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Abstract. GridTest is a framework for testing automated theorem prov-
ers using randomly generated formulas. It can be used to run tests locally,
in a single computer, or in a computer grid. It automatically generates a
report as a PostScript file which, among others, includes graphs for time
comparison.
We have found GridTest extremely useful for testing and comparing the
performance of different automated theorem provers (for hybrid, modal,
first order and description logics). We present GridTest in this framework
description in the hope that it might be useful for the general community
working in automated deduction.

1 Testing Automated Provers

Testing a system is an invaluable source of information about its behaviour. But
testing can be difficult and time consuming. This is particularly the case for
systems that have to deal with very diverse input (where carrying out exhaus-
tive testing would be impossible), and which need complex computation (that
is, systems which are trying to solve problems which are known to be computa-
tionally hard). Automated theorem provers are prime examples of systems with
these characteristics.

The issue of how to perform suitable testing and comparison of automated
theorem provers has been largely debated, and different proposals have been
presented (see, e.g., [1–10]) for logics ranging from propositional to first-order.
Which kind of testing is most adequate — i.e., whether the problems are ran-
domly generated, hand tailored, or coming from real world applications; how is
the potential input space covered; etc. — is difficult to evaluate. Probably, the
only safe thing to say is that the more you test the best it is (and still, it might
be that no testing is better than bad testing, depending on the claims that are
put forward in the basis of the tests performed).

In this article we will not discuss the issue, and we will focus on one partic-
ular kind of testing which is well suited to be distributed in a computer grid.
In particular, we will present GridTest, a framework for testing automated the-
orem provers using randomly generated formulas. GridTest has been developed



in python [11], and can be used to run tests locally, in a single computer or in
a computer grid. It automatically generates a report as a PostScript file (gener-
ated via LATEX). It can compile statistics provided by the provers (e.g., running
time, number of applications of a particular rule, open/closed branches, etc.)
and produce graphs generated using GnuPlot. Even if the prover does not pro-
vide any kind of statistics, GridTest will use the time command (available in all
POSIX-conformant operating systems) to obtain running times to plot in the
final report.

The framework is released under the GNU General Public License and is
available at http://glyc.dc.uba.ar/intohylo/gridtest.php.

GridTest has been originally designed for automatizing tests as those de-
scribed in [8]. That is, we use a random generator of formulas in conjunctive
normal form to obtain batches of formulas with an increasing number of con-
junctions. In this way, we can explore the average behaviour of the provers in a
spectrum of formulas that runs from mostly satisfiable to mostly unsatisfiable,
aiming to hit the point of maximum uncertainty (i.e., where the chances of a
randomly generated formula being satisfiable or unsatisfiable is balanced).

We have used GridTest mostly to test theorem provers for hybrid logics and
hence the current framework uses hGen as its random formula generator [12].
hGen (also distributed under the GNU General Public License and available at
http://glyc.dc.uba.ar/intohylo/hgen.php) is a generator of random formulas in
the hybrid language H(@, ↓, A, D, P) (that is, the basic modal logic extended
with nominals, the satisfiability operator @, the ↓ binder, the universal modality
A, the difference modality D, and the past modality P, see [13]). But because we
were interested in the comparison of provers for different logics (e.g., description
and first order logics) the framework has been designed to properly handle trans-
lations between the output format of the random generator and the input format
of the different provers. In particular, timing graphs will discriminate between
the time used for the translation and the time used by the prover. A number
of translations from the output format of hGen to the input format of different
provers is provided with the source code (e.g., the tptp format for first-order
provers, the standard input format for description logic provers, etc.), together
with the drivers for different provers (e.g., E, SPASS, Bliksem, Vampire, Racer,
FaCT++, HTab, HyLoRes, etc.).

In order to run on a single machine, GridTest requires a python interpreter
and some typical POSIX tools (bash, time, tar, etc.). Its output is a collection
of GnuPlot and LATEX scripts that are automatically compiled into a PostScript
file reporting the results. These requirements are fairly typical and are available
on almost every platform.

