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Abstract This paper reports our experiences of developing data access services
in the context of the ACGT project. The paper documents two aspects of the work
that we carried out. First the focus is on the problem of how to best provide a syn-
tactically homogeneous data access interface for a set of heterogeneous data
sources. We describe related work, outline the approach we have taken, and report
our findings. The second part of this paper documents integration issues that we
encountered when realizing the data access services. Choices with regards to reali-
zation have significant impact on the time and effort that is needed to develop and
maintain the services and our experiences may provide useful guidance to others
wanting to develop similar functionality.

Introduction

The work reported here has been carried out in the context of the ACGT (Advanc-
ing Clinico-genomic Trials on Cancer) project. The aim of ACGT is to develop
open-source, semantic and grid-based technologies in support of post-genomic
clinical trials in cancer research [1]. One of the main challenges in carrying out
post-genomic research is to efficiently manage and retrieve all relevant data. Car-
rying out a post-genomic clinical trial involves the collection and storage of a
wide variety of data, including: clinical data collected on Case Report Forms (e.g.
symptoms, histology, administered treatment, treatment response), imaging data
(e.g. X-Ray, CT, MR, Ultrasound), and genomic data (e.g. microarray data). Next
to that there are many public biomedical databases that are relevant. These store
information about gene and protein sequences, pathways, genomic variation, mi-
croarray experiments, medical literature, tumour antigens, protein domains, meta-
bolites, etc. Biomedical researchers currently have to use many different tools and
web interfaces to find and extract the data that is relevant to their clinical research.
Providing seamless and integrated access to clinical, genetic and image databases
would therefore greatly facilitate post-genomic research.
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In order to provide seamless access to a heterogeneous set of databases syntac-
tic and semantic integration needs to take place. Syntactic data integration handles
differences in the formats and mechanisms of data access, whereas semantic inte-
gration deals with the meaning of information; it must handle the fact that infor-
mation can be represented in different ways, using different terms and identifiers.

With regards to syntactic heterogeneities, the main areas where databases differ

are:
access protocols, e.g. SOAP/HTTP, DICOM, JDBC,
data formats, e.g. different formatting of date values,
message formats, e.g. XML, HTML, protocol-specific, and
query mechanisms, e.g. SQL, literal matching, keyword-based search, or pro-
tocol-specific.
An example of a query mechanism specific to the biomedical domain is BLAST
[2], which is used by sequence databases. Matching is approximate and parame-
ters can be specified controlling the accuracy and speed of matching. A complete-
ly different query mechanism is needed to access medical image data, which is
standardised using the DICOM protocol [3]. DICOM does not allow complex que-
ries, as it does not intend to provide a generalized database query mechanism [4].
The baseline query functionality is very basic, and the optional extended query
functionality is still limited and eccentric.

Semantic integration in ACGT is handled using Query Translation, carried out
by a semantic mediator that uses a Local as View approach. It accepts queries ex-
pressed in the ACGT Master Ontology, divides them in sub-queries, and translates
each to the ontology used by the underlying database. The remainder of this paper
focusses on the syntactic integration of data sources. For details about the seman-
tic integration approach, please refer to [5].

Related work

Syntactically homogeneous access to distributed data sources is typically provided
by way of wrappers [6, 7, 8, 9]. One of the main challenges in building wrappers
is the variation in the query functionality of the underlying data sources [10]. Data
sources may not only use different data models and syntactically different query
mechanisms, but their query capabilities can differ as well. This makes it difficult
to support a common query language, an essential step towards syntactic homo-
geneity. There are two extreme approaches [7]. A highly expressive common
query language can be chosen. This, however, makes it difficult to implement
wrappers for sources with primitive query capabilities. Furthermore, if the wrap-
pers are used by a mediator, it means that query decomposition, subquery schedul-
ing and result composition may be done by both; the mediator must be able to de-
compose queries across multiple data sources and a wrapper for a data source
must be able to decompose a complex query into simpler ones that the data source
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can handle. This means duplication of implementation effort but also leads to
overall sub-optimal query execution performance. On the other hand, if a very ba-
sic common query language is chosen, significant and unnecessary performance
penalties are introduced as the capabilities of the underlying data sources are not
effectively used.

