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Abstract. Description Logic Programs (DLP) have been described aserige
tion logic (DL) that is in the “expressive intersection” ol.land datalog. This
is a very weak guideline for defining DLP in a way that can benutal to be
optimal or maximal in any sense. Moreover, other DL fragmenich a$ /L and
Horn-SHIQ have also been “expressed” using datalog. Is DLP just onefout
many equal DLs in this “expressive intersection™? This pegtéempts to clar-
ify these issues by characterising DLP with various desigmciples that clearly
distinguish it from other approaches. A consequent apiicaf the introduced
principles leads to the definition of a significantly largariant of DLP which we
conjecture to be maximal in a concrete sense. A prelimingpgnt on the proof
of this maximality is provided. While DLP is used as a conei@ind remarkably
complex) example in this paper, we argue that similar apgres.can be applied
to find canonical definitions for other fragments of logicaidguages.

1 Introduction

Description Logic Programs (DLP) were introduced as a fawofifragments of descrip-
tion logic (DL) that can be expressed in first-order Horni¢dd,2]. Since common rea-
soning tasks are still undecidable for first-order Hornidogs function-free fragment
datalogis of particular interest, and the term “DLP” today is mostrenonly used to
refer to tractable DLs that can be translated to equisdtisfidatalog. This statement is
slightly more concrete than describing DLP as a subset dfetkigressive intersection”
of DL and datalog {], but it is still insuficient to characterise DLP. In particular, it is
well-known that other tractable DLs such&s can also be translated to equisatisfiable
datalog programs3[4]. The union of DLP an&L is an intractable DL (for some dis-
cussion, seed)), but one may still wonder whether DLP is merely one amongpss
equivalent subsets of the “expressive intersection” of bd datalog.

But tractability was not among the original design goals bPPand one might also
weaken this principle to require merely a polytime transfation to datalog. Since rea-
soning in datalog is still 2 Time complete, this would not preclude intractable logics.
Could the union of DLP an& L then be considered as an extended version of DLP?
Possibly yes, since it is contained in the DL Ha$# 7Q for which a satisfiability-
preserving datalog transformation is knovsj. [However,EL and DLP can be trans-
lated to datalog axiom-by-axiom, i.e. inmodularfashion, while the known datalog
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transformation for HornSH 7Q needs to consider the whole knowledge base. But how
can we be sure that there is no simpler transformation givantioth data-complexity
and combined complexity of datalog and Ha¥H 7Q agree? The answer is given in
Propositionl below.

In any case, it is obvious that the design principles for DUBut-also for6L and
Horn-SHIQ — are not sfficiently well articulated to clarify the distinction betwee
these formalisms. This paper thus gives explicit charesztton of DLP (SectiorB),
not in terms of concrete syntax but in terms of general dgsigntiples, which captures
the specifics of the known DLP for datalog. An essential ppileds structurality of the
language: a formula should be in DLP based on its term streiatot based on concrete
entity names that it uses. Moreover, we ask whether DLP doeitiefined as a larger, or
even as théargest DL language satisfying the design principles. A signifibalarger
variant of DLP is introduced in Sectigh This paper does not give a conclusive answer
on whether or not this extended DLP is the largest possibiewle conjecture this to
be true, and we sketch the proof currently under constmé¢gectiorb). We conclude
with an outlook on further application areas for the presérapproach (Sectio8).
Proofs and other details omitted herein for lack of spacebeaiound in B].

2 Preliminaries

We useSROIQ™® to denote the DLSROZQ without simplicity and regularity con-
straints. Knowledge bases are defined over finite sets ofithdil named, concept
namesA, and role nameR, and. = (I, A, R) then is asignature For this paper, we
assume that the universal raleis no special symbol (it can still be introduced by suit-
able axiomatisation), and we writ#R A andvR.Aas>1 R Aand<OR.-A, respectively.