Unfortunately, unlike the POSIX standard for operating systems, there is
as yet no standard batch scheduling mechanism for computer clusters or grids.
GridTest currently supports only one backend, namely the OAR [14] batch sched-
uler, to distribute the test on a computer cluster. We designed GridTest so as to
use only very basic services that most batch schedulers should provide, but still,



porting it to other systems could be the most difficult challenge when trying to
use GridTest elsewhere.

We have found GridTest extremely useful for testing and comparing the per-
formance of different automated theorem provers. Thus, we present this frame-
work description, and we freely release the source code, in the hope that it might
be useful for the general community working in automated deduction.

2 Testing on the Basis of Random Formulas

The testing methodology implemented in GridTest uses a customizable random
formula generator. We currently use hGen [12], although it should be easy to add
support for additional generators.

Similarly to other random formula generators (e.g., [1, 8]), hGen generates
formulas in a conjunctive normal form: each formula is a conjunction of disjunc-
tive clauses. Since each disjunctive clause can be seen as an additional constraint
on satisfying models, random formulas with a small number of clauses tend to be
satisfiable while a large enough number of random clauses will be unsatisfiable.

By generating formulas with an increasing number of disjunctive clauses, we
can generate tests that start with formulas with a high chance of being satisfiable,
and progresively obtain formulas with a high chance of unsatisfiability, going
through the point where these probabilities are roughly the same. Formulas
at this spot tend to be difficult for most provers, regardless of whether they
are naturally biased towards satisfiable or unsatisfiable formulas. Of course, the
precise number of clauses needed to reach this point varies depending on other
parameters, such as the number of proposition symbols, the number and kind of
modalities, the maximum modal depth, etc.

With a random formula generator like hGen, we can set up the following
benchmark: i) generate random formulas ϕ1 . . . ϕn where ϕi has exactly i con-
junctions (each conjunct being a disjunctive clause) and the rest of the param-
eters are fixed, ii) run provers p1 . . . pk over each of the n random formulas,
using a fixed time limit per formula, iii) collect data of interest about each run
(execution time, answer, number of rules fired if available, etc.) and plot it for
comparison. Of course, this experiment is not statistically relevant by itself (be-
cause the input formula used in each data point has been generated randomly).
However, by repeating it a sufficiently large number of times (or, equivalently,
using batches of formulas sufficiently large for each data point) and using a sta-
tistical estimator on the sampled data (e.g., average, median, etc.) statistically
relevant results can be obtained.

One can use this testing methodology for different purposes. For example,
by comparing the response of every prover on a particular formula, we have
discovered inconsistencies which, in turn, allowed us to find and correct imple-
mentation errors in the provers we develop. We have also used this tests to assess
the effectiveness of optimizations; this was done by comparing alternative ver-
sions of the same prover and looking at running times, number of rules fired,
clauses generated, etc. Finally, one can also use this methodology to evaluate the



relative performance of different provers. Of course, given the artificial nature of
the formulas used in the test, one must be careful about the conclusions drawn.

This methodology is conceptually simple, but it presents a clear drawback:
even for tests of a moderate size, if we generate non-trivial formulas and allow
each prover to run for a reasonable amount of time, the total running time on
a single computer can quickly become large. Tests with running times measured
in days (or weeks) become common. This is especially true if some of the provers
involved in the test tend to time out often. If we are interested in using this form
of testing as part of the development process of a prover, rapid availability of
the results is crucial.

Notice though, that because of the nature of the tests (and specially, if we
are more interested in qualitative data, rather than in quantitative data), we are
not obliged to run all the tests serially in the same computer. We can, as well,
obtain statistical relevance by distributing the tests on a computer cluster: each
machine runs the complete tests on batches of smaller size and the data is pulled
together for statistical analysis when all the runs are completed.

Concretely, instead of running a test with batches of size b on a single com-
puter, we could alternatively run n tests on n different computers, each having
to process a batch of size b/n, obtaining a linear reduction on the time required.

Although large computer clusters are not ubiquitous, the recent emergence
of grid computing technologies is giving researchers access to a very large num-
ber of computing resources for bounded periods of time. In this scenario, it is
not unreasonable to assume the simultaneous availability of such a number of
computers.

