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Abstract

Interoperability is one of the major design
objectives when building applications for
B2B and Semantic Web applications. In
this paper, we present a methodology for
engineering semantic knowledge such that
these semantic structures are easier reusable
when switching between several representa-
tion languages. For this purpose, we re-
consider the commonalities of representation
languages and their usage in actual applica-
tions. Out of this consideration we derive se-
mantic patterns as a means to communicate
knowledge at an epistemological level of rep-
resentation and as a means for (partial) exe-
cution by any particular implementation of
any representation language. The underlying
method we propose combines the advantages
of formal specification methods (where fea-
sible) with informal, natural language expla-
nations such as used in software engineering
for design patterns.

1 Introduction
The Web tremendously changed the way companies
do their business, because it provides cheap, easy and
widely available transport for information. Now, the
Semantic Web is about to let the Web mature from
a technical platform that allows for the transporta-
tion of syntactic information to the communication of
knowledge. The prime format for the latter is RDF
(Resource Description Framework) and RDFS (RDF-
Schema). RDF [25] was designed by its developers
in the Web way, i.e. as a smallest common denom-
inator that a lot of people can easily adhere to, only
representing a light-weight object model (cf., e.g., [3])
with URIs and reification. RDFS [8] adds an addi-
tional layer to integrate some simple notions of classes,
class inheritance, properties and property inheritance.
While RDF(S)1 certainly goes an important step into

1We use “RDF(S)” to refer to the combined technologies
of RDF and RDF-Schema.

the direction of the “Semantic Web”, it only provides
a very lightweight, and thus extremely restricted, se-
mantic language. Therefore, a number of proposals
for languages and language extensions on top of RDF
and RDFS are currently under development (cf. [14;
2; 11], which describe some of them). Given the large
variety of logics in use in many systems nowadays and
given experiences from knowledge representation and
reasoning2 that have shown the necessity of this multi-
tude of languages, the variety of these proposals gives
only a first impression of the Babel of languages which
will come up in the Semantic Web. This Babel, how-
ever, is counterproductive to semantic interoperability
which lies at the heart of doing smart B2B on the Se-
mantic Web (e.g., for exchanging knowledge about cat-
alogues or about resource availability). This paper is
about engineering machine-processable knowledge in
a way such that it is reusable across different Semantic
Web languages and across different styles of modeling.

Even before the wide-spread usage of the Web, there
have been efforts to find one representation level for
all languages (cf., KIF [20; 19]) and to automatically
translate between different languages (cf., OntoLin-
gua [22]), but both approaches heavily suffered from
the fact that the meaning of representations, i.e. their
semantic entailments, could not be adequately repre-
sented in a single lingua franca. In order to allow
for reuse of semantic information and a multitude of
underlying representation languages, we approach the
problem from a different angle, an engineering point
of view, by considering differences and commonalities
of various languages at an explicitly modeled episte-
mological level (cf. [7]). We opt for, first, building on
RDF(S) and, second, by constructing semantic patterns
that capture the intended semantic entailments.

While RDF(S) allows for a frame model that virtu-

2Various applications request different types of languages
and reasoning systems, ranging from description logics sys-
tems (e.g., for data warehouse quality [17]), over — tractable
— non-monotonic reasoning systems (e.g., non-monotonic
inheritance for insurance help desk [27]), or systems that in-
clude temporal reasoning (e.g., for corporate history analysis
[4]).



ally everyone may agree one, what really distinguishes
and what is common to any two representation lan-
guages are the differences and commonalities of the se-
mantic entailments expressible there. We show in this
paper how to model commonalities in, what we call, se-
mantic patterns. Semantic patterns are used for com-
munication between Semantic Web developers on the
one hand, but also for mapping and reuse to different
target languages on the other hand, thus bridging be-
tween different representations and different ways of
modeling knowledge. Developing the semantic pat-
terns, we do not invent the wheel from scratch, but
we pick insights from software engineering and knowl-
edge representation research and integrate them for use
in the Semantic Web.

By sheer principle, we cannot produce an exhaus-
tive list of possible semantic patterns or show how the
epistemological level should look like given any set of
representation languages. Hence, we substantiate the
claims we make with a case study considering as tar-
get representation systems OIL/FaCT [14], currently
the most prominent semantic layer on top of RDF(S),
and SiLRi [13], an F-Logic-based [24] representation
system.

Outline of the paper. In the following, we start with
our model for semantic patterns, their underlying ratio-
nale as well as their formal and informal components
(Section 2). Then, we show how this model fits into
the Semantic Web (Section 3), i.e. how it can be re-
alized in RDF and from which point it has to evolve
now. Subsequently, we illustrate our approach with a
case study. We describe an application scenario, where
semantics are brought to bear in a target representation
independent way.

2 Semantic Patterns

The rationale and conceptual model of our approach is
explained in this section. In order to give the broad
view necessary to understand the problem of model-
ing knowledge for a variety of representation languages
through semantic patterns, this section

1. analyses the abstract properties of our problem,
thereby recollecting the most relevant related
work in this area;

2. characterizes the high-level solution to the prob-
lem, which leads to informal means for communi-
cating a semantic pattern together with formal de-
scriptions of consistency constraints; and, finally,

3. defines these two aspects of semantic patterns ex-
emplifying them by one extremely simple and
useful pattern, for which no modeling primitive
exists in most modeling languages and frame-
works.

2.1 The Problem and some of its History

When one tries to reuse semantics across boundaries
stemming from the usage of different representation
languages, different actual representation tasks and
their correspondingly different formal models, one
may recognize characteristics of the semantic mod-
els that remain constant. Striving for semantic inter-
changability the crucial point lies in capturing these
characteristics. This is difficult, because:

� Different language definitions come with different
formal models. In general, the models of two dif-
ferent languages are not comparable at all. Thus,
when one defines a translation there may not exist
a criterion to evaluate the correctness of the trans-
lation.