We write NNF(KB) for the negation normal form (NNF) of a knowledge base,KB
defined as usual. BYNF(KB) we denote the disjunctive normal form, which is obtaine
by exhaustively replacing subconcepts of the fo@w (D) rn E with (Cr1 E) LI (D n E).
Note that we do not distribute Boolean concept construeioes role restrictions, i.e.
our DNF may still contain complex nested concepts.

SROIQ"™® knowledge bases KB (and their signatures) can be expresssgan-
tically equivalent theories of first-order logic with eqitlFOL - (with according sig-
nature). When usingROIQ in the context ofFOL -, we will always assume some
(arbitrary) such translation to be used. We consiti#alogto be the Horn-fragment of
FOL - without function symbols; sed] for further details.

Let F be aFOL - formula, or aSROTQ™® axiom or concept expression, and let
. be a signature. An expressiéii is arenamingof F in . if F’ can be obtained
from F by replacing each occurrence of a rolenceptindividual name with some
role/conceptindividual name ins”. Multiple occurrences of the same entity name in
F neednot be replaced by the same entity namedfin this process. A languade
over a signature” is a subset of alSRO7Q™® concept expressions and axioms over
.. Infinite signatures are not admissible when studying cdatfmnal complexities,
so we need notation to extend the signature of a DL languadenguage schemis
a classL of languages such that (1) for every signatifethere is a languagé(.¥)



over.¥ in L, and, (2) for any two signatureg” and.”’, and every concept expres-
sion or axiomC from £L(.¥), we find thatL(.#") contains every concept expression or
axiomC’ obtained fromC by (uniformly and one-to-one) replacing all occurrences of
individual, concept and role names fra#i into such from”. We say that contains

an axiom of concept expressi@nif there is a signature” such thalC € £(.¥). The
notation is extended to knowledge bases KB: we writedB to express KBe 2-.

We need a notion of semantic correspondence between ldgaadies of DL and
datalog. Semantic equivalence is too strong — it does nowathe use of auxiliary
symbols for expressing a logical relationship — while eatigsiability is too weak —
it allows complex semantic translations that are not tiaetarhe following is a more
appropriate middle-ground:

Definition 1. Let T and T be two first-order logic theories and let’ be the signature
over which T is defined. We say thdtdmulatesT if for everyFOL - formula¢ over
<, T U {y} is satisfiable if and only if TU {¢} is.

This notion can be generalised by constraining the set sf fegmulae”y. Emula-
tion is loosely related to conservative extensiofisgvery conservative extension of
emulatesT. However, for a conservative extensiohof T we haveT C T’, while we
want the logical (sub)languagesbfandT’ to be diferent.

3 Considerations for Defining DLP

In this section, we discuss why defining DLP is not straightfard, and we specify
design principles to guide our subsequent definition. Thed goa notion of DLP that
is characterised by these principles, as opposed to DLRjIseimead hocfragment of

DL that just happens to be expressible in datalog. The firsigdeprinciple fixes our
choice of syntax and underlying DL:

DLP 1 (DL Syntax) DLP knowledge bases should 8&07Q"® knowledge bases.

The second principle states that the semantics of a DLP laugyel base can be
expressed in datalog. Since we want to allow the datalogfibamation to introduce
auxiliary predicate symbols, we requieenulation(Definition 1) instead of semantic
equivalence:

DLP 2 (Semantic Correspondence)There should be a transformation functitztalog
that maps a DLP knowledge base KB to a datalog progdatalog(KB) such that
datalog(KB) emulates KB.

DLP 2 is a strong requirement with many useful consequenioeg & implies
that the entailment of anffOL - formula over the signature of KB can be checked
in datalog(KB). Note that this is a stronger requirement than presemaf assertional
consequences.

