
FREDDY: A Web Browser-friendly Lightweight

Data-Interchange Method Suitable for

Composing Continuous Data Streams

Shohei Yokoyama1, Isao Kojima2, and Hiroshi Ishikawa1

1 Shizuoka University, Japan
2 National Institute of Advanced Industrial Science and Technology, Japan

Abstract. As a remarkable lightweight data-interchange format for use
with web browsers, JSON is well known. Recently, web browsers have
come to support rich applications called Software as a Service (SaaS) and
Cloud Computing. Consequently, data interchange between web servers
and web browsers is an important issue. A singleton, an array, or a nested
object (tree) can be represented by JSON, which is based on a subset
of the JavaScript Programming Language. It is valuable for SaaS appli-
cations because JavaScript programs can parse JSON data without the
need for special programs. However, web browsers and JSON are poorly
designed to address large amounts of data and continuous data streams,
e.g. sensing data and real time data. We propose here a novel data for-
mat and a data-interchange mechanism named ”FREDDY” to address
this deficiency. It is not merely a subset of the JavaScript; it can rep-
resent semi-structured data, just as JSON does. Moreover, FREDDY is
suitable for composing a continuous data stream on web browsers. Using
the small JavaScript library of FREDDY, web applications can access
streaming data via a SAX-style API; it works on all major browsers.
Herein, we explain FREDDY and evaluate the throughput of our im-
plementation. We loaded 400 MByte streaming data using our 5 kByte
library of FREDDY.

1 Introduction

Once it was believed that web browsers were useful merely to display static
pages that web servers would provide one after another. However web pages are
no longer static, as exemplified by Google Maps, which uses dynamic HTML and
Asynchronous JavaScript + XML (Ajax)[15]. Using JavaScript, web pages can
access Web servers, download data, and update pages themselves. This technique
has laid the foundations for next-generation web applications such as SaaS[16],
Web2.0[13], and cloud computing. In this case, the main logic of applications
is partially located on a client side and partially located on a server side. We
will address implementations of web applications with the question of how data
that applications need can be accommodated. JavaScript applications on web
browsers always run inside a security sandbox. Consequently, all data must be
either on primary storage (main memory) of a local computer or on secondary

ComposableWeb'09

39

storage (hard disks) of web servers, which is not of the local computer. That is
to say, data interchange between a web server and a web browser is an extremely
important issue for web applications.

Ajax and JavaScript Object Notation (JSON: RFC4627)[5] are attractive so-
lutions for interchange of data between web servers and web browsers. However,
the combination of Ajax and JSON can download only a chunk of data simulta-
neously. They cannot handle continuous data streams, e.g. sensing data and real
time data. Numerous sensors are installed in devices from toilets to satellites,
but no lightweight integration method exists for handling sensing data on the
Web.

The purpose of this paper is to propose a lightweight data stream interchange
mechanism named FREDDY. Our implementation provides a Simple API for

XML (SAX)[3] style programming. Therefore, FREDDY can accommodate not
only a continuous data stream, but also semi-structured data, equivalently to
XML. Using FREDDY, users can accommodate continuous data streams via a
SAX event handler, which is written in JavaScript.

In this study, we also evaluate the throughput of our implementation of
FREDDY when the application loads a large SAX event stream. The results
of experiments show good throughput, about 1 MByte/s, of data interchange
between a web server and a web browser. However, we do not emphasize the
velocity of data interchange; also, FREDDY is a lightweight method in terms of
the security sandbox of web browsers. The remainder of this paper is organized
as follows. Section 2 expresses an overview of FREDDY. The data format and
our implementations of FREDDY are described in Section 3 and Section 4. In
Section 5, we present our experiments and evaluations. In Section 6, we describe
related works. Finally, Section 7 concludes the paper.

2 Overview of FREDDY

The main contributions (Fig. 1) of this paper are: (a) a lightweight data format
that is suitable for streaming data exchange using only JavaScript, (b) a stream-
ing delivery mechanism on the Web, (c) a lightweight library, whose size is about
5 kByte, to realize SAX-style programming for handling both semi-structured
data and continuous data streams.

Web Browser
Data Source

Web

FREDDY
data

format

SAX
Style
API

Streaming
data

delivery

FREDDY: lightweight data-interchange method

Fig. 1. Software components and data flow of FREDDY and JSON.

ComposableWeb'09

40

Web Browser

Office

Temperature, Motion...