� There may be several semantically equivalent
statements in one language. Their equivalence is,
in general (e.g., for first-order predicate logic), un-
decidable. Hence, their fully automatic translation
is, in general, not feasible.

� Some choices for representation are not semanti-
cally motivated, but are made in order to generate
some particular behaviour of the actual system.

Therefore, direct translations from one representa-
tion language into the next do not seem to yield a vi-
able way. As a way around this dilemma, we consider
the engineering task of constructing a particular repre-
sentation. Rather than working hard to implement in-
tended semantic entailments in statements of one par-
ticular — for the purpose of reuse and translation even
arbitrary, language — the engineer may decide to ex-
plicitly model semantic entailments at a meta-level, in-
stantiate the meta-level description, and compile the fi-
nal representation into the one or the other target lan-
guage.

In fact, those semantic entailments that are most
widely agreed upon, such as necessary inheritance con-
ditions, directly show up in common representation
languages, such as rdfs:subclass and rdf:type in
RDF(S). This also is the reason that subsequently we
may easily assume that ground RDF facts are translat-
able into virtually all target languages.

Then, there is another medium size set of such se-
mantic characteristics that are widely deemed interest-
ing, that can be modeled independently from particular
target languages in a number of systems and that can
also be mapped into a wide range of languages. They
are widely known from object-oriented databases. Gru-
ber defined a set of primitives that captures them in his
Frame Ontology [22] for use of comparatively simple
translation between several representation languages
(e.g., transitivity of relations, database joins, or dis-
jointness of concepts).3

3Subsets of them have also been discussed/are under dis-
cussion for usage in description logics languages like OIL.
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For characteristics more sophisticated than those
mentioned above, there exists no comprehensive con-
cept for engineering semantics in a way that is really
reusable across several languages.

By its very nature, the problem of describing formal
model characteristics for all representation languages
is an open one that cannot be solved by producing a
closed list of modeling primitives like the ones in Gru-
ber’s Frame Ontology. Hence, there is a need for a
technique of describing new semantic primitives at a
higher level of abstraction.

Again looking back into history, Brachman [7] and
others have captured particular model characteristics,
i.e. semantic entailments, in axiom schemata for the
purpose of easier engineering of large sets of axioms.
Axiom schemata provide an abstraction of actual ax-
ioms and particular axiom schemata were categorized
and named. Doing so, Brachman introduced the name
epistemological level for this layer of description. The
results of his efforts were a set of epistemological prim-
itives for description logics. Unlike our purpose, his
goal was not the reuse of semantics across represena-
tion languages, but rather the reuse of engineering ef-
forts in one language.

2.2 The High-level Solution to the Problem
While axiom schemata already go into the direction
of abstracting from formal model characteristics, by
definition they are developed for one language only.
Hence, one part of our high-level idea was to allow
for (an open list of) new epistemological primitives
that can be instantiated in different representation lan-
guages for modeling particular semantic entailments
and which are, thus, similar to named axiom schemata
working in one language.

However, one needs a more flexible paradigm better
suited to apply to a larger range of representation lan-
guages and more able to abstract from particular for-
mal models. As described above, the general problem
does not allow to come up with a completely formal
and ubiquitously translatable specification of seman-
tics. Hence, the other part of our high-level idea is
to require extra efforts from Semantic Web developers.
To support them in their efforts, it appeared to be a pre-
requisite that they could communicate more efficiently
about these new epistemological primitives — similar
to the way that software engineers talk about recurring
software designs.

Design Patterns and Semantic Patterns. Design
patterns have been conceived for object-oriented soft-
ware development to provide (i) a common design vo-
cabulary, (ii) a documentation and learning aid, and
(iii) support for reorganizing software. Likewise to the
naming and cataloguing of algorithms and data struc-
tures by computer scientists, design patterns are used
by software engineers to communicate, document and
explore design alternatives by using a common design

vocabulary or a design pattern catalog. By this way,
they also decrease the complexity of developing and
understanding of software systems. Additionally, de-
sign patterns offer solutions to common problems, help
a novice “acting” more like an expert and facilitate the
reverse-engineering of existing systems.

Though bridging between formal representations
seems to be a formal task only, very often quite the
contrary becomes true. When not everything, but only
relevant aspects of knowledge can or need to be cap-
tured, when not all inferences, but only certain strains
of semantic entailments can or need to be transferred,
the development of new semantic primitives should
not only allude to the formal definition of translations
into target languages, but also to informal explana-
tions. Therefore a semantic pattern does not only com-
prise new epistemological primitives, but likewise to
design patterns, it also serves as a means for communi-
cation, cataloguing, reverse-engineering, and problem-
solving. Thus, it may contribute to a more efficient
exploitation of Semantic Web techniques.

Semantic Patterns and Consistency. Experiences in
the related field of problem solving methods (cf. Sec-
tion 6) have shown that there are as many interpreta-
tions of natural language descriptions as there are read-
ers [15]. Given the preliminary that we do not want
to subscribe to any particular, extremely powerful, and
hence undecidable, specification language, we never-
theless need some means to describe consistency con-
ditions that an implementation of a semantic pattern
must adhere to.

