insol-
uble subtree. In the first case, an optimal policy would maximise the likelihood of
remaining on the solution path; in the second, an optimal policy would minimise
the size of the refutation (insoluble subtree) needed to prove the incorrectness of
the initial wrong assignment. These policies are referred to as the “promise” and
”fail-first” policies, and measures of adherence to each policy have been developed,
which are referred to by the same names.

The promise measure is basically a sum of probabilities across all complete
search paths. Values can vary between 0 and 1, where a value of 1 means that
any value in the domain will lead to a solution. The fail-first measure is the mean
“mistake tree” size, where a mistake tree is an insoluble subtree rooted at the first
non-viable assignment (i.e. the initial ‘mistake’). A larger mean mistake tree size
therefore indicates poorer fail-firstness. In this paper, the analysis is based on an
all-solutions search. To avoid artifacts due to averaging over different frequencies
of mistakes at different search levels, comparisons were restricted to a single level
of search.

Representative results for each measure are given in Table 3, for the first five
sets of DCSPs. (These are for ��� ; similar results were found for ����� .) Promise and
fail-firstness both show differences across a set of perturbed problems, although
the promise measure is more drastically affected. Adherence to different policies
sometimes changes in concert (e.g. problem 4), while in other cases it changes in
opposite ways (e.g. problem 5). (Comparison with the results in Table 1 shows the
impact of these changes on overall search effort.)

5 Performance of an Algorithm Based on Solution Reuse

Local changes is a complete algorithm designed to find solutions to an altered
problem while conserving as much of the original assignment as possible [VS94b].
It works by determining a minimal set of variables that must be reassigned, and
undoing old assignments only when they are inconsistent with the new ones.

Our version of local changes updates the classical description by using MAC;
it also makes use of the basic data structures and style of control used in our ba-
sic MAC implementation. The algorithm was run with either or lexical or min-
conflicts value ordering. (In the latter case, values are chosen to minimize the
number of conflicts with values in neighboring domains; this was used in the orig-
inal paper of [VS94b]). For comparison with other data, the original solution was
always found using lexical ordering.

7

With the present problems, local changes performs quite poorly, in spite of the
fact that 5 additions and deletions forces only 1-3 variables to be unassigned. Ba-
sically, as the algorithm attempts to find new assignments, it progressively undoes
the old assignment, and since this is done repeatedly, there is tremendous thrash-
ing. As a result, the number of nodes in the search tree is sometimes orders of
magnitude greater than when search with MAC is done from scratch. Thus, with
lexical value ordering, the mean for the 75 perturbed problems was 854,544 with
ff2 and 11,579,654 with fd. With min-conflicts value ordering the corresponding
means were 156,032 and 6,463,863. (Each mean includes 12-13 cases in which the
old solution was still valid, so the number of search nodes was 0.)

It should be noted that the experiments in the original report on this algorithm
were based on problems with only 15 variables with domain sizes between 6 and
16. In addition, the versions of local changes in that paper were based on simple
backtracking or backtracking with forward checking.

6 Results with an Algorithm that Samples Contention

The results described thus far all suggest that problems undergo marked changes
after small alterations in their constraint graph topology or even in the patterns of
support. However, it is still possible that certain fundamental features of problems
do not change after such alterations. A possible feature of this type is the pat-
tern of contention in a problem, especially the variables that are major sources of
contention. Earlier work has shown that this feature can be assessed by tallying
domain wipeouts during search [BHLS04] [GW07]. In this section, we show that
this feature exhibits much less variability than do direct measures of performance.
We also show that information related to this feature can be used to solve altered
problems in a DCSP with considerable efficiency.

Table 3. Promise and Fail-Firstness Measures
on Individual Problems

(5 constraints added and deleted; fd heuristic)

promise X 1000 mean mistake tree size at level 1
prob J orig K -TS.NHU.Q K -WVFNHU.Q K -WXRNHUYQ orig K -TS.NHU.Q K -bVFNHUYQ K -WXRNHUYQ
1 .218 .528 .905 .303 1270 1030 608 1532
2 .439 .059 .153 1.261 903 1182 1254 801
3 .492 .916 .385 .647 965 702 1191 1613
4 2.380 .540 1.702 .230 366 499 355 1117
5 .259 1.411 .251 .253 1462 2189 1151 2382
Notes. _ 50,10,0.184,0.369 ` problems. Further details in text.

6.1 The random probing procedure

The present work employed a recently developed method for assessing sources of
contention prior to search, that we refer to as “random probing” [GW07]. It is
based on the weighted degree heuristic (de�gfRh) of Boussemart et al. [BHLS04].

8

In the weighted degree approach, each constraint is given an initial weight of 1.
During search, a constraint’s weight is incremented by 1 each time it causes a do-
main wipeout (i.e. removes all values from a variable’s domain) during consistency
checking. The weighted degree of a variable is the sum of the weights on con-
straints between the variable and its uninstantiated neighbors. The heuristic de�gfRh
chooses the variable with largest weighted degree; the variant ��ij1lkjd*��fmh chooses
the variable with minimum ratio of current domain size to weighted degree.