The principles DLP 1 and DLP 2 do not yet providdfatient details to attempt
a definition of DLP. A naive approach could be to define a DL gy to belong
to DLP if it can be expressed by a semantically equivalerdldgtprogram. Such a
definition is of little practical use: every inconsistentaogy can trivially be expressed



in datalog, so a DL reasoner is needed to decide whether arkraiwledge base should
be considered to be in DLP. This is undesirable from a pralctiewpoint. It is thus
preferable that a definition can be checked without compexastic computations:

DLP 3 (Tractability) Containment of a knowledge base KB in a DLP language over
some signature” should be decidable in polynomial time with respect to the sif
KB and.”.

Syntactic language definitions are often subpolynomigl,i€they can be decided
in logarithmic space, but polytime language definitions mhigfill be acceptable. For
example, simplicity constraints iISROZ Q require polytime checks.

The downside of a syntactic approach is that semanticallyvatpnt transforma-
tions on a knowledge base may change its status with respéaitP. This is not a
new problem —many DLs are not syntactically closed undeesgimequivalence — but
it imposes an additional burden on ontology engineers ampdeimenters. To alleviate
this problem, a reasonable further design principle is tuire closure under at least
some forms of equivalence preserving transformationd) asamegation normal form
and disjunctive normal form as defined earlier:

DLP 4 (Closure Under NNF and DNF) A knowledge base KB should be in DLF i
its negation normal formINF(KB) and its disjunctive normal forrdNF(KB) are.

Closure under NNF will turn out to be mostly harmless, whiesare under DNF
imposes some real restrictions to our subsequent treatkiverstill include it here since
it allows us to generally present DL concepts as disjunstisach that the relationship
to datalog rules (disjunctions of literals) is more direct.

The above principles still allow DLP to be defined in such a et some DLP
knowledge base subsumes another knowledge base that is DbPi This behaviour
is undesirable since it requires implementations and kedgé engineers to consider
all axioms of a knowledge base to check if it is in DLP, whichtivetes the following
principle:

DLP 5 (Modularity) Consider two knowledge bases KBnd KB,. Then KB, UKB,
should be in DLP if and only if both KBand KB, are. Moreover, in this case the
datalog transformation should Hetalog(KB; U KB>) = datalog(KB1) U datalog(KB3).

Modularity changes our goal from defining DIkiRowledge base® defining DLP
axioms Note thatSROIQ with global constraints (regularity, simplicity) does rsait-
isfy DLP 5 (to see this, set KB= {Tra(R)} and KB, = {T T >1R.T}) which is why
we considerSROZQ™® instead. The above principles alreadyfime to establish an
interesting complexity result:

Proposition 1. Consider a class K of knowledge bases that belong to a laregsaiis-
fying DLP 1 to DLP 5, and such that the maximal size of axioni§€ ismbounded. Then
deciding satisfiability of knowledge bases in K is possiblgalynomial time.

Proof. By DLP 2, satisfiability of KBe K can be decided by checking satisfiability of
datalog(KB). Assume that the size of axioms in knowledge basésimat mosn. Up to
renaming of symbols, there is only a finite number dfetient axioms of siza. We can



assume without loss of generality that the transformadaalog produces structurally
similar datalog for structurally similar axioms, so thaété are only a finite number
of structurally diferent datalog theoriefatalog({e}) that can be obtained from axioms
a in K. The maximal number of variables occurring within thesealbaf programs is
bounded by somen. By DLP 5, the same holds for all programdatalog(KB) with

KB e K. Satisfiability of datalog with at mosh variables per rule can be decided in
time polynomial in 2" [8]. Sincem is a constant, this yields a polynomial time upper
bound for deciding satisfiability of knowledge base«in O

The previous result states that reasoning in any DLP largisdglmost” tractable.
Many DLs allow complex axioms to be decomposed into a numbsinagpler normal
forms of bounded size, and in any such case tractabilitytisiogd, but we will see that
not all DLP axioms can be decomposed in DLP. Yet, Propositishows why Horn-
SHIQ cannot be in DLP: EpTiMe worst-case complexity of reasoning can be proven
for a clasK of Horn-SH 7Q knowledge bases as in the above proposition, 8e [