The basic idea here is the following: A semantic
pattern enforces semantic entailments on ground facts.
A semantic pattern is implemented by translating its
instantiated epistemological primitives into the target
language. Thus, if one gives an instantiation of a
semantic pattern together with some example ground
facts related to the pattern, the implementation (i.e., the
translation together with the target system) may derive
semantic consequences. A translation may be consid-
ered consistent, if it derives those consequences out of
the example ground facts that the developers of the se-
mantic patterns wanted to be derived (i.e. the positive
examples) and not those that they explicitly excluded
(i.e. the negative examples).

This definition of consistency of translations is easy
to realize, since it only builds on premises that are al-
ready given within the semantic patterns framework
sketched so far. In particular, the translation of ground
RDF facts into the target language is sometimes triv-
ially done by an identity function (e.g., for OIL or
DAML-Ont). Otherwise it is not overly complicated,
because the RDF model already is a kind of least com-
mon denominator for the representation languages we
consider.4 The reader may note that this notion of con-

4The only counterexamples we could come up with were
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sistency may not completely prevent misuse or misun-
derstanding. For instance, translations that map every-
thing to the empty set always incur consistency without
doing any good.

A complete description of semantic patterns includ-
ing a formal specification of consistency will be given
in the following.

2.3 Two Complementary Aspects of
Semantic Patterns

This subsection puts the high-level rationale outlined
above into a concrete perspective. We start with the in-
formal description of the template structure of semantic
patterns. Subsequently, we specify the formal parts of
semantic patterns including consistency conditions for
the translation into target representations.

Informal Description of Semantic Patterns. A Se-
mantic Pattern consists of two major parts. The first
part describes core elements that are completely in-
dependent from any actual implementation. The sec-
ond part specifies example implementations, including
descriptions about target system/language-specific be-
haviour.

The first part consists of the following eight core el-
ements (also cf. Example Pattern part 1 given in Ta-
ble 1):

1. Pattern Name: describes in few words the se-
mantic problem, its solutions and consequences.
Naming extends the pattern catalog and extends
the semantic pattern vocabulary.

2. Intent: is a short statement describing what the
pattern does and what its rationale and intent are.

3. Also Known as: enumerates other well-known
names of this patterns (synonym list).

4. Motivation: describes a scenario that illustrates
the semantic problem and elucidates how the
semantic pattern may help in making implicit
knowledge explicit.

5. Structure: represents the pattern. In particular,
it gives the defining namespace, lists the relevant
(new) epistemic primitive(s) and describes their
signature.

6. Known Uses: shows examples of the pattern
found in real Semantic Web applications.

7. Related Patterns: lists a number of closely re-
lated patterns (e.g. generalization hierarchy of
patterns) and describes how they are related

8. Constraints: lists tuples of RDF facts and instan-
tiated epistemic primitives (C

i;in, Ci;out, C
opt

i;out,

Ci;notout, C
opt

i;notout). Their intended meaning
is that for all i, given C

i;in, and thus using the
new epistemic primitives of the pattern, Ci;out

rather esoteric schemes, like monadic predicate logics.

must be derived in any given implementation
and Ci;notout must not be derived in any given
implementation. In addition, one may include
sets C

opt

i;out and C
opt

i;notout that, correspondingly,
should and should not be derived in any given im-
plementation.

The second part deals with implementation aspects
of a Semantic Pattern. It consists of an arbitrary num-
ber of descriptions that relate the semantic pattern to
particular target languages/systems. Each singleton en-
try (referring to one target language/system) should in-
clude the following five template elements (also cf. Ex-
ample Pattern part 2 described in Table 2):

1. Name of target language/system: refers to the
actual language specification. Because various
system implementations may even incur different
behavior (ranging from response time to various
degrees of covering a specification), we also allow
to specify system implementations rather than just
language versions.

2. Applicability: The applicability of a semantic
pattern in an actual language/system may be re-
stricted. Example restrictions may necessitate the
generation of new symbols in a particular target
system or they may restrict the semantic entail-
ments generated from C

i;in to some subset of
Ci;out to mention but two example restrictions.

3. Translation result of input constraints C
i;in:

shows the representation of an example fact base
in the target language. Thus, the user of the Se-
mantic Pattern sees an explicit example result of
the translation process.

4. Translation — Sample Specification: This spec-
ification describes the translation of instantiated
epistemic primitives of the given pattern into the
target language. The specification may be given
in logics, pseudo code or a real programming lan-
guage. In some target languages (e.g., F-Logic) it
is reasonable to specify the translation in the tar-
get language itself. If the translation is given by a
formal specification it can be considered to repre-
sent the translation Ti, which is referred to in the
following.

5. Comment: Additional comments on particulari-
ties of the translation and the translation results.

The reader may note in the example templates that
the various fields of the semantic patterns are not re-
quired. For ease of presentation, we have used italics
in the running example to abbreviate redundant syntac-
tic descriptions.

5For better readability we here mostly use a PL1-style of
denotation (without quantifiers) that can be easily mapped to
RDF.
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Table 1: Example Semantic Pattern — Part 1

Semantic Pattern
Pattern Name Locally Inverse Relation
Intent Allows to define inverses the scope of which is restricted to particular concepts.
Also Known As Restricted inverse relation
Motivation Often the definition of global inverses is too generic and yields overly general inferences. For

example, one may have ontology definitions that every MOVIE ISSHOWN in a THEATRE and
every PLAY ISGIVEN in a THEATRE and THEATRE HOST EVENT. Now, the local inverse of
ISSHOWN is HOST restricted to the range MOVIE and the local inverse of ISGIVEN is HOST
restricted to the range PLAY. A global inverse might lead to unwanted consequences. For this
reason this pattern allows the definition of inverse properties restricting their domain and range
concepts. This notion of locality is naturally given in OO systems, where properties are defined
locally in classes. It is not given in RDF(S) where properties are first-class citizens and exist
independent of classes.