As neither approach is ideal, an intermediate solution is proposed in [7]. A
powerful common query language is chosen, but wrappers may choose to only
support a subset of the queries, based on the capabilities of the underlying data
source. Each wrapper describes the queries it supports using the Relational Query
Description Language (RQDL) developed for this purpose. An RQDL specifica-
tion consists of a set of query templates that represent parameterized queries that
are supported. RQDL uses a context-free grammar to describe arbitrarily large
sets of templates. Templates can be schema-independent as well as schema-
dependent. Benefits of this approach are that wrappers can provide and expose
query functionality that better corresponds to that of the underlying data source. A
drawback is the increased complexity associated with interpreting and reasoning
about the query capabilities of each source, but feasibility is demonstrated by the
Capabilities-Based Rewriter, described in the same paper, that uses the wrappers
and produces query execution plans in reasonable time.

A more recent example, applied in practice to life sciences data, is given by
DiscoveryLink [8], a database middleware system for extracting data from mul-
tiple sources in response to a single query. The system consists of two parts: a
wrapper architecture, and a query optimizer. SQL is used as the common query
language for the wrappers, but wrappers may only support a subset of SQL. In the
simplest case, a wrapper retrieves a projection over all rows in a given table.
Wrappers can, however, also indicate that they support filtering conditions, or
joins, and if so, how many. The paper proposes to involve wrappers in the query
optimization process. Wrappers are asked for estimates on the query execution
time and expected size of the result set for different sub queries. The query opti-
mizer will use this information when deciding how to decompose the query. It re-
quires efficient communication between the query optimizer and the wrapper,
which is made possible because wrappers are shared-libraries, co-located with the
query optimizer.

EDUTELLA [11] uses an RDF query language that has various language le-
vels, with increasing functionality. The basic level supports RDF graph matching,
the level above that adds disjunction, and the use of recursion in queries is added
at even higher levels. Support for aggregation is an optional feature, orthogonal to
these levels. Wrappers can support the level of the query language that best fits
the query capabilities of their data source.

It is generally recognized that writing wrappers requires significant program-
ming effort, and as a result significant research efforts have been devoted to au-
tomating parts of this (see e.g. [6], [9]). In general, automation is focused on a
subset of the different data sources, e.g. sources with a web interface [12].
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Approach

We identified the following functional requirements for the data access services.
Firstly, they should provide a uniform data access interface. This includes unifor-
mity of transport protocol, message syntax, query language, and data format. Se-
condly, they should export the structure of the database, using a common data
model, together with possible query limitations of the data source. Clients of the
web service require this information for constructing queries. Thirdly, they should
enforce the data source access policy, and audit access to data sources. For post-
genomic clinical trial data, there exist strict legal and ethical requirements that
need to be adhered to.

A common query language is needed to achieve a uniform interface. It needs to
meet various requirements. Firstly, it must be sufficiently expressive; it should
support the types of queries that clinicians and biomedical researchers want to car-
ry out. Secondly, it must be attainable, with acceptable effort, to map the query
language to those used by the various data sources that need to be accessed. Third-
ly, it must be convenient to use the query language for semantic mediation, the
next step of the data integration process. Fourthly, it should be a community ac-
cepted standard. This ensures that there are sufficient support tools available, such
as parsing and query engines, and also increases the possibilities for our approach
to be eventually widely adopted. We have chosen SPARQL [13] as the query lan-
guage, as it satisfies all these requirements.

Web Services have been chosen as the common interface technology within
ACGT, as this technology suits the distributed nature of the project with respect to
the data, computing resources, and development teams. For the data access servic-
es we decided additionally to use OGSA-DAI, a Web Services framework for data
access [14]. It uses an activity framework that enables flexible service invocation,
and re-use of common data access functionality. The results of queries will be re-
turned using the SPARQL Query Results XML Format [15], which is the natural
choice given the web services context and the use of SPARQL.

To meet the second requirement each data access service exports its schema us-
ing RDF Schema [16]. This is the standard way to describe RDF data sources,
which is how the data sources appear given that SPARQL is used.