None of the above principles actually require DLP to contaig knowledge base
at all. An obvious approach thus is to define DLP to be the Erigaguage that adheres
to all of the chosen design principles. The question to agkigpoint is whether this is
actually possible: is there a definition of DLP that adheoethé above principles and
that includes as many DL axioms as possible? The answer samding no:

Proposition 2. Consider a languagé p p that adheres to the principles DLP 1 to
DLP 5. There is a languagkp, , that adheres to DLP 1 to DLP 5 while covering
more knowledge bases, ilep p C L p.

This shows that any attempt to arrive at a maximal definitibDloP based on the
above design principles must fail. Any definition still réeps further choices that, lack-
ing concrete guidelines, are necessarily somewhat ampitf¢hile it is certainly useful
to capture some general requirements in explicit prinsipbeir approach of defining
DLP would not improve over existingd hocapproaches.

The proof of Propositior? exploits complexity dferences between datalog and
DL. Intuitively speaking, a definition of DLP cannot reacle tthesired maximum since
the computations required in this case would no longer bgnaohial. DLP 5 does
ameliorate the situation slightly by restricting attentio axioms, but DLs can encode
complex semantic relationships even within single axiorh& core of Propositiof in
this sense is that there is no polytime procedure for degidimether a8SROZQ axiom
can be expressed in datalog.

These considerations highlight a strategy for further trairsing DLP to obtain a
clearly defined canonical definition. Namely, it is necegdaravoid the complicated
semantic &ects that may arise when considering even single DL axiomsnAiitive
reason for the high complexity of evaluating single axiomghiat parts of an axiom,
even if structurally separated, may semanticaffge each other. An important obser-
vation is that the semantic interplay of parts of an axiomallguequires entity names
to be reused. For example,C A —-A is unsatisfiable since the concepts used in
both conjuncts, while the structurally similar formutac A n =B is satisfiable. So,
to prevent such semanticfects from &ecting DLP, we can require DLP to be closed
under the exchange of entities:



DLP 6 (Structurality) Consider knowledge bases KB and K&ich that KB is an
arbitrary renaming KB. Then KB is in DLRTIKB’ is.

Note that renamings need not be uniformAso =B can be obtained fromAn -A.
This is a very strong requirement since it forces DLP to bebdas the syntactic struc-
ture of axioms rather than on the semanti®ets that occur for one particular axiom
only. Together with modularity (DLP 5), this principle capts the essential fiérence
between a “syntactic” and a “semantic” transformation fidinto datalog. Adhering
to DLP 5 and DLP 6, DLP can only include axioms for which all gratial semantic
effects can be faithfully captured by datalog. Semantic coatfmurts for checking satis-
fiability must be accomplished in datalog, and not duringttaeslation. This intuition
turns out to be quite accurate, but more is needed to edidblimal results.

Structurality also interacts with normal form transforioas. For example, the con-
cept GAL -B) 1 C can be emulated in datalog using rutesC(x) andA(X), AB(X) —.
But its DNF AN C) b (=B C) is only in DLP if its renaming{tAn C) U (=B D)
is, which turns out to be not the case. Therefore, the knayddzhse-A LI =B, C}
is in DLP but the knowledge bagé-A L1 —B) r1 C} is not. We have discussed above
why such éfects are not avoidable in general. The more transformatiomsllowed
for DLP, the less knowledge bases are contained in DLP. Natiestich &ects do not
occur for negation normal forms.

4 Defining DLP

We now provide a direct definition of DLP and show that the lt@syilanguage can be
emulated in datalog. We call a language schef@DLP language scheniéit adheres
to the principles DLP 1-DLP 6 of Sectiéh A DLP languageés a language of the form
L(.7) for a signature?” and DLP language schenag Without loss of generality, it is
assumed thatatalog(KB) is independent of the DLP language that KB is taken from.