Dam

Weather, Water level...

Factory

NOx, Fire alarm...

XML
Data

Emploee List,
Data Mining Result,
Output of Web Services...

XML
Emploee List

,

Computation

FREDDY

FR
ED

DY

FREDDY

FREDDY

FREDDY

FREDDY
FRFRFRFRFRFRFRFRFRFRFREDEDED

DYFR

ED

DY

Logistics

Location, Speed, Vibration...

FR

EDDYDYDYDYDYDYDY

FR

EDDYDYDYDYDYDY Home

Temperature,
illumination,
Car security...

Mashup!

Continuous Data Stream

Continuous Data Stream

Realtime Data

SAX Event Stream

Fig. 2. Our Goal, Stream Data Mashups using FREDDY.

Figure 2 presents the goal of our research. FREDDY provides a lightweight
JavaScript API that is equivalent to the SAX API of XML document processing.
In fact, SAX API is the de-facto standard API. For that reason, we expect that
many users have sufficient knowledge of SAX. Using the proposed FREDDY,
users can easily develop Web mashups that compose web services to output
continuous data streams. Because space is limited, we have concentrated on data
interchange and have devoted scant attention to how to translate the output
signal of a sensor into our proposed data format.

3 Data model

3.1 Outline of Data Format

The data format for FREDDY, FREDDY Format, can represent both a flat
data stream and a semi-structured data stream. The FREDDY format is simple.
Figure 3 portrays instances of the FREDDY format as an XML tree and a data
stream representation. What the right of that figure readily clarifies is that the
FREDDY format uses function calls written in JavaScript. Each line of FREDDY
data expresses a type of SAX event and its property. We named each function
call event container a generic name.

The main characteristic of the FREDDY Format, contrasted against that of
JSON, is that it is splittable because it is a simple repetition of event containers.
Actually, FREDDY realizes streaming between web servers and web browsers

ComposableWeb'09

41

beer

I like it!

guinness
@label:Extra Stout

guinness
@label:Draught

sd();
s(”beer”);
s(”guinness”,{”label”:”Draught”});
c(”I like it!”);
e(”guinness”);
s(”guinness”,{”label”:”Extra Stout”});
e(”guinness”);
e(”beer”);
ed();

sd();
s(”thermometer”);
s(”temperature”,{”unit”:”Celsius”});
c(”30”);
e(”temperature”);
s(”temperature”,{”unit”:”Celsius”});
c{”28”}
e(”temperature”);
...

thermometer

temperature = 30
@unit:Celsius

temperature = 28
@unit:Celsius

time t

Semi-structured data

FREDDY Format

FREDDY Format

Continuous

data stream

Fig. 3. Examples of semi-structured data representation: the four expressions are mu-
tually equivalent.

Table 1. Event containers

SAX event Usage Event container

XML Document start Data stream start ds();
XML Document end Data stream end ed();

XML Text Node Property c(value);

XML Element start Tuple start s(element-name , attr
†
);

XML Element start‡ Tuple start‡ S(simplified-name, attr
†
);

XML Element end Tuple end e(element-name
†
);

†: optional argument
‡: with simplified element name

by sending and receiving small fragments of all data one by one. Later in this
paper, a more precise account of the split FREDDY format is provided. We now
address the event container in detail.

3.2 Event container

Table 1 portrays a list of all event containers. The events of the XML Docu-
ment start and XML Document end are represented as ds() and de(). The
data stream must start with a ds() event container and end with a de() event
container. The two containers must appear only once.

The second argument of c(...), which represents an XML Text node, is
optional. It is always omitted from the representation of XML Tree because the
XML Text Node has only a value.

The events of an XML Element start and end are represented as s(...),
S(...), and e(...). The argument of e(...) is optional. The element name
is associated with an XML Element start event, which corresponds to that if
no argument is given. The reason is data size reduction. For the same reason,
the second argument of s(...) and S(...), which represents XML Element
Attributes, is optional.

ComposableWeb'09

42

3.3 Compression of verbose elements’ name

Actually, XML is known to be verbose by design[12], particularly in terms of ele-
ments that appear many times. The SAX event stream has the same problem. For
example, bibliographic information of Digital Bibliography and Library Project
(DBLP)[1] has about 2,300,000 <author> tags, about 600,000 <inproceedings>
tags, and about 350,000 <journal> tags.