Random probing attempts to boost the power of the weighted degree heuristic
by gathering information prior to search with the heuristic. The method involves a
number of short ‘probes’ of the search space where search is run to a fixed cutoff
and variable selection is random. Constraint weights are updated in the normal
way during probing, but the information is not used to guide search. After the
probing phase, search runs to completion using the weights from probing to guide
the selections of the weighted degree heuristic beginning with the first variable in
the search order.

The weights learned during the probing phase are expected to boost the fail-
firstness of the heuristic by enabling it to choose the most contentious variables
from the beginning of search. Since each probe is an independent sample of the
search space, the weight profile generated by the probes gives an overview of the
spread of contention amongst the variables in the problem.

6.2 Stability of points of contention

We first wished to determine the degree of correlation in the weights produced
by random probing before and after alteration. To investigate this, we obtained
weight profiles (i.e. the weighted degree of each variable after random probing)
for a random sample of the 25 DCSP problems. The probing regimen was 100
restarts with a 30-weight (30-failure) cutoff. Variables were then ranked by their
weighted-degree. We compared variable ranks in the original problem with ranks
in the altered problems using the Spearman rank correlation coefficient [Hay73]
(Table 4).

Table 4. Correlations for Weight Profiles
(5 constraints added and deleted)

problem P1 P2 P3
1 .957 .957 .947
2 .959 .950 .932
5 .921 .915 .924

18 .885 .867 .914
23 .963 .919 .924
Five DCSP sets chosen at random from original 25.
“Pj” = K LonmNHU.Q .

The correlation coefficient can range between -1 (where variables are ranked in
the opposite order in the two cases) and 1 (where variables are ranked identically).

9

Here, the correlations range from .867 to .963, which shows that the rankings for
the altered problems were very similar to those for the original problems. This, in
turn, shows that the sources of contention remain more or less the same in spite of
alterations.

6.3 DCSP search with weighted degree heuristics

In these experiments, search was for single solutions, again with 100 (experimen-
tal) runs with random value ordering. In each such test, weights were updated
during the final (post-probing) run, which lasted until a solution had been found.

Problems were solved using three different forms of weighted degree: (i) �4i\1 /
d*��fmh with no restarting, (ii) independent random probing for each problem (p\q(�4�),
(iii) a single phase of random probing on the original problems (p\q(�4� - i\p\�rh), after
which these weights were used with the original and each of its altered problems
(on each of the 100 runs with random value ordering). In the third case, the new
constraints in an altered problem were given an initial weight of 1.

Table 5 presents results for each approach in terms of average nodes over the
75 perturbed problems. Nodes explored during the probing phase are not included.
These amounted to about 3700 nodes per problem for the entire phase. (It should
be noted that the work required for probing increases much more slowly than the
improvement in performance as problem size increases [GW07].)

As expected, probing resulted in a final performance that was better than that
produced by the ordinary weighted degree heuristic. However, these results were
only marginally better than with psq(�5� - i\ps�
h . The differences in means were evalu-
ated using a paired comparison two-tailed t -test [Hay73]. The difference for psq(�5�
and psq(�5� - i\ps�
h was not statistically significant (t (74) = 1.46, %vu 0.1), while that
for �4i\1 / de�gfRh and psq(�5� - i\ps�
h was significant (t (74) = 6.58, %xw�w 0.001). These
results indicate that weights learned by probing on the original problem are still
viable on the altered problems.

Table 5. Search Results with Weighted Degree
(5 constraints added and deleted)

[my{z
/ | [o} ~ ���5[J �{�5[J - y{� J ~

1617 1170 1216
Notes. _ 50,10,0.184,0.369 ` problems. Mean
search nodes across all altered problems.

7 Results with Scheduling Problems

Table 6 shows results with one heuristic for six of the ten os-taillard-4-95 problems;
these data are averages of 50 runs per problem. As with random problems, even
small perturbations greatly affect search performance.

10

Table 6. Examples of Performance Change after Perturbations
(Scheduling Problems; dom/fd heuristic)

prob (J) K -TL�NMPRQ K -TS.NHU.Q K -bVFNHUYQ K -W�RNHUYQ
1 399,636 9837 1,240,418 2,811,257
2 395 20,913 56,146 49,867
3 1751 23,993 33,446 47,044
4 167,372 47,430 330,603 1,449,969
5 29 39 29 49
6 490 95,632 624 633

Notes. Os-taillard-4-95 problems. Each datum is mean search nodes for
50 runs with random value ordering. Problems were altered by increasing
domain sizes for 6 randomly chosen variables by 10.

And as with random problems, heuristics based on information about pat-
terns of contention outperform ordinary heuristics (Table 7). More importantly
for present purposes, performance is diminished only slightly when weights de-
rived from the original problems are used as the initial weights for the perturbed
problems. (Probing was done with 100 restarts and a fixed, 30-failure cutoff.)