Structure
Namespace http://ontobroker.aifb.uni-karlsruhe.de/schema/LocalInverse.rdf
Epistemic Primitive(s) LOCALINVERSE
Signature LOCALINVERSE(r1; c1; r2; c2)

with r1; r2 denoting binary relations and c1; c2 denoting their corresponding ranges
Known Uses http://ka2portal.aifb.uni-karlsruhe.de
Related Patterns The pattern “globally inverse relation” subsumes “locally inverse relation” when applied to the

same relations
Constraints5

C
1;in LOCALINVERSE(ISSHOWN; THEATRE; HOST;MOVIE);

DOMAIN(ISSHOWN;MOVIE); RANGE(ISSHOWN; THEATRE);
DOMAIN(HOST; THEATRE); RANGE(HOST; EVENT);
TYPE(Lassie;MOVIE); HOST(Schauburg;Lassie)

C
1;out ISSHOWN(Lassie; Schauburg)

C
opt
1;out TYPE(Schauburg; THEATRE)

C
1;notout ISGIVEN(Lassie; Schauburg); TYPE(Lassie; PLAY)
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Figure 1: Checking for consistency

Formal Consistency Conditions for Semantic Pat-
terns. Combining our considerations on consistency
with our actual specification of semantic patterns we
may now describe the overall setting in formal terms
(also cf. Figure 1).

We base our consistency checking on facts in RDF
(cf. C

1;in; C1;out; C1;notout in Figure 1), which may
include some of the new epistemic primitives. Each
translation maps this RDF based representation into a

target language (or system) Lj , resulting in target rep-
resentations R

1;in;j ; R1;out;j ; R1;notout;j (j = 1; 2).
From any consistent translation Tj the interpretation
of output facts R1;out;j must and the interpretations
of facts R1;notout;j must not be semantically entailed
by the corresponding interpretation of input constraints
R

1;in;j . Depending on the actual system, semantic en-
tailment (j=) or not-entailment (6j=) may be replaced by
syntactic derivation (`) or not-derivation ( 6`).

To describe this intuition precisely, we specify:

Definition 1 (Translation Mapping) A translation
mapping is any function Ti : 2

sentences(RDF)
!

2
sentences(Li), where sentences(X) stands for all

legal sentences of language X , Li (i = 1 : : : n)

are representation languages, and 2
sentences(X)

describes the set of all subsets of all legal statements
of language X .

This simply boils down to: a translation mapping for
target language Li is able to translate every possible
RDF representation into this target language.

In this definition we assume that new epistemolog-
ical primitives are defined by statements in RDF (also
cf. Section 3). Given such a translation mapping, we
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Table 2: Example Semantic Pattern — Part 2

Semantic Pattern Implementations for Locally Inverse Relations

Language/System OIL/FaCT
Applicability Requires the creation of artificial relations for this type of modeling.
Translation (Sample Code) copy RDF literally, create two new subproperties with specialized range restrictions and

declare appropriate INVERSE relation
Translation Result for C

1;in literal copy of the statements in C
1;in plus RDF equivalent of ...

slot-def host1
subslot-of host
inverse isShown

slot-def host2
subslot-of host
inverse isGiven

Comment The reader may note that in contrast to rdfs:subPropertyOf OIL’s subslot-of
allows for cycles.

Language/System F-Logic/SiLRi
Applicability Applicable.
Translation (Sample Code) translate RDF syntactically and add two meta-rules (see below)
Translation Result for C

1;in Syntactic translation of statements in C
1;in plus ...

FORALL C1; C2; R1; R2; O1; O2
O2[R2!!O1] and O1 : C1 

LOCALINVERSE(R1; C1; R2; C2) and O1[R1!!O2] and O2 : C2:
FORALL C1; C2; R1; R2; O1; O2
O1[R1!!O2] and O2 : C2 

LOCALINVERSE(R1; C1; R2; C2) and O2[R2!!O1] and O1 : C1:

Language/System Predicate Logic
Applicability Applicable.
Translation (Sample Code) add the following PL2 Specification

FORALL C1; C2; R1; R2; O1; O2
R2(O2; O1) ^ TYPE(O1; C1) 

LOCALINVERSE(R1; C1; R2; C2) ^ TYPE(O2; C2) ^R1(O1; O2)
FORALL C1; C2; R1; R2; O1; O2
R1(O1; O2) ^ TYPE(O2; C2) 

LOCALINVERSE(R1; C1; R2; C2) ^ TYPE(O1; C1) ^R2(O2; O1)

can evaluate to which degree it is consistent with re-
gard to the constraint specification of the given seman-
tic pattern.

Definition 2 Let the semantic pattern S include
the constraints (C

i;in, Ci;out, C
opt

i;out, Ci;notout,

C
opt

i;notout) for i := 1 : : :m. A translation mapping
Tj is called consistent with the Semantic Pattern S
iff forall i := 1 : : :m : Tj(Ci;in) j= Tj(Ci;out) and
Tj(Ci;in) 6j= Tj(Ci;notout).

Definition 3 Let the semantic pattern S include
the constraints (Ci;in, Ci;out, C

opt

i;out, Ci;notout,

C
opt

i;notout) for i := 1 : : :m. A translation mapping
Tj is called strongly consistent with the Semantic Pat-
tern S iff Tj is consistent with S and forall i :=

1 : : :m : Tj(Ci;in) j= Tj(C
opt

i;out) and Tj(Ci;in) 6j=

Tj(C
opt

i;notout).