It turns out that the above characterisation leads to a pitdrely complex syntactic
description of the language. Our first goal in this secti@refore is to identify ways of
simplifying its presentation. Note that it is not desiratdesimply eliminate “syntactic
sugar” in general, since the very goal of this work is to chadse whichSROIQ
knowledge bases can be considered as syntactic sugar &oglat

Restricting to axioms in negation normal form seems to frie&am the burden of
explicitly considering negative occurrences of non-amoancepts. But NNF does not
allow for this simplification, since concepts of the fokm R D still containD in nega-
tive polarity. A modified NNF is more adequate. We thus saya8RO7 Q™ concept
expressiorC is in positive negation normal forr(pNNF) if (1) all its subexpressions
<n RD have the formrkn R-D’, and (2) every other occurrence-6fin C is part of a
subconceptA or ={a} with A € A, a € |. Concept expressiors can be transformed
into semantically equivalent concept expressigisF(C) in positive negation normal
form in linear time.

While pNNF effectively reduces the size of a DLP definition by half, the deéinis
still exceedingly complex. The construction of disjunetivormal forms is compatible
with pNNF, so we can additionally require this form of normalisatiénother source
of complexity is the fact thaBROZQ features many concept expressions for which



Body concepts: fo€ in normal form,C € Dg if CLIA (or=C C A) is in DLP
Cg z=-A | ={l} | -IR.Self | <OR.~(Dg U {L1}) | Cg M Cg
Dg := Cg | Dg U Dg
Head concepts: fd€ in normal form,C € Dy iff AC Cisin DLP
Ch :==Cg|A|{l}|dR.Self| >nR.Dyy | <OR.-Dy | <1R.=(Dg U {L}) | C4 M Cyx | Dy
Dy :==Cx |DyuDg|DyuCs
Assertional concepts: f& in normal form,C € D, iff {a} C Cisin DLP
Cai=Cq |2nR.D>" | CanCy
Dg = C,| DauDg
Disjunctions of nominal assertions of the fofthr C,
Dy s={1}n1Cy
D1 5= Dy U Dy,
Conjunction of negated nominals, i.e. complements of soomeimal disjunction
C.=~{l}|C.Cs
Filler concepts foen in D,
D*" :=T|CouDf |DguU(DcnnDE) (Mm<n) |
Dau(Dcnn D) Dy (forr :=n—(m+1) we haver > 0 andr(r — 1) > m)
where no disjuncts are added f2r, N D} andDy,
Extended concepts with restricted forms of (“local”) disjtions, used iD>" only
C{, :== Cy | 2nR.D}, | <OR.-D}, | <nR.=(Ds,-m N D) | Cf, M C, | DY,
D}, == C, | Dj;uDg| Df LC,
Ci:=C}I>nR.(Diu{T)IC;NnC;
D; == C} | D; uDf
D7, ={I}nC}
Dhq = Dy 1Dy

D (Ds.-n) cONcepts contain (exclude) at mostomain elements, seé][

Fig. 1. Grammars for defining DLP concepts

all possible renamings are necessarily equivalent tw L. Examples includer LI C,
>0R.C, but also<3R{a} L {b}.

Many unexpected DLP axioms are based on the observatioadhst DL concepts
do not allow for arbitrary interpretations. This is espégitne case for concepts that use
nominals, but even DLs without nominals admit such consé@iconcept expressions.
An important special case are concepts that can only represar L in any renaming.
We say that @8ROIQ concept expressiad is structurally valid(structurally unsatis-
fiable) if T £ C’ (C’ C 1) is valid for every renaming (over arbitrary alphabets$)of
C. Moreover is structurally refutablgstructurally satisfiableif it is not structurally
valid (structurally unsatisfiable). It can be shown thatsbts of allSROZQ concept ex-
pressions irpNNF that are structurally valid, unsatisfiable, refutable,atisfiable can
be recognised in polynomial time (se®)[ Thus we can also eliminate such concepts
from our considerations.