Efficient SAX event stream interchange must tackle that data verbosity. In
this context, XML compression is an important issue. In addition, XML compres-
sion is our concern: we proposed XML compression according to the simplified
element name[7, 17]. The FREDDY Format tackles XML verbosity using the
method of simplified element names. The reason that two event containers exist
for the XML Element start event is data size reduction.

See Fig. 3. Two <Guinness> tags and two <temperature> tags exist. If
the element name is <a> instead of <Guinness> and <temperature> then
the amounts of data become small. This is the conceptual foundation of the
compression method.

Algorithm 1 shows an algorithm for creation of an XML Element start event
container from the element name. Whenever the parser captures the element
start event, this procedure is called, where input T is a stack of visited element
names and argument name is an element name. The procedure then returns a
simplified element name derived from the original element name.

Algorithm 1: SimplifiedFREDDY(T, name)

procedure GetSimpleName(idx)
X ← [a, b. . .y, z, A,B. . .Y, Z, 0, 1. . .8, 9]
len← LengthOf(X)
if len ≤ idx

then

y ← X[idx%len]
z ← idx/len
return (GetSimpleName(z) + y)
comment: + means connection

else return (X[idx])

main

if T [name].IsExist()

then

{

evtContainer ← ”S(′” + sName + ”′)”
return (T, evtContainer)

else

comment: First appearance of the element

idx← LengthOf(T)
sName← GetSimpleName(idx)
T [name]← sName
evtContainer ← ”s(′” + name + ”′)”
return (T, evtContainer)

ComposableWeb'09

43

sd();
s(”temperature”);
s(”temperature”,{”unit”:”Celsius”});
c(”30”);
e(”temperature”);
s(”temperature”,{”unit”:”Celsius”});
c{”28”}
e(”temperature”);
...

L
o
g
ia

l
d
a
ta ,{”uni

,{”uni

unit”:

np(1,10);
sd();
s(”thermometer”);
s(”temperature”,{”unit”:”Celsius”});
c(”30”);
e();

Physical data

unit”:”Celsius”});

np(2,10);
S(”b”,{”unit”:”Celsius”});
c{”28”}
e();

Web Browser

page 1

page 2

(1)Request

(2)Response

(3)Request

(4)Response (5)Request....

Fig. 4. Split of FREDDY data.

GetSimpleName(...) function generates the simple name for each new in-
coming element name. The original element name will be replaced with the sim-
ple name whenever this element re-appears later in this XML document. The
original element name itself is kept within the XML document by not replacing
the first entry of this element name.

3.4 Splitting data streams into small fragments

A salient difference between FREDDY and JSON is that FREDDY data can be
split by line into valid fragments, which maintains a subset of the JavaScript
programming language. All lines of FREDDY data are actually a subset of
JavaScript.

Switching our attention to the continuous data stream, the data sources (e.g.
thermometer and NOx sensor, etc.) always output data continuously, but HTTP,
which enables any Web browser to communicate with any Web server, cannot
handle continuous data streams. Therefore, FREDDY can split continuous data
streams into small fragments, named Pages, as physical data.

Figure 4 presents an example of split data. The function-call np(pointer,
sleep-time); in the first line of each Page is a pointer to the next Page.
FREDDY can start downloading the subsequent page when the function np is
called. The Pages are valid JavaScript code. For that reason, the web browsers
can download them dynamically using HTTP.

Actually, FREDDY uses the dynamic <script> tag technique for download-
ing Pages. The dynamic <script> tag technique is a kind of Ajax based on
Dynamic HTML. JavaScript applications can append HTML elements into the
DOM tree of the HTML page. For example, if tag with the src attribute
is appended directly to the inside of the <body> tag of the DOM tree, then the
image that the src attribute refers to is readily apparent. Similarly, using the
dynamic <script> tag, one can access all HTTP-enabled resources.

ComposableWeb'09

44

Page Page

Web Browser

Switch
every 10 pages

Delete PagesDelete Pages Pagesgesgesges

Flush !

Web Browser

every 10 pag

FREDDY
Library

Page
PagePage

Pag
e

Fig. 5. Our client implementation.

4 Implementation

4.1 Dynamic <script> tag

In the following section, we describe our implementation for data interchange
using FREDDY. The SAX-style programming makes only one pass through the
document from top to bottom. For that reason, FREDDY deletes Pages after
execution because they become unnecessary. An important problem was that
web browsers did not release the <script> element from memory even when
FREDDY deleted the element from the DOM tree. For that reason, our imple-
mentation adopts a hybrid of <iframe> and <script> because the web browser
released the tags from the memory of the client PC when FREDDY flushed the
<iframe> element.

