
KiWi – A Platform for Semantic Social Software

Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai
Radulescu, Rolf Sint, Stephanie Stroka

Salzburg Research Forschungsgesellschaft
Jakob Haringer Str. 5/II, A-5020 Salzburg, Austria

firstname.lastname@salzburgresearch.at

Abstract. Semantic Wikis have demonstrated the power of combining
Wikis with Semantic Web technology. The KiWi system goes beyond Se-
mantic Wikis by providing a flexible and adaptable platform for building
different kinds of Social Semantic Software, powered by Semantic Web
technology. This article describes the main functionalities and compo-
nents of the KiWi system with respect to the user interface and to the
system architecture. A particular focus is given to what we call “content
versatility”, i.e. the reuse of the same content in different kinds of social
software applications. The article concludes with an overview of different
applications we envision can be built on top of KiWi.

1 Motivation: From Semantic Wikis to KiWi

Semantic Wikis have been under investigation in the research community since
2005 (see e.g. [1,2]). Although there are many different systems with many dif-
ferent properties, a common trait between all Semantic Wikis is that they aim to
combine ordinary wiki content and technology with Semantic Web technologies,
either in order to provide better wikis (“Semantic Web for Wikis”) or to ease
the creation of Semantic Web data (“Wikis for the Semantic Web”) [3]. Many
also see Semantic Wikis as the “Semantic Web in a Nutshell”, because – like
Wikis show similar traits to the Web as a whole – Semantic Wikis share many
properties and also problems with the envisioned Semantic Web.

The EU-funded project KiWi (“Knowledge in a Wiki”)1 takes the Semantic
Wiki approach to the next level by providing a platform that allows to build
many different kinds of Social Semantic Software, based on the conviction that
most social software follows the “Wiki Principles”. By “Wiki Principles”, we
mean that the term “Wiki” does not refer to technology alone. It is more a new
philosophy of working with Web content influenced by ideas in the OpenSource
community. These principles have revolutionised the way we work with content
in the (Social) Web:

– Wikis allow anyone to edit: The core principle is that there are no access
restrictions or strict hierarchies on the content of a wiki. Anyone can easily
contribute his or her own knowledge, his or her own ideas, and his or her
own content.

1 http://www.kiwi-project.eu

http://www.kiwi-project.eu

– Wikis are easy to use: Anyone who is sufficiently familiar with the basic
functionalities of word processing software (write, delete, save) has all the
skills required to edit, correct and expand a wiki.

– Wiki content is linkable: By allowing users to create links between words
and as such between concepts, wikis also allow for the creation of semantic
relations, i.e. of meaning.

– Wikis support versioning: Never does information disappear on a wiki.
If a page is edited, the previous version is still stored somewhere. This has
an important psychological effect as it takes away the wiki writer’s block:
the fear that something might get lost through editing.

– Wikis support all media: Wikis are web-based. So whichever type of con-
tent you have, be it text, images, audio, spreadsheets, documents – anything
that can be displayed in a web browser can be displayed in a wiki. And even
if a file cannot be displayed in the browser itself, it can still be downloaded.

This same philosophy is underlying not only Wikis (technically-speaking),
but also a large array of other Social Software applications: e.g., a weblog or
social networking platform can be seen as just a different user interface (and
different way of using), but is otherwise very similar concerning the underlying
principles and also technology.

In the following, we describe how we realised the KiWi vision in the KiWi
System, a generic Semantic Social Software platform based on the Wiki princi-
ples. We begin in Section 2 with introducing the concept of what we call “Content
Versatility”: content with flexible structures that can be reused in different ap-
plications. In Section 3, we then describe KiWi Core Applications: the Wiki,
the Dashboard, TagIT, the KiWi Search, and the KiWi Inspector. Section 4 is
dedicated to the more technical aspects of the KiWi platform: the system archi-
tecture, the data model, the KiWi entity manager, and façading. We conclude
this article with an outlook and summary in Section 5.

2 Content Versatility: Same Content, Different Views

As we have already outlined in the introduction, what we call the “Wiki Princi-
ples” is actually applicable to many Social Software applications. It is therefore
close at hand to build generic platforms for developing different kinds of So-
cial Software. And indeed, there are several products already available that aim
to deliver a platform that allows to combine wikis, weblogs, social networking,
etc. Such platforms are for example Clearspace Community2 from Jive Software,
Community Server3 from telligent, and Liferay Social Office4 from Liferay.