Table 7. Search Results with Weighted Degree
on Perturbed Scheduling Problems

[my{z
/ | [o} ~ ���5[J �{�5[J - y{� J ~

16,745 4139 5198
Notes. Os-taillard-4-95 problems. Mean
search nodes across all altered problems.

8 Conclusions

The present results show that for successive problems in a DCSP, not only must
each new problem be re-solved, but if one uses ordinary solving methods, per-
formance with a given algorithm and heuristic is highly unpredictable even after
small changes in the previous problem. Problems, therefore, appear to change their
intrinsic character in ways that alter a heuristic’s effectiveness.

We have shown experimentally that problems can change with respect to their
relative amenability to different forms of heuristic action (contention and simpli-
fication). This makes it particularly difficult for ordinary heuristics, which gener-
ally favor one or the other action [Wal08], to perform effectively across a DCSP
sequence. Problem alterations have effects on both promise and fail-firstness, al-
though the effects are proportionally greater in the first case. On this basis, one
would expect promise-based strategies to be less effective than fail-first strategies.
This is one reason for the poor performance of local changes.

At the same time, we find that despite these manifold effects on the character-
istics of search, points of maximum contention remain relatively constant when a
small number of constraints are added or relations changed. Given this result, one
would predict that a heuristic procedure that asseses these points of contention will

11

perform effectively in this domain. Random probing has this characteristic, and it
performs well when information obtained from the original problem in a DCSP se-
quence is used with subsequent problems. This means that probing does not have
to be done again, at least with alterations of the magnitude that we have studied
here.

Used in this way, random probing constitutes a new approach to solving DC-
SPs, in which a robust strategy for ordering variables is derived from assessments
of the major sources of contention in an original CSP. (Note that the variable order-
ing itself is not fixed.) It is then used together with adjustments following imme-
diate failure in the course of search. In this way, it can be used to solve a sequence
of altered problems effectively without repeating the initial sampling phase.

References

[Bes91] C. Bessiére. Arc-consistency in dynamic constraint satisfaction prob-
lems. In Proc. Ninth National Conference on Artificial Intelligence-
AAAI’91, pages 221–226. AAAI Press, 1991.

[BHLS04] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting sys-
tematic search by weighting constraints. In Proc. Sixteenth European
Conference on Artificial Intelligence-ECAI’04, pages 146–150. IOS,
2004.

[BPW04] J. C. Beck, P. Prosser, and R. J. Wallace. Variable ordering heuristics
show promise. In Principles and Practice of Constraint Programming-
CP’04. LNCS No. 3258, pages 711–715. Springer, 2004.

[BPW05] J. C. Beck, P. Prosser, and R. J. Wallace. Trying again to fail-first. In
B. Faltings, A. Petcu, F. Fages, and F. Rossi, editors, Recent Advances
in Constraints-CSCLP 2004. LNAI No. 3419, pages 41–55. Springer,
2005.

[DD88] R. Dechter and A. Dechter. Belief maintenance in dynamic con-
straint networks. In Proc. Seventh National Conference on Artificial
Intelligence-AAAI’88, pages 37–42. AAAI Press, 1988.

[GMP � 01] I. P. Gent, E. MacIntyre, P. Prosser, B. M. Smith, and T. Walsh. Ran-
dom constraint satisfaction: Flaws and structure. Constraints, 6:345–
372, 2001.

[GW07] D. Grimes and R. J. Wallace. Learning to identify global bottlenecks
in constraint satisfaction search. In Twentieth International FLAIRS
Conference, pages 592–598. AAAI Press, 2007.

[Hay73] W. L. Hays. Statistics for the Social Sciences. Holt, Rinehart, Winston,
2nd edition, 1973.

12

[SG98] B. M. Smith and S. A. Grant. Trying harder to fail first. In Proc.
Thirteenth European Conference on Artificial Intelligence-ECAI’98,
pages 249–253. Wiley, 1998.

[Tai93] E. Taillard. Benchmarks for basic scheduling problems. European
Journal of Operational Research, 64:278–285, 1993.

[VJ05] G. Verfaillie and N. Jussien. Constraint solving in uncertain and dy-
namic environments: A survey. Constraints, 10(3):253–281, 2005.

[VS94a] G. Verfaillie and T. Schiex. Dynamic backtracking for dynamic CSP.
In ECAI’94 Workshop on Constraint Satisfaction Issues Raised by
Practical Applications, pages 73–80, 1994.

[VS94b] G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint
satisfaction problems. In Twelth National Conference on Artificial
Intelligence- AAAI’94, pages 307–312. AAAI Press, 1994.

[Wal08] R. J. Wallace. Determining the principles underlying performance
variation in CSP heuristics. International Journal on Artificial Intelli-
gence Tools, 17(5):857–880, 2008.

13