3 Semantic Patterns for the Semantic
Web

Building on the rational and methodology outlined
above, the basic idea of semantic patterns on the Web
has two major dimensions: First, there is the dimension
of technical representation and, second, there is the so-
cial process of establishing Semantic Pattern libraries
on the Web.

3.1 Representing Semantic Patterns in RDF
Semantic patterns are used for communicating some
information to human developers and some informa-
tion to computer systems. Hence, RDF is also the ideal
format for the representation of the Semantic Pattern
itself.

We have provided a RDF-Schema de-
scription for semantic patterns avail-
able at http://ontoserver.aifb.uni-
karlsruhe.de/schema/PatternSchema.rdf
which describes RDF resources of rdf:type Pattern.

6



We refer to this schema with the namespace prefix
ps for Pattern Schema. An actual instantiation of
this schema, viz. our running example, locally
inverse relation, is shown at
http://ontoserver.aifb.uni-
karlsruhe.de/schema/LocalInverse.rdf.
For easier presentation we refer to it in the following
outline of these RDF structures by the namespace
prefix pa for Pattern Application.

A semantic pattern is a rdfs:Resource and
can be associated with other resources by a
number of defined properties. The properties
ps:patternName, ps:intent, ps:alsoKnownAs,
and ps:motivation have been described in Sec-
tion 2 and associate a pattern object with literal,
textual values (rdf:parseType="Literal"). The
property ps:relatedPattern links a pattern to
related ones. The structure of a pattern is modeled
by the two properties ps:epistemicPrimitive
and ps:signature. The former represents a simple
literal while the latter associates a pattern with several
named properties (e.g. pa:class1 or pa:rel2).
These properties define the parameters of the pattern
and must define the pattern itself as their rdf:domain.
The ranges of the parameter properties represent the
parameter types for the pattern. The example pattern
has four parameters: pa:class1 and pa:class2 of
type rdfs:Class, and pa:rel1 and pa:rel2 of
type rdf:Property.

All mentioned information becomes a part of the
actual pattern description, i.e. the RDF model. Ap-
plications can ask for the signature of a pattern by
querying this model, esp. the ps:signature and
ps:epistemicPrimitive properties of the pattern.
This formal part of the model can directly be exploited
for further processing, e.g. for building GUIs for in-
stantiating a particular semantic pattern, e.g. for instan-
tiating the locally inverse relations-pattern with HOST,
MOVIE, ISSHOWN, and THEATRE.

The constraints (C
i;in, Ci;out etc.) used for check-

ing consistency of actual implementations represent
partial models that are only true within their consis-
tency checking context, but not on a global scale. The
means of RDF for representing contextual information
is reification. Therefore the different constraint sets are
modeled via reification. Each set of constraint state-
ments is retrievable from a pattern-resource by query-
ing one of the constraint-properties. Each such prop-
erty relates pattern-resources with rdf:Statements.
Translation functions (cf. Definition 1) may access
these sets and translate the reified statements into the
target language.

The second part of semantic patterns as described
in Section 2 defines target language/system-specific
information about the pattern, of possible implemen-
tations, and expected results of translation functions.
The description of the name of the target language
and system are modeled as literal values of the proper-

ties ps:language and ps:system, respectively. The
translation code may be stored within another RDF-
literal accessible via the ps:code property of the
ps:Implementation resource. Results of applying
this code to the sample given in the constraint set C

i;in
can be represented in the RDF-model of the imple-
mentation as well. Since languages exist that directly
operate on the RDF-model, it is possible to store rei-
fied RDF-statements reachable via the ps:C in rdf-
property. Applications that do not understand RDF
syntax may retrieve the transformation of the state-
ments C

i;in from ps:C in literal.
It is our general policy to allow developers a lot of

leeway. Currently, all mentioned properties are op-
tional and in the typical case either ps:C in rdf or
ps:C in literal is given but not both.

The reader may note that the formal description (in
RDF) of formal parts allows for direct digestion of con-
straints and signatures for aims such as code genera-
tion, consistency checking, and user interface construc-
tion.

3.2 Semantic Pattern Libraries
Eventually, the need for particular semantic patterns is
driven by Semantic Web developers. With the engi-
neering of ontologies on the Web (cf., e.g., [1]) new
ideas will come up about what type of inferencing shall
be supported and, hence, made interchangable between
representation systems.

Since this development is in its infancy right now, we
have started to collect a number of semantic patterns
that seem widely applicable:

� Gruber’s Frame Ontology includes a set of over
60 primitives, some of which are found in core
RDF(S), e.g. rdf:type, and some of which are
somewhat more sophisticated, e.g. symmetry of
relations or composition (database joins).

� Medical knowledge processing often relies on
the engineering of part-whole reasoning schemes
such as appear or do not appear when we consider
the following examples: (i), the appendix is part
of the intestine. Therefore, an appendix perfora-
tion is an intestinal perforation. And, (ii), the ap-
pendix is part of the intestine, but an inflamma-
tion of the appendix (appendicitis) is not an in-
flammation of the intestine (enteritis).
We have described how to represent structures that
allow for expressing (for (i)) and preventing (for
(ii)) these semantic entailments in RDF in [29] —
in a preliminary version of the semantic patterns
framework.

� Inheritance with exception is a semantic pattern
that is very often useful. Its application and
its tractable, even efficient, technical reasoning
part has been described, e.g., in [27]. The
core idea is that one considers the inheritance
of properties, allows for the non-inheritance
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of certain properties, and uses a particular,
unambiguous strategy for resolving conflicts
between paths of inheriting and non-inheriting a
particular property. A simple example is that a
PATIENT’s treatment may be covered by medical
insurance, a NON-COMPLIANT PATIENT’s
treatment may not be covered, but a
NON-COMPLIANT, MENTALLY DISTURBED PATIENT’s
treatment will be paid by the insurance company.
Hence, coverage of treatment is typically inher-
ited, e.g. by almost all subclasses of patient, but
not by ones like NON-COMPLIANT PATIENTs.
Note that often there is no translation into particu-
lar target languages for this pattern. For instance,
it can be realized in Prolog or F-Logic, but not in
the standard description logics systems.