However, all these systems only provide integration on the user interface level
and still see wiki articles, blog posts, etc. as separate kinds of content that is
visualised in a specific way. This has a number of serious disadvantages. For

2 http://www.jivesoftware.com/products/clearspace-community
3 http://communityserver.com/
4 http://www.liferay.com/web/guest/products/social_office

http://www.jivesoftware.com/products/clearspace-community
http://communityserver.com/
http://www.liferay.com/web/guest/products/social_office

instance, something that started as a wiki article can never become a blog post,
it will never be possible to attach comments to a wiki article if not foreseen in the
data model, and new kinds of content (like our TagIT locations, cf. Section 3.3)
cannot be added easily without also doing fundamental changes to the system.

KiWi follows a completely different approach which we call “Content Versatil-
ity”. The underlying principle is that every piece of information is a combination
of human-readable content and associated metadata, and that the same piece
of information can be presented to the user in many different forms: as a wiki
page, as a blog post, as a comment to a blog, as a photo, or even in a bubble in
a map-based application. The decision how the information is displayed is taken
based on the metadata of the content, and the context of the content and the
user (e.g. metadata, user preferences, different applications). Metadata is repre-
sented using RDF and thus does not require a-priori schema definitions, so the
data model of the system can be extended even at runtime.

In KiWi, we call the smallest piece of information a “content item”. A con-
tent item is identified by a URI and consists of human-readable content in the
form of XHTML and associated metadata in the form of RDF. The KiWi core
system provides means to store, update, search, and query content items, and
offers automatic versioning of all updates (content and metadata). Whereas core
properties of a content item (like the content, the author, and the creation date)
are represented in XML and persisted in a relational database, all other prop-
erties can be flexibly defined using RDF properties or relations. The URI of a
content item is generated in such a way that it is possible to make a KiWi system
part of the Linked Open Data cloud [4]. This allows to easily integrate KiWi
content with other services on the Semantic Web.

3 KiWi Core Applications

Content Versatility makes it possible to offer completely different views on the
content inside the KiWi system without any modifications to the core system or
data model. We call such views “KiWi Applications”, and they are one kind of
extension offered by the KiWi system (others are currently: KiWi Services, KiWi
Widgets, KiWi Actions, and Exporters/Importers). In the following, we describe
the set of applications that are part of the KiWi System to illustrate how the
Wiki Principles and Content Versatility are realised in KiWi. The applications
have been selected based on the requirements identified in the two KiWi use
cases and accompanying SNML projects; additional applications are conceivable
and reasonable. Additional applications will be offered as separate packages in
later stages of the project.

KiWi applications share the same context, i.e. when the user browses a con-
tent item in the Wiki or Dashboard, she can switch to the TagIT application
and view the same content item on a map or to the Inspector and get debugging
information on the content item.

Fig. 1. The KiWi Wiki: A Semantic Wiki built on top of KiWi

3.1 The KiWi Wiki

The primary and most generic interface to the KiWi system is a Semantic Wiki.
The layout and functionality (Figure 1) of the KiWi Wiki is inspired by its
predecessor IkeWiki[5]: the left column offers navigation functionality, the centre
column contains the main (human-readable) wiki content, and the right column
contains dynamic widgets that display additional information about the content
item based on its metadata (e.g. a map or incoming and outgoing links).

The centre column by default displays the content of the content item. The
section below the page title contains maintenance information about the item
as well as the list of tags that have been associated with it. By clicking on the
“Action” menu in the top right corner, the user can select to edit the content,
edit the metadata (i.e., OWL Datatype Properties), edit the relations (i.e., OWL
Object Properties) to other content items, edit the list of tags, and access the
history of the item’s content and metadata as provided by the versioning subsys-
tem. In principle, the KiWi Wiki interface can thus be used in the same way as
IkeWiki. Additional actions can be registered using KiWi’s extension mechanism
(e.g. domain specific actions like “Geolocate” or “Share”).

The widgets in the right column are visually part of the content box to em-
phasise that they contain additional information about the currently displayed
item. Currently, the KiWi system offers to display the list of references (based
on RDF relations with other items) and a “Stream of Activities” listing the

Fig. 2. KiWi Dashboard: personal user page with stream of activities, history,
personal tag cloud, social networking, and recommendations

recent activities associated with the content item (e.g. modification, tagging,
annotation).

