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Abstract: Early residential fire detection is important for prompt extinguishing 
and reducing damages and life losses. To detect fire, one or a combination of sen-
sors and a detection algorithm are needed. The sensors might be part of a wireless 
sensor network (WSN) or work independently. The previous research in the area 
of fire detection using WSN has paid little or no attention to investigate the optim-
al set of sensors as well as use of learning mechanisms and Artificial Intelligence 
(AI) techniques. They have only made some assumptions on what might be consi-
dered as appropriate sensor or an arbitrary AI technique has been used. By closing 
the gap between traditional fire detection techniques and modern wireless sensor 
network capabilities, in this paper we present a guideline on choosing the most op-
timal sensor combinations for accurate residential fire detection. Additionally, ap-
plicability of a feed forward neural network (FFNN) and Naïve Bayes Classifier is 
investigated and results in terms of detection rate and computational complexity 
are analyzed.  

1 Introduction 

Fires may take place in various environments, such as residential places, forests 
or open spaces. The easiest way to detect a fire at residential places is using the 
smoke detectors or any other similar sensors, which are usually sensitive to ioniza-
tion or obscuration [1]. The problem with such detectors is that they are prone to 
false alarms. This means that in noisy conditions, such as smoking a cigarette or 
toasting  a bread, a fire alarm may be generated wrongly [2, 3].  

Generally, to reduce false alarms and perform fire detection accurately, two ap-
proaches are used [4]. The first approach uses one type of sensor and conducts the 
fire detection by a complex algorithm. An example of this approach is the work 
presented in [5], which uses a flame detection sensor and a fuzzy-wavelet classifi-
er. In contrast, the second approach uses multiple sensors and performs the detec-
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tion by a simple mathematical operation. The work presented in [2] is an example 
of the second approach, which uses CO and ionization (ION) sensors and a simple 
mathematic operation. Some researchers also tried to combine both approaches by 
using multiple sensors and an appropriate algorithm. The work presented in [6], 
which uses a feed forward neural network (FFNN) and four sensors, i.e., tempera-
ture, ION, CO and photoelectric, and their rising rates to discriminate fires from 
nuisance sources, is an example of the combined approach. 

In recent studies, Wireless Sensor Networks (WSN) has also been proposed for 
fire detection [7-14]. In this type of research, fire detection in residential areas as 
well as forests and mines are considered as applications for WSN.  

Although there are many achievements in the area of fire detection (in terms of 
selecting optimal sensors and algorithms) using individual sensors in general, 
these achievements often have not made their way into the WSN field. In this pa-
per, we aim at bringing knowledge of already established fields of AI (because of 
their learning process, reasonable accuracy and computational cost) and fire detec-
tion into the WSN field.  

The rest of this paper is structured as follows. Section 2 briefly reviews pre-
vious contributions for fire detection using WSN. In Section 3, our proposed fire 
detection technique is introduced. Section 4 reports the experimental results. Fi-
nally, some conclusions and future plans are given in Section 5. 

2. Literature Review 

In this section, contributions of WSN for fire detection are briefly surveyed. A 
more complete literature review on this matter can be found in our technical report 
[4].  

Yu et al. [13] used the National Fire Danger Rating System (NFDRS) for forest 
fire detection. NFDRS inputs four sensory information (humidity, temperature, 
smoke and windy speed) and generates a fire-likelihood index. The contribution of 
this study is the function of a feed-forward neural network for data aggregation 
and reducing communication overhead. 

Lu Zhiping et al. [14] proposed a forest fire detection approach using WSN. 
Their system is composed of some sensor nodes, gateway(s) and task manager(s). 
Each sensor node is equipped with temperature and humidity sensors. After ob-
taining sensory information at sensor nodes, the data is fused at the gateways and 
data analysis and decision making tasks are conducted by the task manager nodes.  

In [7], the author incorporated Fire Weather Index (FWI) and a novel k-
coverage algorithm to detect forest fires. K-coverage algorithm monitors each 
point by using k or more sensor nodes to improve fault tolerance. Therefore, some 
sensors can be put in standby mode to extend network lifetime. Although there are 
many algorithms to find the minimum number of sensors to be used, they are 
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usually NP complete problems [12]. The proposed k-coverage solution proved that 
it can prolong the network life time.  