Definition 2. A concept expression C is DLP normal formif C = DNF(pNNF(C))
and

— if C has a structurally valid subconcept D, then® T and either C= D or D
occurs in a subconcept of the foram RD,

— if C has a structurally unsatisfiable subconcept D, thes-0. and either C= D
or D occurs in a subconcept of the foram R-D.

A SROIQ concept expression can be transformed into an equivalgession in
DLP normal form in polynomial time. The following definitisrof DLP thus restrict to
concepts in DLP normal form. Commutativity and associgtief m andL are exploited
for further simplification.

Before providing the full definition of a large DLP languag#heme, we provide
some interesting examples to sketch the complexities sfeéhdeavour (datalog emu-
lations are provided in parentheses). DLP expressionseofatm A dRB C VS.C
(A(X) AR(X, y) AB(Y) AS(X, 2) — C(2)) are well-known. The same is true fArc AR .{c}
(A(X) = R(x,c)) but hardly forA £ >2R.({c} L {d}) (A(X) = R(x,c), A(X) = R(x,d)).
Another unusual form of DLP axioms arises when Skolem caonsténot functions)
can be used as in the cag C >2RA (R(c, 9), R(c, §), A(9), A(S), s~ § — L with
freshs, §') andA C AR.({c}13S.T) (A(X) — R(x, ), S(c, s) with freshs). Besides these
simple cases, there are various DLP axioms for which the &toulin datalog is signif-
icantly more complicated, typically requiring an exponairtumber of rules. Examples
are{c} C >2R.(-{aju AuB) and{c} C >5R (Au{a} u ({b} 1 <1S.({c} u{d}))). These
cases are based on the complex semantic interactions betweanals and atleast-
restrictions.

Definition 3. We define the language sche@&# as follows. For a signature”, the
languageD LP(.#) contains all axioms which al8ROIQ™® RBox axioms oves”, or
GCls CcC D over.¥ wherepNNF(-CLID) is aCp_p concept as defined in the following
grammars, withCy as defined in Figl, andD=" andC..+ as defined in Fig2:

Cop =T |L|Cy|D™"|Cyur

In spite of the immense simplifications that DLP normal formpdes, the def-
inition of DLP still turns out to be extremely complex. We have not succeede
simplifying the presentation any further without loosindpstantial expressive features.
Some intuitive explanations help to understand the ungerligeas. It is instructive to
also compare these intuitions to the above examples.

The core language elements are in HigSince all concepts are in DNF, each sub-
language consists of a conjunctive pa@rand a disjunctive paid. Definitions of DLP
typically distinguish between “head” and “body” concesdCy andCg play a sim-
ilar role in our definition.Cy represents concepts that carry the full power of a DLP
GCI and that can serve as right hand sides (“heads”) of DLPsGTH concepts can
be seen as negated generic left hand sides (“bodies”) of .Giwever, these basic
classes are not fiicient for defining a maximal DLRC, characterises concept expres-
sions which can be asserted for named individuals — thesyaremore expressive than
Cy in that existential restrictions are allowed (intuitivelyis is possible as in the con-
text of known individuals the existentially asserted radéghbours can be expressed by



Additional concepts based on global domain size restnistio
D=tu={1}nC

D=1 z= D=y ({1} m CT™Y)

Additional head and body concept expressions for unary dw{gropositional” case)
Ch=Ci'|-A|-JR.Self | CCE | <OR.~(DfU{L1})|<nR.=C (n > 1)
Df == D | Df LD}

C == CR A |{l}|IR.Self| C}, N C}, | >1R.Df, | <OR.-D},

Df, == Cf, | D}, uD§
Additional structurally unsatisfiable concepts for donsairfi restricted size