Because of the hybrid implementation, FREDDY achieves both lower pro-
cessing costs and higher throughput. Our client implementation is portrayed in
Fig. 5. Actually, FREDDY uses two <iframe> elements alternately. FREDDY
appends <script>, which includes a Page, as a child node of one <iframe> ele-
ment at the beginning. It flushes the <iframe> and switches the other <iframe>
area if the number of Pages containing the <iframe> area reaches 10. Two
<iframe> are used because of the synchronism of the dynamic <script> tag
technique. That is to say, when Pages are appended into a <iframe>, the other
<iframe> element is flushed; then Pages are released from memory simultane-
ously.

4.2 Streaming delivery system

Figure 6 shows how web applications load a data stream over HTTP protocol.
The data interchange between data source and web application consists of the
following four steps:

1. Raw data are translated into Pages of FREDDY format by the gateway
specializing in each data source.

2. FREDDY requests to the data source and receives Pages one by one using
the dynamic <script> tag technique.

3. The downloaded page is executed using a JavaScript engine of a web browser.

ComposableWeb'09

45

Web BrowserServer

Web
Application

SAX APIFREDDY
Library

httpdRaw data to FREDDY
Gateway

Page.1

Page.2

Page.3

Page.1
Event

Event

Event

Event

S
A

X
 E

ve
nt

 H
an

dl
er

Send a page

Send a page

Request of a next page

Split into pages

FREDDY Data

The Internet

e.g. Sensor network
 XML Document

SplSpl

e.g. Sensor network
 XML Document
e.ge.g

Data Source
Event stream

d a pa page

HTTP

Fig. 6. Continuous Data Stream over HTTP.

4. The SAX event is noticed to the user defined event handler. If the function
np(...) is called, then FREDDY requests download of the following Page.

It seems complex, but, in fact, it is very simple for users because the steps
above are hidden by our implementation. Therefore, the web application can
receive a continuous data stream easily via a SAX event handler. Furthermore,
the size of the FREDDY library, which is written in JavaScript, is only 5 kByte
because it is sufficiently lightweight to include into web applications.

4.3 JavaScript SAX API of FREDDY

Next, describing the usage of FREDDY, the FREDDY streaming delivery system
is executed behind the SAX API, so that the SAX API is the only interface for
FREDDY.

The usage of JavaScript SAX API has three steps. The first is creating meth-
ods of the SAX event handler. The name of the method is the same as that of
the methods of Java DefaultHandler class. The next is creating instances of both
the SAX Parser and event handler and setting the handler to the parser. Finally,
execute and start parsing document.

For example, if the events of a documents are counted, then an event handler
can be created, as portrayed in Fig. 7 left. The right part of Fig. 7 shows the
code to count up the events of the data.

This is a general procedure related to all SAX Parsers, so that FREDDY
is not only accessible by web programmers; it is also easily applicable by XML
programmers.

5 Experiments and results

5.1 Dataset and environment

For experiments, we used large-scale data of four XML documents up to 400
MByte. The three small XML documents dataS.xml, dataM.xml, and dataL.xml

ComposableWeb'09

46

01: CountEventHandler.prototype = {
02: count : 0,
03: startElement : function(name,attr){
04: this.count++;
05: },
06: endElement : function(name){
07: this.count++;
08: },
09: Characters : function(data){
10: this.count++;
11: }
12: };

01: p = new freddy.SaxParser();
02: h = new freddy.CountSaxHandler();
03: p.setSimpleEventHandler(h);
04: p.parse("http://url/of/data/source");

SAX Event Handler

Recieve and parse data stream

Fig. 7. JavaScript code for using FREDDY.

Table 2. Machine environment

Web Server Client A Client B

Hardware IBM ThinkPad X41 Tablet DELL Precision 390
CPU Intel Xeon 2.33 GHz Pentium M 1.6 GHz Core2 Duo 2.4 GHz

Memory 4GB 1GB 2GB
OS Linux (Fedora Core 7) Windows XP Windows Vista

HTTPD Apache 2.2.4

are 1 MByte, 10 MByte, and 100 MByte files created using the xmlgen from
the XMark benchmark project[14]; the biggest XML document is a 400 MByte
DBLP bibliographic information document.