3.2 The Dashboard

The Dashboard is a user’s personal(ized) start page in the KiWi system. Figure
2 shows an early stage of its user interface, which is currently still under devel-
opment. The Dashboard follows the same general layout as the Wiki, i.e. the left
column provides generic navigation while the centre and right columns contain
the actual content. While the look of the Dashboard is freely customisable by
the user, the KiWi core system by default provides the following information:

– the Stream of Activities is the most important part of the Dashboard: it con-
tains an aggregated list of activities that happened in the user’s “universe”,
i.e. updates to content items that are either explicitly watched by the user
or implicitly added to the user’s universe e.g. because they have been edited
by the user, because they have been edited or rated “good” by one of the
“friends” of the user, or because they have been recommended to the user
based on previous activites by the personalisation component of KiWi

– the Recommendations widget provides a list of additional content items that
might be relevant to the user; different recommendation algorithms are in-
vestigated as part of the KiWi project [6]

Fig. 3. TagIT: description of locations / geolocation of content; double circles
indicate clusters of points, single circles single points of interest

– the History widget lists the content items the user visited or worked on
recently to give quick access to the issues the user is currently concerned
with

– the Tags widget lists the tags used by the user and is a quick and flexible
means of structuring and accessing the content items that are relevant to
the user; clicking on a tag redirects to the search interface described below

Besides the main view, the Dashboard is also the place where the user man-
ages his own profile. The most important part of the user’s profile is the list
of friends, which is the primary way to use the social networking functionality
of KiWi. The requirements analysis carried out as part of the KiWi use cases
showed that social networking is a crucial aspect in a modern knowledge man-
agement system like KiWi as it helps define the context the user works in.

3.3 TagIT

TagIT is an application originally developed in a separate project with the goal
to create the “Youth Atlas of Salzburg”5, which has been running as a prototype
successfully for over a year and has now been ported to the KiWi platform (Fig-
ure 3). In TagIT, users browse through a map (based on Google Maps) where
they can “tag” locations with descriptions and provide interesting information
5 http://tagit.salzburgresearch.at

http://tagit.salzburgresearch.at

Fig. 4. KiWi Search: generic, facetted search over KiWi content

about them, e.g. cafés, bars, sports parks, hiking tours, etc. Such tags can be as-
sociated with categories from a SKOS thesaurus and with additional multimedia
data like photos or videos. Other users can then browse or search for interesting
locations using the same interface. In addition to the web-based platform, TagIT
also offers a mobile client that can run on a GPS-enabled mobile phone. When
visiting an interesting location, users can then start the TagIT application, take
a picture of the location, add a short description and directly upload the “tag”
using UMTS. The tag is automatically geolocated and immediately available for
other users.

Although quite different on the user interface and in the way it is used, TagIT
actually closely follows the wiki principles: everyone can add and edit tags, the
system is easy to use, tags can be linked, tags are versioned, and different kinds
of content are supported. On top of KiWi, tags are realised as content items
and can thus be displayed in both the TagIT user interface and the previously
described KiWi Wiki (in which case a small map widget is displayed in the right
column showing the position).

3.4 KiWi Search

In addition to these different ways of presenting content, the KiWi core sys-
tem also provides a generic search functionality accessible from within all KiWi
applications. When a user switches to search and selects a content item, he is
redirected back to the previous application afterwards. KiWi currently allows

a combination of full-text search, metadata search (tags, types, persons), and
database search (date, title). A more sophisticated search language is currently
under development [7].

The KiWi search interface implements a so-called “facetted search” (see Fig-
ure 4): the user starts with a keyword search, resulting in a list of content items
ordered by relevance or time. In case the user is not satisfied with the results, he
then has the option to refine his search using one or more of the facets offered in
the right column of the search result box. Currently, the KiWi system offers the
facets “tags”, “types”, and “persons”, which we have identified as the core facets
needed in any system. For each facet, only the criteria occurring in the currently
displayed search results are listed, together with a count of the content items
matching the criterion. Selecting one of the criteria narrows down the search.

All search facets are included in the full-text search box; this decision has
been made to provide all search functionality in one place without confusing the
user and to allow advanced users to directly search using the text field. Also, it
makes it much simpler to bookmark searches or include them in a user’s personal
stream of activities on the Dashboard.

In later stages of the project, it is planned to make the set of widgets cus-
tomisable to adapt it to different application domains. For example, in a biology
scenario, an interesting facet could be different protein structures, in a music
scenario it could be different instruments, and in a history scenario it could be
different countries.