Access to each data source is controlled by integrating the data access service
into the ACGT security infrastructure. Authentication is credential-based and del-
egation of credentials between services is supported. Authorization is controlled
centrally and authorization decisions are, amongst others, based on membership to
virtual organizations, which can be created as required.
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Implementation

We have implemented data access services for three data source types: relational
databases, medical image databases, and microarray databases. These databases
have been chosen after careful review of requirements; they are considered the
most important in the context of post-genomic clinical trials given the data-mining
scenarios that were identified during the requirements-gathering process.

Figure 1 shows the data access services in the context of the data analysis ar-
chitecture. The workflow enactor carries out data-mining workflows. It uses the
semantic mediator for retrieving data. The latter accepts queries expressed in the
ACGT Master Ontology, and converts them to the local ontology of the data
source that is queried. The query results are converted in the opposite direction.
Before a data access service handles a query, it checks whether or not the user is
authorized to access the data source by contacting the authorization server. The
data access services handle SPARQL queries from the semantic mediator. Addi-
tionally, they may also be contacted directly by the workflow enactor. This is the
case for retrieval of image and assay files, which do not require semantic media-
tion. The requested data is typically not returned to the workflow enactor, but de-
livered to file at a specified temporary storage location. The workflow enactor
receives the unique identifiers for files that have been created, which it can for-
ward to the data-mining service so that the latter can retrieve and analyse the data.
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Fig. 1. The data analysis architecture of ACGT
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There are two relevant aspects with regards to the terminology we use. First of all,
we use the term “data access service” to refer to a class of services, e.g. the
DICOM data access service, as well as for referring to specific instances, e.g. the
data access service for DICOM database X. The distinction should always be ap-
parent from the context. Secondly, each data access service is not actually a stand-
alone web service. Within the OGSA-DAI framework multiple data access servic-
es are deployed as different data resources within a single OGSA-DAI web ser-
vice. This has implications for the addressing of the data access services, but is not
important for the remainder of this paper.

Query functionality

For the implementation of the query functionality for relational databases it is ne-
cessary to translate queries from SPARQL to SQL. For this, we are using the
Open Source package D2RQ [17]. It can wrap a relational database into a virtual,
read-only Jena RDF graph [18], rewrite SPARQL queries and Jena API calls into
application-datamodel-specific SQL queries, and transform the returned data ino
RDF triples. We therefore only had to integrate this functionality into the OGSA-
DALI activity framework.

Realizing a data access service for medical image databases requires more ef-
fort. First of all, custom code is needed to implement the query translation. As the
DICOM information model maps naturally to RDF, it is relatively straightforward
to express DICOM queries in SPARQL. However, the DICOM standard only
provides limited query functionality, which means that only a subset of syntacti-
cally valid SPARQL queries can be expressed as DICOM queries. For the initial
implementation, we only support SPARQL queries that can either be directly
converted to a DICOM query, or that can be handled using a single DICOM
query combined with filters at the data access service that do not require tempo-
rary storage of query results (i.e. any query match that is returned by a DICOM
server is either immediately discarded, or after optional conversion, immediately
returned to the client). This way, the data access service does not need to store in-
termediate results, and implementation is significantly simplified. Figure 2 shows
an example of a supported SPARQL query for a DICOM image repository.

For the medical image data access service, image retrieval functionality was
also added; the ability to query the image metadata is of limited use if the actual
images cannot be retrieved. The retrieval functionality has been implemented us-
ing OGSA-DATI’s activity framework so that it can be invoked in various ways.
For example, a single request message can be used to query the image metadata,
and to asynchronously retrieve and deliver the corresponding images.
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PREFIX dicom: <http://example.philips.com/dicom/>
PREFIX xsd: <http://www.w3.org/2001/XMLSchemai#>
SELECT ?name ?dob ?studyId ?studyDescr
WHERE {
?patient dicom:PatientsName ?name ;
dicom:PatientsBirthDate ?dob
?study dicom:Patient ?patient ;
dicom:StudyID ?studyId
OPTIONAL {
?study dicom:StudyDescription ?studyDescr
}
FILTER ( ?dob >= "1970-01-01"""xsd:date &&
?dob < "1980-01-01"""xsd:date )

Fig. 2. Example of DICOM query expressed using SPARQL.