Clluz=-{l}|C*nC|>nR.DI(n>0)|>nR.D(n>2)
Ci™l:=Ci™InC|>nR.D;™'(n>0)|>nR.D(n>m+2)

DIM:=CI™|DMu D"
Concepts that can never hold for all individuals

Curi=~{l}1CirnC
D: concepts in DLP normal form that are not structurally validunsatisfiable
C: concepts oD that are no disjunctions

Fig. 2. Grammars for defining DLP concepts: special cases withicestirdomain size

Skolem constantspPy concepts then can be viewed as collections of individuarass
tions (e.g{a} N B). Another way of stating such assertions is to Gsdn a disjunction
(e.g.—~{a}u B).

By far the most complex semantic interactions occur foatigestrictions in ABox
assertionsD>" and all subsequent definitions address this single casexganple, the
DLP axiom{a} C >2R.(-{b} U AL B) can be emulated by the following set of datalog
rules, wheres; are auxiliary constants:

R@cy), R@cy), b~c — Ab), b=xc,— Bb).

This emulation uses internal symbols to resolve apparaigiyinctive cases in a
deterministic way. The datalog program does not represspindtive information: its
least model simply contains two successors that are not embaThe nested disjunc-
tion only becomes relevant in the context of some disjurdEi®@L - formula, such as
¥X.X =~ aV X ~ b. The considered theory is no longer datalog in this casettangro-
gram simply “re-uses” the disjunctive expressive powevjated by the external theory.
The fact that the actual program is far from being semanyiegjuivalent to the original
axiom illustrates the motive and utility of our definition@fulation.

Many uses of nominals and atleast-restrictions lead to rooneplex interactions,
some of which require completelyftérent encodings. This is withessed by the more
complex arithmetic side condition used". Concepts irD.m N D} correspond to
disjunctions ofm nominal classes, each of which is required to satisfy furtigunc-
tive conditions, as e.db} m >1R.(Au B). Now a disjunction of an atomic class and
four such “disjunctive nominals” is allowed as a filler fo¥ (since 3x 2 > 4) but not
for >6 (since 2x 1 < 4). Also note that the disjunctive concepts liR andDj that
are allowed in fillers do not allow all types of disjunctivéanmation but only a finite



amount of “local” disjunctions. For exampl@} L B U C requires one “local” decision
abouta, whereas concepts like} M <OR.—(BL C) or {a} 1 <2 R.—.L require arbitrarily
many decisions for alR successors.

The remaining grammars in Fig.take care of less interesting special cases. Most
importantly,C,’f| covers all concepts that can be emulated if the interpogtabmain is
restricted to contain just one individu&l..+ contains axioms which make the knowl-
edge base inconsistent as they deny the existence of a Homina

Further details about the datalog transformatio®df® are provided in].

5 Maximality of DLP

We conjecture that the DIDL# of Definition 3 is the largest DLP language scheme.
Proving this is not straightforward, since it requires ugtsure that no further kind
of axioms could admit a datalog emulation. The definitionZaf® is also a result
of (sometimes surprising) failures in trying to prove thésult. The earlier example
emulations already hint at the complexity of the problene §lneral proof technique is
sketched in the following, and further updates on the staitttee maximality conjecture
are given in the technical repo][ Structurality (DLP 6) is essential throughout the
proof since it enables us to pick suitable renamings for @aghment.

A useful observation is that any DLP language scheme canteadead to include
all axioms of DLP, since it can be shown that the union of any two DLP language
schemes is still a DLP language scheme. Equipped with the tmedbox of DLP ax-
ioms, it can then be shown that certain basic types of axi@ansever be in DLP since
their emulation would contradict basic properties of dajalExamples of two basic
such properties are the least model property and the coitypfesult of Propositiori.
The former entails that, for any datalog progr&pif P has a model where the exten-
sion of predicaté\ is empty, and another model where the extension of predi&e
empty, thenP has a model where both extensions are empty. This preclutakd
from emulating statements likke LI B. Complexity properties can also be exploited:

Lemma 1. No DLP language scheme contains axioms of the fommaR.T.