3.5 KiWi Inspector

The KiWi Inspector is an application developed for advanced users and devel-
opers. It provides a more technical insight into the current context. It currently
provides the following functionalities:

– Content Item Inspector : displays the RDF data associated with the current
content item as RDF/XML; the shown RDF data is the same as would be
displayed to a Linked Open Data client when accessing the KiWi system

– Tag Inspector : displays a list of all tagging actions of the current content
item and the RDF data generated by them as RDF/XML

– User Inspector : displays the RDF data associated with the currently logged
in user as RDF/XML

In addition, the KiWi Inspector will later also provide more details about
the revisions (particularly metadata revisions) of the current content item and
additional debugging information as needed.

4 The KiWi Platform

The applications described in the previous section are built on top of the KiWi
Platform, which provides all the core functionalities needed by most Semantic
Social Software applications. In the following, we briefly describe architecture,
core data model, and core services offered by the KiWi platform.

RDF Store
(Relational DB)

Tagging
Service

Content
Item

Service

Ontology
Service

EditAction Annotate
Action

admin.xhtml edit.xhtml annotate.
xhtml

metadata.
xhtml

KiWiEntityManager

EntityManager TripleStoreService

Tagging
Action

Entity Database
(Relational DB)

RevisionService TransactionService

Vi
ew

 L
ay

er
:

JS
F,

 F
ac

el
et

s
Co

nt
ro

lle
r L

ay
er

Se
am

 A
ct

io
n

Be
an

s
Se

rv
ic

e
La

ye
r:

EJ
B

St
at

el
es

s
Be

an
s

M
od

el
 L

ay
er

:
En

tit
ie

s
+

Tr
ip

le
s

Fig. 5. KiWi Service-Oriented Architecture: Model Layer, Service Layer, Con-
troller Layer, View Layer

4.1 Architecture: Service-Oriented and Component-Based

The KiWi system is implemented on top of JBoss Seam6 and Java Enterprise
Edition (Java EE 5), and thus follows a component- and service-oriented archi-
tecture. Figure 5 depicts the overall structure of the KiWi system:

The model layer comprises the KiWi data model (see below) and is repre-
sented in a relational database, a triple store, and a full-text index. Entities
are persisted using the Hibernate framework7, which maps Java objects to rela-
tional tables. The KiWi triple store is a custom implementation also based on
the relational database, because existing triple store implementations provide
insufficient support for features like versioning and additional metadata about
triples that are needed by KiWi. The full-text index is implemented using Hi-
bernate Search and currently allows to search over title, textual content, tags,
authors, and RDF literals.

The service layer provides services to other components in the KiWi sys-
tem. Of central importance is the KiWi Entity Manager, which provides unified
access to content items and RDF metadata (see below). Further core services
are the revision service – taking care of versioning, and the transaction service,

6 http://www.seamframework.org
7 http://www.hibernate.org

http://www.seamframework.org
http://www.hibernate.org

allowing to manage all updates to KiWi content in reliable transactions. Both
services are heavily used internally by the KiWi Entity Manager and usually
not used by further components. Besides these core services, the service layer
may contain additional services that offer certain common functionalities. For
example, the KiWi system currently offers an “ontology service” that provides
convenient access to the triple store using higher-level concepts like “classes”
and “properties”, and a “content item service” that allows to easily access all
functionalities associated with content items (creating, loading, updating).

The controller layer consists of action components that implement a specific
functionality in the KiWi system. For example, the Semantic Wiki application
contains a “view action”, a “edit action”, a “annotation action”, and a “history
action”, and the TagIT application contains a “explorer action” and a “tagging
action”. Action components are usually very close to some functionality offered
in the user interface, and they make use of service components to access the
content in the KiWi system.

The view layer is implemented using Java Server Faces (JSF), which are
used to generate the HTML presentation of the KiWi user interface and the
user interaction with the system. JSF pages are linked with action components
in the controller layer. Also part of the view layer are web services offered by
KiWi. Currently, there are web services for accessing the triple store and SKOS
thesauruses, and there is a “linked open data” service offering the content of the
KiWi system to linked open data clients.

4.2 Data Model: ContentItems, Tags, and Triples

KiWi’s core data model makes use of few concepts, namely Content Items, Tags,
and Triples. Additional functionality is added by “KiWi Façades” (Section 4.3).