Our third data access service provides access to the BASE database, a database
for storing the results of microarray analysis [19]. The data access service inte-
racts with the BASE database by way of a Web Service interface. The current im-
plementation of the data access service provides retrieval of assay files, given
their unique identifiers. More advanced query functionality is not provided, as
this has not been needed yet. Typically assay files are obtained by first querying
the clinical data, e.g. for all patients with an ER-negative tumor that responded

positively to treatment, and next retrieving the corresponding assay files from
BASE.

Miscellaneous functionality

Due to the heterogeneity of the data sources, each data access service requires
code that is specific to its type of data source. However, the different data access
services also need to provide common functionality, which offers the opportunity
for code reuse. The main mechanism by which the OGSA-DAI platform encou-
rages the reuse of code is through its activity framework [14]. Requests from
clients to an OGSA-DAI data resource can contain multiple activities, linked to-
gether into a pipeline. For example, the first activity may comprise a query to a
DICOM server for a set of image identifiers. A second activity may extract the
identifiers and retrieve the corresponding images. The images may be fed to a
third activity, which compresses the image data, and feeds the resulting archive
file to a fourth activity, which delivers the archive to a specified FTP server. Al-
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though the interface of the query activities for the different data access services is
typically the same (thus providing a homogeneous interface), their implementation
is typically highly dependent on the type of data source that is queried. Activities
further in the pipeline are typically more generic and their implementation may be
reused by multiple data access services. The OGSA-DAI platform comes with a
large set of generic activities, but we developed additional ones for use by our data
access services. One example is an activity for delivering files to the Gridge Data
Management System [20], which we use for temporary storage, using myProxy
certificates for authentication. Another activity can calculate checksums for data-
streams. It can be used for testing service functionality after changes to the im-
plementation, as well as for carrying out periodic liveness tests of a running ser-
vice. We also extended the default ZIP activity so that it can pack multiple files
into a single archive.

Integration experiences

The realization of the data access services requires integration of a large number
of third-party software libraries. There are two reasons why a large number of
third-party packages is needed: firstly, the complexity of the software stack asso-
ciated with (grid-based) Web Services, the interface standard chosen in ACGT,
and secondly, the heterogeneity of the underlying databases, which typically each
have their own sets of standards and APIs associated with them. The software
stack for the data access services consists of the following layers:

e (data access services
e OGSA-DAI
e Globus
e Tomcat
The lowest layer is the Tomcat web service container, which hosts the web servic-
es. Globus sits on top of Tomcat; it is used for implementing the certificate-based
security framework. The layer above that consists of OGSA-DAI It provides a
modular, activity-based data access framework for use by the layer above it. The
top layer consists of the data access services which handle query and result trans-
formation, and data retrieval and storage for the supported data sources. Each class
of data access service depends on various third-party libraries for its implementa-
tion. For example, the relational data access service uses D2RQ [17] to translate
SPARQL queries to SQL, which in turn uses Jena [18]. The DICOM data access
service uses Jena as well, together with dcm4che [21] for accessing DICOM serv-
ers. The BASE data access service uses client-code provided by the BASE devel-
opers for accessing their BASE web service.

Given this setup, one of the biggest problems is managing the depencies be-
tween all different third-party software packages that are used. This is especially
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challenging because all data service resources are deployed within the same
OGSA-DAI instantiation and third-party packages (deployed as Java jar files) that
are needed by only one or a few of the data access services are visible to all. This
can lead to dependency conflicts between data access services that are otherwise
independent. A pair of data access services that can individually be deployed suc-
cessfully inside an OGSA-DALI instantiation may not necessarily be successfully
deployed alongside each other.

Three concrete issues that we encountered may help to illustrate the types of in-
tegration problems this gives. Firstly, after we had discovered and reported a bug
in a third party library we used (Jena), we could not deploy the release that in-
cluded the fix, as this new release was incompatible with another third party li-
brary (D2RQ) that we were using

Secondly, we have experienced problems deploying compiled and packaged
code provided by other partners in ACGT, which was due to a slight incompatibil-
ity in an underlying third-party library (Axis) provided by the version of the (Glo-
bus-based) web service container that was used. Fortunately, the incompatibility
did not exist at the source code level, so rebuilding the code with the third-party
libraries of the container where the service was to be deployed fixed the problem.