� A number of patterns may be derived from object-
oriented or description logics systems, e.g. lo-
cal range restrictions are very often useful. A
simple example is that the parentOf a HUMAN
is restricted to HUMAN, the parentOf a FOX is
restricted to FOX, while the range restriction of
parentOf may be ANIMAL in general.

A more complete elaboration of these and other pat-
terns is currently under development. In particular,
we investigate how software engineering methodology
about modeling and code generation from an evolv-
ing library of semantic patterns can be brought to bear
within our modeling environment (cf. Section 5).

4 Using Semantic Patterns — A Case
Study

In [28] we have described how “Semantic Community
Web Portals” using ontologies can be built. The ontol-
ogy acts as a semantic backbone for accessing informa-
tion on the portal, for contributing information, as well
as for developing and maintaining the portal. We dis-
cussed a comprehensive and flexible strategy for build-
ing and maintaining a high-value community web por-
tal, where the development and maintenance process
consists of the stages requirements elicitation, web site
design, ontology engineering and query formulation.
The reasoning service for the portal was provided by
SiLRI [13], which is essentially based on F-Logic [24;
12], only ground facts may alternatively be provided
in RDF syntax. F-Logic fits nicely with the structures
proposed for RDF and RDFS, however, F-Logic does
not offer any support for interoperability of represen-
tation mechanisms, i.e. axioms written in F-Logic and
the implicit knowledge that comes from applying them
to the fact base are extremely hard to reuse in other
representation frameworks. In this section we show
how our approach fits with a recent proposal for rep-
resenting knowledge on the web, namely OIL, the on-
tology inference layer [14]. OIL, which is in several
semantic respects “orthogonal” to F-Logic, offers in-
ferencing [23] on a semantic layer on top of RDF(S).

In the following case study we show the usage of se-
mantic patterns for meeting the needs of an actual ap-
plication, while allowing for the engineering of seman-
tics on a level that is transportable to OIL and F-Logic
(and many other representation schemes). The case
study described here relies on the tools and techniques
we employed for building “Semantic Community Web
Portals”. We here consider a Cultural Event Por-
tal, that integrates distributed information from movie
databases and cinema programs and offers semantic ac-
cess to the information provided.

Cinema program

Movie DB

RDF

RDF

RDF

RDF

Instantiated
Semantic Patterns

in RDF(S)

...

Core Cultural
Event Ontology

in RDF(S)

query

translate

Cultural Event Portal

Crawl

instantiate

instantiate

SiLRi Reasoning
Ontology + Service

translate

FaCT-OIL Reasoning
Ontology + Service

Figure 2: Case Study — Building a Semantic Cultural
Event Portal

Figure 2 depicts the overall framework. Based on
the core ontology, actual facts are generated at the in-
formation provider side. For building a semantic cul-
tural event portal with sophisticated reasoning we addi-
tionally instantiate semantic patterns on top of the core
ontology. The core ontology with instantiated seman-
tic patterns may be translated into OIL and/or F-Logic.
Facts are crawled from the information providers and
given to the reasoning services. The portal accesses
the underlying reasoning services and provides com-
prehensive information on cultural events.

In the following we give some examples how the
core ontology looks like, show how actual semantic
patterns are defined and translated into OIL and/or F-
Logic.

4.1 Modeling the Core Ontology
We use our Ontology Engineering Environment On-
toEdit (cf. Section 5 and Figure 3) for engineering
class and property definitions in RDF(S) with graphical
means. Parts of the core ontology are given as follows:
<rdfs:Class rdf:ID="Event"/>
<rdfs:Class rdf:ID="Movie">
<rdfs:subClassOf rdf:resource="Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Play">
<rdfs:subClassOf rdf:resource="Event"/>

</rdfs:Class>
<rdfs:Class rdf:ID="Theatre"/>

<rdf:Property rdf:ID="host">
<rdfs:domain rdf:resource="Theatre"/>
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<rdfs:range rdf:resource="Events"/>
</rdf:Property>
<rdf:Property rdf:ID="isShown"/>
<rdfs:domain rdf:resource="Movie"/>
<rdfs:range rdf:resource="Theatre"/>

</rdf:Property>
<rdf:Property rdf:ID="isGiven"/>
<rdfs:domain rdf:resource="Play"/>
<rdfs:range rdf:resource="Theatre"/>

</rdf:Property>

The ontology defines the conceptual backbone for
generating RDF metadata on the information provider
side, as for example given through the following state-
ments:

<cultev:Movie rdf:ID="movie:Lassie">
<cultev:name>Lassie</cultev:name>
<cultev:hasActor
rdf:resource="actor:RoddyMcDowall"/>

</cultev:Movie>

4.2 Generating an OIL ontology with
Semantic Patterns

An OIL ontology is built on top of the core RDF(S)
data model and contains descriptions of classes, slots
and individuals [14]. Classes are unary predicates and
may be related to other classes by stating that one is
a subclass of another. Slots are binary relations, they
may also be related to each other via the notion of sub-
slots.