Content Items. The content item is the core concept of the KiWi system. It
represents a “unit of information” in KiWi, e.g. a page about a certain topic, a
user profile, etc. When a user accesses the KiWi system, he is always interacting
with exactly one (primary) content item, the context content item. The con-
text content item can be viewed, modified, and annotated by the user. Though
changes might also affect other content items, the context content item is always
the primary content item.

Each content item has both, a machine readable symbolic representation and
a human readable textual or multimedia representation.

– content items are all different kinds of content and data items that are stored
in the KiWi system, i.e. (wiki) pages, multimedia, users, roles, rule defini-
tions, layout definitions, widgets, and possibly more. The KiWi system is
not restricted a priori to specific content formats.

– URIs or blank nodes serve as machine-readable symbolic representations of
resources, to be used in extended triples in the triple store. The URI is used
to embed a resource in its context and provide machine-readable meaning,
e.g. by annotation with formal annotations, reasoning, etc.

– the textual / media content related to a resource is meant for human con-
sumption. The content resembles a wiki page, is easy to edit, supports link-
ing, and is versioned. In the current design each wiki article in a specific
language is represented as an own content item describing a single concept.
The assumption for this design is that the content about a topic and its
authors may differ from language to language. The definition of connections
between content items with equivalent content but different languages can
be accomplished with metadata relations.

These assumptions distinguish the KiWi data model from other wikis and con-
tent management systems. Most important, it treats all kinds of resources equally,
leading to a very clean and simple model where every resource has both, a
machine-readable and a human-readable description. A consequence of the di-
rect relationship between content items and RDF resources is that every RDF
resource, even those representing widgets, layouts, users, or even rules, can also
be described in human readable form.

Textual content is represented internally as (structured) XML documents
that can be queried and transformed to other representations like HTML or
XSL-FO (for PDF and other print formats) using standard XML query languages
(XQuery, XSLT) or using the rule-based reasoning language developed in KiWi.
The XML format used for page representations resembles a subset of HTML,
taking into account only core structuring elements.

Tags. Tagging is one of two ways of annotating content items in the KiWi sys-
tem. In KiWi, tags serve many different purposes, for example associating con-
tent items with certain topics or grouping content items in “knowledge spaces”.
There are two kinds of tags: explicit tags are explicitly added to a content item
by a user; implicit tags are created by the system, e.g. based on automatic mech-
anisms like information extraction from text or reasoning on existing tags.

Conceptually, an explicit tag is a 3-ary relation between two content items
(the tagged content item and the tagging content item) and a user (the tagging
user or tagger). An implicit tag is a binary relation between two content items, a
tagged and a tagging one. Tagging content items are identified using one or more
labels that are available for annotating content items. In case of ambiguous tag
labels (i.e. the same tag label for different content items), the KiWi system asks
the user to choose the appropriate content item. If the user enters a new label
that is not yet used elsewhere, it is displayed like a wiki-link to a non-existing
page; when the user clicks on it, he is given the choice to either associate the
label with an existing content item or to create a new content item explaining
this tag label. Internally, a tag is furthermore given maintenance information
like creation time and date and a URI for uniquely identifying a tag.

For example, the content item that describes “Mickey Mouse” could be
tagged with the label “Mouse”, thereby associating it with the content item
describing “Mouse” (the animal). The tagged content item would be “Mickey
Mouse”, the tagging content item would be “Mouse”, and the tag label used for
tagging would be “Mouse”, which is a tag label of the content item “Mouse”.

Inside the system, a tag is mapped to an RDF structure that can be used
for deriving additional RDF metadata by means of reasoning. Also, tags can
be “lifted” to taxonomy or ontology concepts by advanced users, e.g. by using
the “meaning of a tag” (MOAT)8 or “social semantic cloud of tags” (SCOT)9

ontologies. In this case, more information about the meaning and context of a
tag becomes available, e.g. for reasoning or querying.

Tags can be used by the KiWi system for many different purposes. For ex-
ample, tags can help with searching by offering a facetted search interface or by
offering tag clouds. Furthermore, it is possible to derive user preferences from
the tags she has used or to identify users with similar interests via clustering.
Similarly, tags can also be used for grouping related content items, e.g. for defin-
ing group work spaces or for clustering thematically related items. Beyond that,
the way how tags are used is left to the application developers and users that
implement a specific instance of the KiWi system.