Zervas et al. proposed a sensor network approach for early fire detection of 
open spaces such as jungles and urban areas [15]. They incorporated a temperature 
sensor and maximum likelihood algorithm to fuse sensory information. Their pro-
posed system architecture is composed of (1) sensing subsystem, (2) computing 
subsystem, and (3) localized alerting subsystem. The author concluded the appli-
cability of their approach for early fire detection. 

A skyline approach for early forest fire detection is proposed in [10]. Skyline is 
built using greater values, i.e., those sensor readings with large temperature and 
high wind speed. Only data on skyline are sent to a sink to be used for fire detec-
tion. Sink processes the data according to the suggested algorithm and results in a 
fast and energy efficient forest fire detection. 

Marin-Perianu et al. proposed a distributed fuzzy inference engine, called D-
FLER, for event detection using WSN [9]. They considered fire as an event utiliz-
ing smoke and temperature sensors. D-FLER combines individual sensor inputs 
with neighborhood observation using a distributed fuzzy logic engine. The proto-
type of their work was implemented in practice using Ambient µNode 2.0 plat-
form [16].  

3. Proposed Fire Detection Approach 

By looking at the previous work on fire detection using WSN, we can conclude 
that, use of WSN for fire detection can be improved in two directions. The first di-
rection is to use more sensors in combination and conduct sensor fusion. This can 
lead to more accurate fire detection by incorporating more than one sensor [6].  
The second direction is to use more intelligent detection algorithms such as AI ap-
proaches, as fires and nuisances have a distinct pattern.  

In WSN research community, selection of sensors was often carried out ran-
domly or assumption-basely. Although temperature sensors are probably the sim-
plest and the most obvious sensors for fire detection, studying various sources in 
this field reveals that all researchers agree on the fact that it alone is not a suitable 
indicator for fires and gas concentration sensors result in a better fire detection and 
discriminating fire and noise sources [3,6] 

In our approach, we adapt the optimal sensor set from [6] and use temperature, 
ionization, photoelectric and CO sensors. We assume that every node in the WSN 
contains all the required sensors. In this case, communication overhead between 
neighboring nodes is avoided and each sensor node can detect fire locally by itself.  

To achieve this goal, sensor nodes need a computationally cheap, yet, efficient 
algorithm to conduct fire detection in a (near) real-time manner. For this reason, 
we propose to use FFNN and Naïve Bayes classifier. Subsections 3.1-3.3 provide 
information about these classifiers and the reasons why they are helpful for WSN.  
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3.1 Feed Forward Neural Network (FFNN)  

The artificial neural network (ANN) is a mathematical model or computational 
model based upon biological neural networks. It is composed of an interconnected 
group of artificial neurons and processes information using a connectionist ap-
proach for computation [17]. Feed forward neural network (FFNN) is a sort of the 
neural networks, in which each layer is fed by its back layer [18]. FFNN consists 
of one input layer, one or more hidden layers and one output layer. Fig 1 shows 
the FFNN’s architecture. 

 

 
Fig. 1: Architecture of a Neural Network  

 
The challenge of such networks is finding the weights. The process of finding 

the appropriate weights, which is called ‘learning’, can be carried out by some al-
gorithms such as gradient descent (GD) approach.  

3.2 Naïve Bayes Classifiers  

A Naïve Bayes classifier uses Bayesian statistics and Bayes’ theorem to find 
the probability of each instance belonging to a specific class. It is called Naïve be-
cause of emphasizing on independency of the assumptions. To find the probability 
of belongingness of each instant to a specific class, Eq. 2 can be used. Eq. 2, ex-
presses the probability of an example ),...,,( 21 nxxxE = belonging to class 

c [19].  
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3.3 Advantages of the FFNN and Naïve Bayes Classifier for WSN 

The main advantage of the FFNN for WSN is its ease to be programmed into a 
sensor node. Let us assume to have an FFNN with three neurons in input layer, 
two neurons in hidden layer and a neuron in output layer. The weights can be 
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found by the GD learning algorithm. Then, we might have a network similar to 
Fig 2.  Another advantage of the FFNN is its parallel capability, which means pa-
rameters used in Eq. 2 can be calculated independently and in parallel. 