The computers used for the experiments are described in Table 2. We used
two different computers to estimate performance: a desktop computer (Client A)
and a laptop computer (Client B). The client machines and the server machine
are connected via a Giga-bit Ethernet network.

Regarding the case in which FREDDY is used as an intermediate form for
XML handling with a web browser, the system has the following four tiers: (1) a
client machine on which the web browser is running, (2) a web server which hosts
web applications, (3) an SAX event stream-to-FREDDY gateway server, and (4)
a web server which holds XML documents. However, we specifically address the
interchange of FREDDY data between a server and a client. Therefore, the three
servers described above are located on the same server.

5.2 FREDDY vs. JSON

Actually, JSON is well known as a browser-friendly, lightweight data-interchange
format. As described earlier, JSON has a simple structure and great power of
expression, but it has limited scalability. For large amounts of data, it is im-
practical to store all data into main memory using JSON. For this reason, we
propose a novel data-interchange method, FREDDY, which is suitable for use
with large amounts of data. We have performed measurements of FREDDY for
comparison with JSON.

In this experiment, we measured the execution time for loading the whole
XML document of each dataS.xml, dataM.xml, dataL.xml, and dblp.xml using

ComposableWeb'09

47

1

10

100

1000

1 10 100 1000
Size (Mega-Byte)

T
im

e
(s

ec
o

n
d

)

FREDDY+IE JSON+IE FREDDY+Firefox JSON+Firefox

(a) Client A

1

10

100

1000

1 10 100 1000
Size (Mega-Byte)

T
im

e
(s

ec
o

n
d

)

(b) Client B

Fig. 8. Execution time of FREDDY and JSON.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Throughput (Mega-Byte-per-Sec.)

J
S

O
N

F
R

E
D

D
Y

(a) Client A

Internet Explorer

Firefox

Internet Explorer

Firefox Slow Fast

dataS.xml (1MB) dataM.xml (10MB) dataL.xml (100MB) dblp.xml (400MB)

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dataM.xml
dataS.xml

dataM.xml
dataS.xml

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Throughput (Mega-Byte-per-Sec.)

J
S

O
N

F
R

E
D

D
Y

(b) Client B

Slow Fast

Internet Explorer

Firefox

Internet explorer

Firefox

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dataM.xml
dataS.xml

dataM.xml
dataS.xml

Fig. 9. Throughput (MByte/s) of FREDDY and JSON.

FREDDY and JSON on both Internet Explorer (Microsoft Corp.) and Mozilla
Firefox of the client machines: Client A and the Client B. We used an XML-
to-JSON gateway, which is implemented using IBM[11]. We measured all cases,
which are combinations of 2 clients, 2 browsers, 2 systems, and 4 datasets, 10
times each. In this case, JSON was unable to load dataL.xml and dblp.xml because
the server had exhausted the allowed memory size.

Results of this experiment are presented in Fig. 8 and Fig. 9. Figure 8 shows
the average execution time of FREDDY and JSON. The throughput, the amount
of loaded data per second, is presented in Fig. 9. The results of the experiment
are that, irrespective of data size, the throughput of FREDDY is greater than
that of JSON. We shall next examine the results more carefully.

– Internet Explorer versus Firefox.

We can find no significant difference of loading times between Internet Ex-
plorer (Microsoft Corp.) and Mozilla Firefox, but Internet Explorer (Mi-
crosoft Corp.) sometimes failed to load Pages. Therefore, we developed a
retransmission mechanism for FREDDY.

– Client A versus Client B.

The result of FREDDY shows that Client B is faster than Client A. However,
regarding the result of JSON, we can find no obvious difference between
Client A and Client B. The result suggests that FREDDY is bottlenecked

ComposableWeb'09

48

by CPU power. On the other hand, we infer that the result of JSON is not
influenced by client-machine specifications.

– FREDDY versus JSON.

Because JSON must store all data into the main memory, it is difficult for
JSON to handle a large amount of data. The result also shows that JSON
was unable to load datasets of 100 MByte and 400 MByte.
Figure 9 presents that FREDDY is faster than JSON.
We find that FREDDY has a feature resembling that of SAX in the context
of XML processing.

6 Related Works

The proposed FREDDY splits large data into small fragments for data inter-
change. Indeed, splitting large data into small fragments is a common solution
to the problem of data interchange. Nevertheless, some problems persist in im-
plementation of data interchange on the web browser because a JavaScript web
application program must always run inside of a security sandbox. Applying
common problems of information technology to the web application domain is a
recent trend of research.