Extended Triples. Machine-readable metadata is represented using what we
call extended triples. Extended triples contain additional maintenance informa-
tion that is used internally by the KiWi system for various tasks like versioning,
transactions, associating a triple with a certain workspace, user, or group, or
for reason maintenance (i.e. storing why a certain triple has been asserted). In
principle, an extended triple can thus be seen as a “triple with attributes”.

Note that these attributes could also be represented as a RDF subgraph using
triples and reification. However, such a representation has several disadvantages
compared to the extended triples proposed for KiWi:

– it requires reification, meaning that the original triple, which assumingly
provides the most interesting information, is broken up into parts that have
to be reassembled, and

– it mixes up several levels of abstraction, which is inconvenient not only for
machines and reasoning, but also for the user

– it makes it difficult to filter out the information that is used for internal
purposes and this not supposed to be exchanged with external systems

The implementation of extended triples is straightforward and fits easily with
already existing tools and standards without disguising the original meaning.
Triple attributes containing maintenance information are only represented pro-
grammatically inside the system, avoiding problematic situations. To the outside
world, extended triples look like ordinary triples and can be exported into the
usual Semantic Web formats like RDF.

In the current implementation, extended triples are represented in special
tables in the relational database, and queries to the triple store are executed in
Hibernate’s object oriented query language HQL. We chose not to use one of the
existing triple store implementations because they are restricted to simple triples

8 http://moat-project.org/
9 http://scot-project.org/scot/

http://moat-project.org/
http://scot-project.org/scot/

without the possibility to add additional metadata, they have only basic trans-
action support [8], and they offer poor scalability if one wants to use reasoning.
Building KiWi on top of these systems has proven to be extremely difficult and
has been abandoned in favour of the more flexible database solution. Mapping
SPARQL queries to Hibernate is currently under development.

4.3 KiWi Entity Manager and KiWi Façades: Content Versatility
in Java EE

The KiWi system offers a number of core services that are needed in many situ-
ations. Of particular importance is the KiWi entity manager (named in analogy
with the Java EE entity manager, as it provides the technological background
for realising content versatility. In the following, we briefly introduce its func-
tionality and then discuss a technique we call KiWi Façades.

KiWi Entity Manager. The KiWi entity manager is a central service provid-
ing unified access to data stored in the relational database, in the triple store,
and in the fulltext index. It provides functionalities for storing, querying and
searching entities (content items, triples, tags) in different languages:

– Storing of entities is handled through the methods persist() (for new enti-
ties) and merge() (for updated entities). Both methods take care of forking
the data associated with a Java entity appropriately into relational database,
triple store, and fulltext index.

– Querying of entities is handled by the method createQuery(), which takes
as argument a query string in either HQL (Hibernate’s object oriented query
language) or SPARQL and returns a Query object that can be used in the
same way as the ordinary Java EE Query object for retrieving results.

– Searching of entities is handled by the method search(), taking as argument
a label-keyword search string and then delegates – depending on the label –
to either the fulltext index, the relational database, or the triple store.

All KiWi Entity Manager methods support façading, described below. Addi-
tionally, all updates performed through the KiWi entity manager are automat-
ically wrapped in appropriate transactions that support transaction isolation
and commit/rollback functionality. Also, KiWi entity manager transactions are
automatically versioned using KiWi’s revision service and can be reverted indi-
vidually. The KiWi transaction system is discussed in [8].

KiWi Façades. A particularly salient aspect of the KiWi system is its façading
mechanism. Façading can be seen as a way of providing different application-
dependent Java views on content items. They are thus a way of realising content
versatility in Java in a way natural to developers. A KiWi Façade is specified
as a Java interface, annotated with Java 5 annotations that map Java meth-
ods to RDF properties (see Figure 6). When calling an annotated method, an
appropriate query to the triple store is issued instead of accessing the Java field.

@KiWiFacade

@RDFType(Constants.NS_GEO+"Point")

public interface PointOfInterestFacade extends ContentItemI {

@RDF(Constants.NS_GEO+"long")

public double getLongitude ();

public void setLongitude(double longitude);

@RDF(Constants.NS_GEO+"lat")

public double getLatitude ();

public void setLatitude(double latitude);

}

Fig. 6. A Java interface annotated as KiWi Façade; the methods get/setLongi-
tude() map to the RDF property geo:long, whereas get/setLatitude() map to
geo:lat. A content item façaded with this interface is automatically assigned
the geo:Point type.