We encountered a third problem after we had upgraded the web services con-
tainer, which was required to fix a depency conflict. One of our services would
now hang when handling requests. As it turned out, this was due to a change of the
third-party library implementing the JavaMail API, which resided three layers be-
low our code. It was due to a more strict implementation of the JavaMail API,
which in turn revealed a bug in another third-party library (Axiom), which relied
on a more lenient interpretation of the API’s contract in order to function correct-
ly.

It is worth pointing out that in all three cases, the fact that source code was
available for all third-party software components greatly helped in tracking down
and solving the problem.

Discussion

We have implemented OGSA-DAI data access services for three types of data
sources: relational databases, medical image databases and a micro-array database.
The main research question is how to best provide a syntactically homogeneous
interface, and a key question is the query language that is used. We have chosen
SPARQL as the common query language and have demonstrated that it can be
successfully applied to relational databases and DICOM image databases.

For the relational databases, the SPARQL language does not support all fea-
tures offered by the query language of the data source, SQL. For instance, it does
not support aggregation of data (averaging, summation, counting, etc). So aggre-
gation needs to be performed at the client-side, even though the underlying data-
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base supports it directly, which negatively affects performance. The actual use of
the system by the end users will clarify whether this is a problem that needs to be
addressed.

For medical image databases, SPARQL is more expressive than the query sup-
port provided by the DICOM protocol. For this reason, the data access service
does not support all queries. These limitations are currently described as text, but
should be expressed in a more formal manner, so that other services and applica-
tions can interpret these and handle accordingly. In order to select a suitable for-
mal framework for this, we need to thoroughly review the capabilities and limita-
tions of all relevant data sources.

A capability-restricted data access architecture has the advantage that it is easi-
er to develop data access services for data sources; as a consequence, new data
sources can be integrated much more quickly. It may, however, complicate appli-
cations and services that use the data access services. A higher level data access
service may therefore be introduced that hides query restrictions of the underlying
services. This generic service would decompose queries for a specific data access
service as need be, store the intermediate results, and join these to produce the fi-
nal answer. This would facilitate implementation of the semantic mediator, while
incurring a slight performance penalty. However, this higher-level data access
service may also carry out generic optimizations such as caching of query results,
resulting in performance gains.

Another open issue is how to provide text-based query functionality. There are
many public biomedical databases where part of the data is free text. Examples
are descriptions of microarray experiments (e.g. in GEO [22] and ArrayExpress
[23]), descriptions of gene and protein functions (e.g. in UniProt [24] and En-
trezGene [25]), and abstracts and titles of medical publications (e.g. in PubMed
[26]). Although most databases provide keyword-based functionality for querying
data, this method of searching is not directly supported by SPARQL, so it is not
immediately obvious how to extend the current data access services interface to
support this functionality. One approach would be to add a separate text-based
query interface for data sources that support this. This exposes more details of the
underlying data source, resulting in a less homogeneous interface. This is unde-
sirable but may be unavoidable in practice. However, there is a more important
question that needs to be answered first: how should querying of text data be han-
dled by the semantic layer? This is an important question as it determines the
query interface that is available to end-users, but answering it falls outside the
scope of this paper.

To give an impression of the overhead caused by the use of data access servic-
es, compared to direct interaction with the databases, we can report the results of
performance experiments that we have carried out. The amount of overhead de-
pends on various factors, including the complexity of the query, the amount of re-
sults that are returned, and the underlying database. For simple queries the per-
formance degration could be as much as a factor hundred (in particular for the
relational database, which responds very quickly). For more complex queries the
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overhead decreased significantly, down to a factor of two (for the DICOM data-
base). Overhead was similarly low for retrieval of bulk image and microarray da-
ta, but high for retrieval of bulk data that is returned in the XML response mes-
sage. The latter is due to limitations of the API for constructing the response
message, which needs to be constructed entirely in memory before it can be sent
to the client.

Finally, many of the problems encountered when deploying data access servic-
es for heterogeneous data sources are of a practical nature. For reasons of scala-
bility, all data access services are deployed in the same web services container.
This implies however that they run inside the same virtual machine, which can
lead to unexpected conflicts. The complexity of the grid-based web services stack
in combination with the need to use many third-party libraries, each with their
own dependencies and particular implementations of part of the web services
stack, makes it a challenge to resolve dependency conflicts.
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