Klein and Spector proposed distributed computation of genetic programming
via Ajax[9]. In the context of data interchange, Huynh et al. proposed sophis-
ticated user interfaces for publishing structured data on the Web[6], but that
method merely addresses the contents’ presentation. It includes no solution for
large documents.

The target of comparison in this study, JSON, has spread quickly on the In-
ternet. The W3C proposed an application for semantic web for representation of
SPARQL query results[4]. The JSON-RPC[2] is a lightweight remote procedure
call protocol, which resembles XML-RPC. Results of several studies suggest it
as a future direction of FREDDY development.

Natarajan describes an innovative transport layer protocol for data inter-
change on the Web[10]. However, to the best of our knowledge, no method exists
for the application layer. FREDDY is an application layer method. Consequently,
users use FREDDY in an existing HTTP and TCP/IP environment.

An extremely important issue related to JavaScript applications is security
management. Jackson and Wang tackle the security of cross-domain scripting[8].
We also devote attention to the security of web applications, but a more com-
prehensive study of security is beyond the scope of this paper.

7 Conclusions

As described herein, we have presented FREDDY, a browser-friendly lightweight
data-interchange method that layers efficient data stream interchange between
a web server and a web browser. We also proposed an SAX style API to load a
continuous data stream. Results of our experiments show that FREDDY can be
a good solution for data interchange on the Web.

ComposableWeb'09

49

The future direction of this research will be one that encompasses data
sources. We seek to focus attention how to translate raw data into FREDDY
format. We plan to extend the design to an infrastructure of a web mashup that
can communicate between the Web and a sensor network. We believe that JSON
and FREDDY can serve as a basis for data interchange for web applications.

References

1. Digital bibliography and library project (dblp). http://dblp.uni-trier.de/.
2. Json-rpc. http://json-rpc.org/.
3. Sax. http://sax.sourceforge.net/.
4. K. G. Clark, L. Feigenbaum, and E. Torres. Serializing sparql query results in json.

http://web5.w3.org/TR/2007/NOTE-rdf-sparql-json-res-20070618/.
5. D. Crockford. Introducing json. http://json.org/.
6. D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit: lightweight structured

data publishing. In WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 737–746, New York, NY, USA, 2007. ACM Press.

7. H. Ishikawa, S. Yokoyama, S. Isshiki, and M. Ohta. Project xanadu: Xml- and
active-database-unified approach to distributed e-commerce. In DEXA ’01: Pro-
ceedings of the 12th International Workshop on Database and Expert Systems Ap-
plications, pages 833–837, Washington, DC, USA, 2001. IEEE Computer Society.

8. C. Jackson and H. J. Wang. Subspace: secure cross-domain communication for
web mashups. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 611–620, New York, NY, USA, 2007. ACM Press.

9. J. Klein and L. Spector. Unwitting distributed genetic programming via asyn-
chronous javascript and xml. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages 1628–1635, New York,
NY, USA, 2007. ACM Press.

10. P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart. Sctp: an innovative
transport layer protocol for the web. In WWW ’06: Proceedings of the 15th in-
ternational conference on World Wide Web, pages 615–624, New York, NY, USA,
2006. ACM Press.

11. S. Nathan, E. J. Pring, and J. Morar. Convert xml to json in php. http://www.

ibm.com/developerworks/xml/library/x-xml2jsonphp/.
12. W. Ng, W.-Y. Lam, and J. Cheng. Comparative analysis of xml compression

technologies. World Wide Web, 9(1):5–33, 2006.
13. T. O’Reilly. What is web 2.0. http://www.oreilly.com/pub/a/oreilly/tim/

news/2005/09/30/what-is-web-20%.html.
14. A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.

Xmark: a benchmark for xml data management. In VLDB’01: Proceedings of the
International Conference on Very Large Data Bases, pages 974–985, Hong Kong,
China, 2001.

15. Wikipedia, the free encyclopedia. Ajax. http://en.wikipedia.org/wiki/Ajax_

%28programming%29.
16. Wikipedia, the free encyclopedia. Software as a service. http://en.wikipedia.

org/wiki/Software_as_a_service.
17. S. Yokoyama, M. Ohta, and H. Ishikawa. An xml compressor by simplified element

name (in japanese). In Proceedings of DBWeb2000, 2000.

ComposableWeb'09

50