Proof. For a contradiction, suppose that there is a DLP languagensethat includes
axioms of the formA C AR T. We can assume that &l L axioms are also available.
The hardness proof given for Hot£™ in [9] can be adopted to show that deciding
satisfiability for this DLP language is P&t hard, even if axiom sizes are bounded.
Since P# PSack, this contradicts Propositich O

Both of these simple arguments do not extend to more genasaisc More po-
tent approaches are provided by model-theoretic propetiiat generalise the least
model property to first-order interpretations: theduct modelnd product element
construction, seef] for details. Applying these approaches to all cases regquir
careful induction for various language definitions?f#. Individual proof steps can
be intricate in some cases, e.g. to see why no datalog progaanemulatga} =
>2R. (AU ({b} m >1S.(C u D)) while it could emulatda} C >2R.(A LU {b} L {c}) and
{a} C >3R (AU ({b}m =1S.(Cu D)).



6 Conclusions and Outlook

DLP provides an interesting example for the general probdércharacterising syn-
tactic fragments of a logic that are motivated by semantiperties. We derived and
motivated a number of design principles for achieving sucharacterisation for DLP,
most notably the principles ahodularity (closure under unions of knowledge bases)
andstructurality (closure under non-uniform renaming of signature symbuo\&) con-
jecture that the presented DLP language scheme is thelamgpossible. Experiences
with the ongoing proof of maximality confirm the utility ofrsicturality in such proofs.
Formalisms like our maximal DLP are unnecessarily largepi@ctical applications,
but understanding overall options and underlying desigmcples is indispensable for
making an informed choice of DL for a concrete task.

Our results also clarify the flerences between DLP and the DE£ and Horn-
SHIQ which can be expressed in datalog as well. First of all, eei# nor Horn-
SHIQ can be emulated in datalog (DLP 2). Inste&d; and HornSH7Q satisfy
a weaker version of DLP 2 where Definitidnis restricted to test formulag that
are conjunctions of simple ABox facts. This weakening of D2 Bllows for a larger
space of possible DL fragments, but it is not clear whetheitély many) maximal
languages exist in this case. There is clearly no largest Buinguage, since bothL
andDLP abide by the weakened principles whereas their (intragjalslion does not.
The weakened principles still exclude HaBY{7Q that is not modular (DLP 5), as
shown by Propositiod. It is possible to define Hor$+ 7Q as a structural language
(DLP 6) by using distinct signature sets for simple and niompge roles. Again, it is
open which results can be established for HStH=Z Q-like DLs based on the remaining
weakened principles.

This work also explicitly introduces a notion of semargioulationwhich appears
to be novel, though loosely related to conservative exterssiln essence, it requires
that a theory can take the place of another theory in all Elgiontexts, based on a
given syntactic interface. Examples given in this paperstilate that emulation can
be very diferent from semantic equivalence. Yet, our criteria can lgeed to define
minimal requirements for preserving a theory’s semantiesién combination with ad-
ditional information, so emulation appears to be a natwallfor enabling information
exchange in distributed knowledge systems. We expectlieattplicit articulation of
this notion will be useful for studying the semantic interpbf heterogeneous logical
formalisms in general.

The general approach of this paper — seeking a structuraldbfyjagment that is
provably maximal under certain conditions — leads to a nundbdurther research
questions. For example, what is the maximal fragment of SWR&atalogu SROZI Q")
that can be expressed 8ROZQ? It should contain DL Ruleslp] and some form of
DL-safe rules 11]. But also the maximaFOL - fragment that can be expressed in the
guarded fragment or the two-variable fragment might be ofegal interest. Ultimate
answers to such questions may indeed be obtained by a carétullation of basic
design principles.
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