As we mentioned, even if the grid is composed of heterogeneous machines
(different processors, clock speeds, cache memory sizes, etc.), qualitative result
(i.e., the relative performance of the provers under evaluation) would not be
affected. A computer cluster seems perfectly suited to run this kind of tests.

3 Installing and Using GridTest

The directory structure of a GridTest installation looks like this:

gridtest

bin ........................... binaries (provers, etc.) to be run locally
sbin......................binaries (provers, etc.) to be run on the grid
configuration.................................... test configurations
drivers...............................drivers for the different provers

A more detailed description of what each directory is supposed to contain is
as follows:

bin. Binaries for all the provers, translators and for the formula generator used
in a test to be run on the local machine.

sbin. Binaries involved in a test on a grid. The architecture and/or operating
system on the grid may differ from that on the local machine and therefore it



is better to keep those binaries in a separate directory. Observe that even if
the architecture and operating system matches, there still can be differences
in the particular versions of the libraries installed; therefore it is convenient
to use statically-linked binaries for testing on the grid. The makeEnv.sh

script (see below) takes the binaries from this directory.
configurations. The configuration of the test to run typically resides here.

The installation comes with several examples that can be taken as basis for
new tests.

drivers. This directory contains python driver files for the different provers. The
installation comes with drivers for various theorem provers (e.g., Vampire,
SPASS, E, Bliksem, Racer, FaCT++, HTab, HyLoRes, etc.). A new driver
should be written for each additional prover to be used with the testing
framework.
A driver specifies how the prover should be ran on a particular input file (for
example, which command line parameters the prover takes) and how the
answers from the prover should be understood. Typically the latter involves
parsing the provers output (saved to a file) and collecting relevant data.

Suppose that we have the executables for the provers for hybrid logics Hy-

LoRes [15, 16] and HTab [17] in the directory gridtest/bin. Suitable drivers for
these two provers are already provided in gridtest/drivers as the files htab.py
and hyloresv2 5.py. An example of a possible test configuration using these
two provers is provided in gridtest/configurations as the file template.py

(shown in Figure 1). With all this in place, we can launch a local test simply
with the command:

./testRunner.py configurations/template.py

The result will be the creation of a directory called scratch-BENCHMARK NAME.

RANDOM SUFFIX . The RANDOM SUFFIX is added to avoid file name clashes when
running the same configuration more than once. Before explaining the structure
of this directory, let’s have a look at the template.py file.

The first line in Figure 1 imports the class RandomHCNFTest. A configuration
file is expected to define a function configureTest() that returns a properly
configured instance of this class. Most of the parameters of the test can be set
using the constructor. Many of them will be used by hGen to generate formulas
(e.g., the number and type of atoms that can appear, and their relative frequency;
the kind of modalities that can appear, their maximum nesting and their relative
frequency). The parameters under the “Test structure” label define the general
configuration of the test: the number of formulas per batch, the range of clauses
to generate (together with the step used to increase the number of clauses in
each batch) and the time limit used for each run of a prover on one formula in
the benchmark.

The final lines in the configureTest() function respectively define the out-
put directory name and set the provers to be run. The latter is done by passing
a list of drivers to the setProvers() method. In this example, the list of drivers
is built in the proverConfiguration() function: HTab and HyLoResV2 5 are the



classes of the drivers for each prover and their constructors expect an id for
the prover, the directory where the binary is located (dirStructure.binDir
defaults to the bin directory) and the name of the binary.

As we mentioned, the benchmark will generate a directory called scratch-

Template.RANDOM SUFFIX . The general structure of the resulting directory is as
follows:

scratch-BENCHMARK NAME.RANDOM SUFFIX

tests....................the batches of formulas generated for the test
batch-1

...

batch-n

reposonses...................... the responses of the different provers
prover1

batch-1

...

batch-n

...

proverk

batch-1

...

batch-n

results...........................the report and its intermediate files

In the tests directory we find all the input formulas generated for the test.
These formulas are stored so that the test can be reproduced in the future, by
running the prover on the exact same benchmark. In the responses directory
we find the responses of the different provers (captured by redirecting stdout

to a file) when ran on each input formula. In addition, for each run, we will
find there also the running time obtained using the time command (both for
the prover and for the translation, if a translation is needed). The information
in the responses directory is used to create the report found in the results

directory.