In our example application, Cultural Event Portal,
additional reasoning on top of core RDF(S) is required.
We therefore instantiate some patterns on top of the
core RDF(S) ontology to enforce semantic constraints
and then translate them into the more powerful OIL.
In our scenario we use two patterns, namely the lo-
cal range restriction and the locally inverse relations
pattern. The pattern local range restriction (cf. Sec-
tion 3.2) adds to the class definition of MOVIE with
respect to the property ISSHOWN the range restriction
THEATRE. The following statements are added within
the concept definition of MOVIE:

<oil:hasSlotConstraint>
<oil:ValueType>
<oil:hasProperty rdf:resource="isShown"/>
<oil:hasClass rdf:resource="Theatre"/>

</oil:ValueType>
</oil:hasSlotConstraint>

In Section 2 our mechanism for defining semantic
patterns has been introduced using the example of lo-
cally inverse relations patterns. OIL offers the defi-
nition of global inverses, that is often too generic and
yields overly general inferences. In our example, we
defined in our ontology that every MOVIE ISSHOWN in
a THEATRE and every PLAY ISGIVEN in a THEATRE
and THEATRE HOST EVENT. Now, the local inverse of
ISSHOWN is HOST restricted to the range MOVIE and the
local inverse of ISGIVEN is HOST restricted to the range
PLAY.

As OIL does not directly support locally inverse re-
lations, the creation of artificial relations is required.
The translation into OIL is given through the following
statements:

<rdf:Property rdf:ID="host1">
<oil:subSlotOf rdf:ID="host"/>
<rdfs:domain rdf:resource="Theatre"/>
<rdfs:range rdf:resource="Movie"/>

</rdf:Property> <rdf:Property rdf:ID="host2">
<oil:subSlotOf rdf:ID="host"/>
<rdfs:domain rdf:resource="Theatre"/>
<rdfs:range rdf:resource="Play"/>

</rdf:Property>
<rdf:Property rdf:ID="isShown">
<oil:inverseRelationOf rdf:resource="host1"/>

</rdf:Property>

We introduce two new properties HOST1 and HOST2
as subslots of HOST 6. The range of property HOST1
is restricted to the MOVIE class, the range of property
HOST2 is restricted to the PLAY class. Additionally we
use the inverseRelationOf construct of OIL to
denote that the property ISSHOWN is inverse to the prop-
erty HOST1.

We also give the translation of locally in-
verse relation pattern to Frame-Logic. The
pattern is applicable and is generated via the F-Logic
statements we have seen before:

LOCALINVERSE(ISSHOWN;MOVIE; HOST; THEATRE):

FORALL C1; C2; R1; R2; O1; O2 O2[R2!!O1] and O1 :

C1 

LOCALINVERSE(R1; C1; R2; C2) and O1[R1!!O2] and O2 : C2:

FORALL C1; C2; R1; R2; O1; O2 O1[R1!!O2] and O2 :

C2 

LOCALINVERSE(R1; C1; R2; C2) and O2[R2!!O1] and O1 : C1:

Essentially, this version was used for the Commu-
nity Web Portal, but it could not be communicated to
outsiders of F-Logic.

5 OntoEdit
Our general approach for engineering ontologies in
conjunction with developing and using semantic pat-
terns has been or is currently being implemented in
ONTOEDIT [30], an ontology engineering workbench
for building web ontologies7. In this section we give an
outline of how an ontology engineering environment is
augmented by components for realizing semantic pat-
terns.

The modeling of the core ontologies builds on
RDF(S) primitives. The process is started by collecting
terms for classes and organizing them hierarchically; in

6We use the oil:subSlotOf component as defined in
the denotational semantics of standard OIL available at
http://www.cs.man.ac.uk/ horrocks/OIL/Semantics/oil-
standard.html.

7More detailed information can be obtained at
http://ontoserver.aifb.uni-karlsruhe.de/ontoedit.
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parallel one may add properties to the ontology. Sev-
eral different views for building the ontology are of-
fered to the user. Figure 3 depicts the graphical user
interface of ONTOEDIT: On the left hand side of Fig-
ure 3 the class hierarchy of our cultural event ontology
is depicted. The class-property view offers the user the
possibility to attach properties to classes. Properties
may also be defined globally and organized hierarchi-
cally.

ONTOEDIT offers a number of predefined semantic
patterns. On the lower right part of figure 3 the inter-
face for instantiating global inverseness and locally re-
stricted inverseness is depicted. The user selects prop-
erties and defines their (local) inverses explicitly. If
the user also restricts domain and range of the proper-
ties the semantic pattern locally inverse re-
lations is instantiated. The text descriptions of the
semantic patterns are available in ONTOEDIT’s help.

Once conceptual modeling is completed, one may
use ONTOEDIT to explore the defined ontology includ-
ing the newly instantiated semantic patterns. For this
purpose, one may crawl example RDF facts, translate
the semantic patterns into F-Logic or OIL and then ex-
plore ontology and facts by querying the test examples.

Figure 3: Snapshot of OntoEdit Web Ontology Work-
bench

6 Related Work
This paper is motivated by the need to share and ex-
change semantic knowledge on the Web (cf., e.g., [9]
for general motivation or [28] for an actual applica-
tion). This need comprises the integration of various
sources on the content level as well as on the repre-
sentation level, i.e. integrating knowledge from various
basic representation mechanisms available (like [8]) or
on the rise (like [14; 2]).

We started out from the area of ontology engineer-
ing aiming at conceptual models that could be used in
multiple underlying representations (cf. [29]). Doing
so, we extended related work in the field of knowl-

edge representation using axiom schemata.Because our
goal was not only to formally represent, but to allow
for rich communication between developers who create
actual implementation based on various representation
systems, we looked into software and knowledge en-
gineering dealing with design and knowledge patterns
and problem-solving methods.