For a Java developer working with the system, a façaded content item behaves
exactly like an ordinary content item with the additional methods specified in
the façade interface, and can be used in any context a content item can be used,
e.g. as backing bean for user interface components. This functionality is realised
using Java’s dynamic proxy mechanism (implemented in the KiWi invocation
handler). All methods in the KiWi entity manager may optionally take or return
a KiWi Façade instead of a content item if they are passed a façade interface as
additional argument.

5 Outlook and Conclusion

KiWi is an ongoing research project of which we have only demonstrated the
first results. Many more salient aspects are still to come. Particularly, KiWi will
be extended with “enabling technologies” in the following areas:

– Reasoning and Reason Maintenance: in this area, the KiWi system
will be extended with a custom, rule-based querying and reasoning com-
ponent where advanced users will be able to add custom inference rules to
the knowledge base; reasoning will be based on content as well as metadata
[9]. In addition, there will be a reason maintenance component that allows
users to get explanations why a certain information has been inferred; reason
maintenance is also beneficial for update performance and might even allow
for different users having different rule sets.

– Information Extraction: the KiWi system will furthermore provide a com-
ponent that semi-automatically extracts metadata from the content that is

stored in the knowledge base. Information Extraction will be performed in
interaction with the user to minimise the number of errors.

– Personalisation: based on the metadata for a content item, a user model,
and the rule-based reasoning, KiWi will also offer a personalisation com-
ponent that allows to further customise the presentation of a content item.
The personalisation component will further demonstrate the flexibility of the
Content Versatility approach taken by KiWi.

TagIT is now further developed as part of the Salzburg NewMediaLab project
“Future Content Platforms” together with our partner Salzburger Nachrichten.
The goal is to integrate in the same interface not only wiki content and TagIT
locations but also news articles, blog posts, and small advertisements from our
partner. For the purpose of the demonstration, we have already imported 20.000
online news articles, but the system is designed to scale to hundreds of thousands.
Acknowledgement. This research has been partly funded by Salzburg New Media

Lab and by the the European Commission within the 7th Framework Programme

project KiWi - Knowledge in a Wiki (No. 211932). The latest KiWi source code is avail-

able as Open Source at the KiWi website http://www.kiwi-project.eu. The demon-

stration system is published from time to time at http://showcase.kiwi-project.eu.

References

1. Völkel, M., Schaffert, S., eds.: 1st Workshop “From Wiki to Semantics”
(SemWiki’06) – colocated with ESWC’06, Budva, Montenegro (2006)

2. Lange, C., Schaffert, S., Skaf-Molli, H., Völkel, M., eds.: 3rd Workshop “From Wiki
to Semantics” (SemWiki’08) – colocated with ESWC’08, Tenerife, Spain (2008)

3. Schaffert, S.: Semantic Social Software: Semantically Enabled Social Software or
Socially Enabled Semantic Web? In: Semantics 2006, Vienna, Austria (2006)

4. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web.
In: 4th European Semantic Web Conference (ESWC2007) – Posters Track, Inns-
bruck, Austria (2007)

5. Schaffert, S., Westenthaler, R., Gruber, A.: IkeWiki: A User-Friendly Semantic
Wiki. In: Proceedings of the 3rd European Semantic Web Conference (ESWC06) –
Demonstrations Track, Budva, Montenegro (2006)

6. Durao, F., Dolog, P.: Analysis of tag-based recommendation performance for a se-
mantic wiki. In: Fourth Workshop on Semantic Wikis (SemWiki2009) in conjunction
with the 6th Annual European Semantic Web Conference (ESWC2009), Heraklion,
Greece, CEUR.org (2009)

7. Weiand, K., Furche, T., Bry, F.: Quo vadis, web queries. In: Proceedings of In-
ternational Workshop on Semantic Web Technologies, Belgrade, Serbia (29th–30th
September 2008). (2008)

8. Stroka, S.: Transaction management in federated, heterogeneous database systems
for semantic social software applications. In: submitted to 20th Int. Conference on
Database and Expert Systems Applications (DEXA’09), Linz, Austria (2009)

9. Bry, F., Kotowski, J.: Towards reasoning and explanations for social tagging. In:
Proceedings of 3rd International Workshop on Explanation-aware Computing, Pa-
tras, Greece (21st–22nd July 2008). (2008)

http://www.kiwi-project.eu
http://showcase.kiwi-project.eu