This network can be easily programmed into sensor nodes using Eq. 1. Evaluat-
ing this mathematical formula in form of a business rule is computationally very 
cheap and appropriate for resource constraint sensor nodes. This equation can be 
extended to more neurons and layers but the idea is the same. Eq. 2 formulates the 
network in a form of mathematical model. One should note that each neuron 
passes the sum of product (SOP) of the previous layer. In some networks SOP is 
given to a non-linear function such as tangent and transformation is a nonlinear 
one that makes Eq. 2 slightly different. 
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Fig. 2: An FFNN with three neurons in Input, two neurons in hidden layer, and 
one neuron in output layer along with their corresponding weights.  

Naïve Bayes classifier is also easy to implement. The most time-consuming part is 
how to compute )|( cEp in Eq. 1. This probability calculation is important to 

make the classifier more accurate. In basic literatures of pattern recognition or 
machine learning, it is proposed that this probability can be estimated by some 
standard data distribution such as Gaussian or Poisson [20].  

To do a more accurate probability calculation, we can divide data into some in-
tervals and count the data frequency within that interval. The new instances are al-
so partitioned to the same intervals for finding the probability of each feature to be 
in that class.  

To clarify the method, suppose we have the following data for ten samples in 
two classes BA, : 

]3,1,9,8,9,6,4,2,7,8[=A  

]2,2,4,8,5,3,3,1,1,1[=B  

Then we divide these data into two intervals. Two intervals were chosen to 
simplify the example however the number of intervals are arbitrary. Therefore, 
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those numbers less than five are allocated in the first interval, i.e., interval 1i , and 

the rest in the second interval, interval 2i . 
Table 1. Classes and their Probability  
 

1i  ( 5<x ) 2i  ( 5≥x ) 

AP  0.4 0.6 

BP  0.8 0.2 

 
Now, let us assume to have an instance 31 =x  that should be classified into ei-

ther Class A or Class B. It can easily be discovered that 3 belongs to the first inter-
val, 1i , as it is less than 5. Then by looking at the probability table, Table 1, this 

can be seen that the probability of belongingness to class B, is higher 
( 4.08.0 =>= AB PP ). Therefore we classify 1x to class B. 

This method of classification is also considerable for WSN because this is 
based upon a table which can be computed offline. Thereafter, this table is pro-
grammed into a sensor node and a simple algorithm inside the sensor nodes 
searches the table for the higher probable class.  

In the next section the empirical results for both approaches is presented and al-
so compared with a recent study.  

4. Empirical Results 

To evaluate the proposed approach, a set of data were obtained and a number of 
experiments were conducted. Subsection 4.1 describes the dataset, while Subsec-
tion 4.2 reports and compares the final results.  

4.1 Dataset  

A set of data were obtained from NIST website (http://smokealarm.nist.gov/). 
To identify smoldering fire data, flaming fire data is combined with noise. There-
fore, two smoldering fire dataset (SDC31, SDC40), two flaming fire dataset 
(SDC10, SDC14) and two nuisance resource dataset (MHN06, MHN16) were 
merged together. Totally 1400 data records were prepared, all having same units. 
Fig. 3 displays the data in 3D space. The goal is to make a classifier that can sepa-
rate these data and classify them into their respective class, i.e., fire and noise.  

4.2 Experimental results   

The data were given to both classifiers and the results were obtained. To per-
form a cross validation, 1400 data records were divided to a 1000 training data 
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and a 400 test data. All data were randomly mixed and given to the classifiers. 
Each test repeated 10 times and the average accuracy rate by changing the clas-
sifiers’ parameters is reported in Tables 2-3. Table 4 provides a general compari-
son of our approach with a recent study, in which a distributed fuzzy system was 
proposed for residential fire detection using WSN [9] 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3: Fire and noise data. (a) Ion, Photo and CO (b) Ion, temperature and CO (c) 
Temperature, Ion and Photo (d) Photo, CO and Temperature 

 
For simulation of the proposed approaches Matlab® 7.1 was used. A two pass 

smoothing filter for a preprocessor was also applied that was adapted from [6]. 
 