As discussed in Section 2, the report will contain at least a graph correspond-
ing to the satisfiable/unsatisfiable/timeout functions for each of the provers
tested, together with graphs corresponding to real and user median time (show-
ing deviation) for all the provers (an example of these graphs are shown in
Figures 3 and 4). In addition, the report will also show graphs corresponding
to cases of unique responses (i.e., formulas that where solved by only one of the
provers), and it will explicitly list formulas where provers have provided con-
tradictory responses (disregarding timeouts). These formulas are particularly
interesting since they typically witness to implementation errors on some of the
provers. Other graphs can easily be generated (average number of clauses gen-
erated by batch, average number of open/closed branches, etc.), depending on
the statistics collected by each prover driver.



from randomHCNFTest import RandomHCNFTest

from htab import HTab

from hyloresv2_5 import HyLoResV2_5

def configureTest():

test = RandomHCNFTest(testId = ’Template’,

# Number of atoms

numOfProps = 2, freqOfProps = 2,

numOfNoms = 2, freqOfNoms = 2,

numOfSVars = 0, freqOfSVars = 0,

# Number and depth of modalities

numOfRels = 2, maxDepth = 2,

diamDepth = 1, freqOfDiam = 1,

atDepth = 1, freqOfAt = 1,

downDepth = 0, freqOfDown = 0,

invDepth = 0, freqOfInv = 0,

univDepth = 1, freqOfUniv = 1,

diffDepth = 0, freqOfDiff = 0,

# Test structure

batchSize = 5,

fromNumClauses = 10,

toNumClauses = 20,

step = 2,

timeout = 10

)

test.dirStructure.setNewScratchDirFor(test.testId)

test.setProvers(proverConfiguration(test.dirStructure))

return test

def proverConfiguration(dirStructure):

binpath = dirStructure.binDir

htab = HTab (’htab’, binpath, ’htab’)

hylores = HyLoResV2_5(’hylores-2.5’, binpath, ’hylores’)

return [htab, hylores]

Fig. 1. Test configuration template.py



It is also possible to take the resulting directory of a test, parse again the
responses of the provers and regenerate the report. This is useful when updating
the driver of a prover included in the test, or when adding a new kind of plot.
The command is simply:

./testRunner.py scratch-BENCHMARK NAME.RANDOM SUFFIX

One can take the exact same test configuration template.py we discussed
above and run it in a computer cluster based on the batch scheduler OAR. Two
provisions must be taken: i) suitable binaries must be put in the sbin directory,
and ii) the makeEnv.sh script must be ran to create the environment.tar.gz

file which contains the binaries, plus all the required python scripts The actual
command to run the test on a grid is then:

./clusterTestRunner.py configurations/template.py user@host #_of_nodes

Here, user@host identifies the login account on the cluster’s access node and
# of nodes determines the number of computers requested. It is also possible
to indicate in the command line additional requirements, such as the minimum
number of cores on each node, etc. The first thing the clusterTestRunner

program does is to upload the file environment.tar.gz to the grid. Therefore,
if the same test will be performed twice, it is not neccesary to execute the
makeEnv.sh script again. After uploading environment.tar.gz the script will
automatically reserve the required number of nodes in the cluster (with the
specified characteristics) using OAR, and then distribute the tests among them.
Once all the distributed tests are finished, it pulls together the responses and
compiles the report. The result of the test is again returned as a directory:

scratch-BENCHMARK NAME.RANDOM SUFFIX

tests....................the batches of formulas generated for the test
batch-1

...

batch-n

The current version of clusterTestRunner.py does not return the files ob-
tained by redirecting the stdout of the execution of each prover over each test,
to minimize file transfer from the cluster (that is, the responses directory is not
present inside the scratch directory). Only the already compiled statistics are
returned. The report is generated in the scratch directory itself.