6.1 Ontology Engineering & RDFS
In our earlier proposals [30] we have discussed how
to push the engineering of ontological axioms from
the symbol level onto the knowledge level — following
and extending the general arguments made for ODE
[6] and Ontolingua [16]. Also similar to our RDF(S)-
based ontology engineering tool ONTOEDIT is Protégé
[21], which provides comprehensive support for edit-
ing RDFS and RDF, but lacks any support for ax-
iom modeling and inferencing. In contrast to all of
these approaches, we aim also at partial descriptions
of semantic entailments such as very often necessary
when switching from one to the other representation
paradigm.

6.2 Axiom Schemata
The usage of axiom schemata in various paradigms has
been a major motivation for our approach (cf. Subsec-
tion 2.3). In particular, we have relied on experiences
with engineering axiom schemata in F-Logic and on
related work that exploits axiom schemata in various
description logics dialects.

F-Logic. The logical model of F-Logic, essentially
a rich model for datalog, fits nicely with the struc-
tures proposed for RDF and RDFS. This also led to the
first implementation of an inference engine for RDF
(SiLRi [13]). SiLRi provides many inferencing possi-
bilities one wants to have in RDF and, hence, has pro-
vided an excellent start for many RDF applications. In
fact, it even allows to use axioms in restricted second-
order logic, but these axioms may not be denoted in
RDF, but only directly in F-Logic.

Description Logics. Description logics has been de-
rived from efforts for specifying the axiom schemata
that are most relevant for terminological engineering.
Hence, its development provides valuable input for rel-
evant semantic patterns such as the ones exploited in
our case study (cf. Section 4). To speak more pre-
cisely, description logics constitutes not a single, but
a set of similar languages. A large amount of research
has been undertaken to explore the effects of adding
additional syntactic and semantic features to existing
versions of description logics. However, their efforts
remain very far from bridging between mutually in-
compatible representation paradigms, which is the goal
of our approach.

A web-compatible version of description logics has
been presented with OIL [14]. OIL is intended as
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a common core language that is more powerful than
RDF, but is intended to provide a basic layer rather than
a language “all singing all dancing”. As our case study
also illustrates, even OIL does not suffice for all poten-
tial needs, but semantic patterns may also be used on
top of OIL — rather than “only” on top of RDF.

Combinations of Different Logics. Obviously, there
has been the need for interoperability between F-Logic
and Description Logics and, hence, Levy and Rousset
[26] proposed an integration of a (simple) Description
Logics approach with horn rules. In the end, however,
neither one of them nor their integration will be suffi-
cient for all possible purposes and applications of the
future Semantic Web. A similar statement holds for
current combinations of modal logics; in fact, the field
as a whole is very young and can be exploited for prac-
tical purposes only to very limited extent in the near fu-
ture (cf. the excellent survey paper [5]). Along similar
lines KIF [19] was invented, but was most often only
used at the syntactical rather than at the semantic level
of knowledge transportation. Building on KIF, Gruber
[22] has investigated the translation between languages
using the frame ontology as its interlingua. Though the
frame ontology is very useful (essentially it catches the
primitives used in object-oriented database systems),
the language is too restricted in general.

We have shown in this paper, how to use semantic
patterns with OIL, a Web-compatible description log-
ics framework and F-Logic, a language that had been
intensively used for Semantic Web applications [28].
Thereby, our semantic patterns are not restricted to ei-
ther of these paradigms or their integration.

6.3 Patterns and Problem Solving Methods
Design patterns [18] — and their knowledge engineer-
ing counterparts [10] — have proved extremely suc-
cessful in describing characteristics of the contents that
are to be described (algorithmic structures or knowl-
edge structures). We in contrast have focused on
the description of language characteristics in order to
bridge between different representation languages, thus
applying the paradigms of patterns at the meta-level.

A similar contrast holds between semantic patterns
and problem solving methods. “Problem solving meth-
ods describe domain-independent reasoning compo-
nents” [15]. They come at various levels of abstrac-
tions, from informal text, over few lines of pseudo-
code up to implementations in a particular language.
Problem solving methods can be thought of as a vari-
ety of search methods with heuristics that benefit from
domain specific knowledge where the heuristic is built
into the problem solving method itself.

While on the very high level problem solving meth-
ods may appear similar to semantic patterns, there are
several major distinctions, only two of which we want
to mention here: First, semantic patterns only describe
what needs to be inferenced they do not specify how se-

mantic entailments are actually derived in a particular
representation, which is the domain of problem solv-
ing methods that describe how to do things. Second,
the domain proper of semantic patterns and problem
solving methods is rather dissimilar. Typical problem
solving method libraries include, e.g., “propose and re-
vise”, or “heuristic classification”, while semantic pat-
terns such as we propose abstract from language char-
acteristics to include, e.g., “part-whole reasoning”, “lo-
cal inverses”, or “inheritance with exceptions”.

7 Conclusion
We have shown a new methodology, viz. semantic pat-
terns, for engineering semantics on the Web in a way
that makes it easier to reuse in a wide range of exist-
ing representation systems and easier to communicate
between different Semantic Web developers. Seman-
tic patterns are used to describe intended semantic en-
tailments and, thus, allow a higher level of abstraction
above existing Semantic Web languages — similarly as
software design patterns allow to abstract from actual
applications.

With this approach, there comes now the possibil-
ity to bridge between various paradigms for represen-
tation. By semantic patterns, the social process of de-
signing new and communicating previously success-
ful semantic patterns may now be started. The reader,
however, may bear in mind that semantic patterns only
provide a ground of discourse for man and machine.
Which actual patterns will eventually turn out to be
successful for which purpose will have to be shown
over time by the Web community.
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