Table 2. Empirical Results for Naïve Bayes Classifier 

Number of Intervals 10 100 300 600 1000 

Accuracy  32.15% 63.15% 96.425% 98.675% 100% 

 

Table 3. Empirical Results for FFNN 

Number of Neurons 
in the Hidden Layer 

5 10 20 50 

Accuracy Rate 97.495% 98.45% 93% 90.1% 
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Table 4. Comparing the Empirical Results with D-FLER [9] 

Best Result  Naïve Bayes Neural Network D-FLER[9] 
Accuracy Rate 100% 98.45% 98.67% 
 

4.2 Computation Complexity Consideration   

To compare these three approaches, not only the accuracy but also computation 
complexity is of significant importance, as they need to be implemented on tiny 
resource constraint sensor nodes.  

4.2.1 FFNN’s Computation Complexity 

 The most expensive part of the FFNN computationally is the training phase. 
Since we consider that FFNN is trained once and then is programmed into the sen-
sor nodes, its computation complexity is negligible.  

The computation complexity of a FFNN with m neurons in its input layer 
(number of features), n neurons in hidden layer, and p neurons in output layer is 

shown in Eq. (3). 
)( pnmOOFFNN ××=  (3) 

 
In this calculation the multiplication operator is considered as the key for com-

putation complexity calculation. 

4.2.2 Naïve Bayes’s Computation Complexity 

The most expensive part of the Naïve Bayes classifier computationally is making 
the probability table. We assume that this probability table is made once and then 
is programmed into the sensor nodes. In this case computation complexity is cal-
culated for search process only, which is more expensive. Computation complexi-
ty for the Naïve Bayes is calculated based on the Eq. (4), where m  is number of 
features, i is number of classes, and j is number of intervals.  

)( jimOONaiveBayes ××=  (4) 

4.2.3 D-FLER’s Computation Complexity  

Defining the fuzzy rules and membership functions represent the most compli-
cated part of the fuzzy inference engine design. Assuming that these are pro-
grammed into the sensor nodes, the time complexity of the fuzzy inference engine 
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is calculated based on the Eq. (5), where m  is the number of membership func-
tions per input, i  is the number of inputs, r  is the number of rules, o is the num-
ber of outputs (in the particular case of fire detection, o =1). 

)( orimOO FLERD ×××=−  (5) 

 
As shown in [9], the actual execution time can be greatly influenced by the 

specific defuzzification method chosen, to the extent that the number of outputs o  
can become the determinant factor. 

4.2.4 Computation Complexity Comparison 

Comparing computation complexity of the FFNN, the Naïve Bayes classifier, 
and fuzzy logic approaches shows that they are all product of three terms and if all 
variables have the same values it is a non-linear equation of power 3.  

Table 5. Computation Complexity Comparison  

 Naïve Bayes Neural Network D-FLER[9] 

Computation Complexity  )( mjiO ××  )( pnmO ××  )( orimO ×××  

 

5. Conclusion 

Wireless Sensor Networks may be deployed in many places thus they have differ-
ent requirements. According to their scenarios each sensor node is either equipped 
with all the appropriate sensors or just a sub set of them. Fire in WSN is consi-
dered as an event; therefore event detection techniques are used for its detection. 
In this study, the optimal set of four sensors, i.e., temperature, ionization, photoe-
lectric and CO, were adapted from [6] and two fire detection techniques based on 
the FFNN and the Naïve Bayes classifier were proposed to detect fire on each 
node locally. To carry out the detection task the sensory information is given to a 
classifier. The computation complexity and accuracy rate of each of these tech-
niques and a comparison between them and a recent study, called D-FLER [9] 
based on fuzzy logic were presented. Results show that while all the three have 
similar computation complexity, the Naïve Bayes classifier can achieve a better 
accuracy and has a lower communication overhead (since it is centralized assum-
ing all the sensors are present at the sensor node). However, in case just a sub set 
of sensors is present at each sensor node, D-FLER has the advantage. This is a 
good guideline to choose a proper technique for a particular scenario (centralized 
versus distributed) in mind. 
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