As we explained above, when a test is ran in the cluster, the formulas in each
batch are evenly distributed among the requested nodes. Because each run of a
prover on an input formula is independent of the others we can safely distribute
the test on all the requested nodes in the computer cluster, obtaining an effective
linear speed up. That is, a test that takes time t when run locally, will roughly
run in time t/n, for n the number of nodes reserved in the cluster.



4 A Complete Example

To finish this framework description, we present a concrete test, both with a
local run and a run on the grid. The test compares three provers: FaCT++,
HTab and HyLoRes. The test configuration file is shown in Figure 2. Notice that
in order to run FaCT++ on the input provided by hGen we had to implement
a suitable translation (which we called sthl-fact: standard translation from
hybrid logics formulas to FaCT++ input). This translation is not optimized and,
in particular, naively translates the @ operator using a master modality [18].
Hence the concrete times obtained from the test should not be considered a fair
evaluation of the performance of FaCT++.

The graphs in Figure 3 were taken from the report for a run of the test
described above that was performed on a 2.4 GHz Pentium IV computer with
1 Gb of memory running GNU/Linux (kernel 2.6.27). The total running time
was of approximately 22 hours.

The graphs in Figure 4 come from the report for the same test ran on 120
nodes of the Grid’5000 [19]. The nodes were all on the Bordeaux site of the
Grid; this site contained a mix of Opteron 2218, Opteron 248 and Xeon EMT64T
based computers running GNU/Linux. The total running time was in this case
of approximately 22 minutes (including file transfers over the network and job
queueing by the batch manager).

If we compare both figures, we will see small variations on the curves. This
is reasonable since the formulas of each test were not the same (recall that they
were randomly generated from the same parameters) and the provers were run
on different processors. However it is clear that they are qualitatively equivalent.

5 Conclusions

We have presented a framework for testing automated theorem provers. The
methodology is based on random formula generation. An unusual feature of our
framework is that it can be run on large computer clusters, uniformly distributing
the test load among nodes. This way, we achieve a massive decrease in the total
execution time of the tests. However, when testing on heterogeneous clusters the
quantitative results may differ from those obtained on a single machine.

Random formula based testing has proven to be very useful in exposing subtle
bugs and corner cases that would otherwise have gone unnoticed. It is also a
rather inexpensive way of testing new language features for which there are no
real-world examples. These kind of examples, on the other hand, are invaluable
when tuning and benchmarking provers. For example, the system described in [9,
10] can be used to collect real-life ontologies and test DL provers on them. We
believe these kind of systems can also benefit from exploiting Grid computing: by
assigning each example to a unique node the same linear speed-up we obtained
should be expected.



from randomHCNFTest import RandomHCNFTest

from fact import FACT

from translator import Translator

from htab import HTab

from hyloresv2_5 import HyLoResV2_5

def configureTest():

test = RandomHCNFTest(testId = ’dltest-120’,

# Number of atoms

numOfProps = 6, freqOfProps = 2,

numOfNoms = 4, freqOfNoms = 2,

numOfSVars = 0, freqOfSVars = 0,

# Number and depth of modalities

numOfRels = 3, maxDepth = 8,

diamDepth = 4, freqOfDiam = 3,

atDepth = 4, freqOfAt = 2,

downDepth = 0, freqOfDown = 0,

invDepth = 0, freqOfInv = 0,

univDepth = 0, freqOfUniv = 0,

diffDepth = 0, freqOfDiff = 0,

# Test structure

batchSize = 120,

fromNumClauses = 10,

toNumClauses = 111,

step = 5,

timeout = 50,

)

test.dirStructure.setNewScratchDirFor(test.testId)

test.setProvers(proverConfiguration(test.dirStructure))

return test

def proverConfiguration(dirStructure):

binpath = dirStructure.binDir

htab = HTab (’htab’, binpath, ’htab’)

fact = Translator (’sthl-fact’, binpath, ’sthl-fact’,

FACT(’FaCT++’, binpath))

hylores = HyLoResV2_5(’hylores_2.5’, binpath, ’hylores’)

return [htab,fact,hylores]

Fig. 2. Example test configuration
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