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Abstract. Description Logic Programs (DLP) have been described as a descrip-
tion logic (DL) that is in the “expressive intersection” of DL and datalog. This
is a very weak guideline for defining DLP in a way that can be claimed to be
optimal or maximal in any sense. Moreover, other DL fragments such asEL and
Horn-SHIQ have also been “expressed” using datalog. Is DLP just one outof
many equal DLs in this “expressive intersection”? This paper attempts to clar-
ify these issues by characterising DLP with various design principles that clearly
distinguish it from other approaches. A consequent application of the introduced
principles leads to the definition of a significantly larger variant of DLP which we
conjecture to be maximal in a concrete sense. A preliminary report on the proof
of this maximality is provided. While DLP is used as a concrete (and remarkably
complex) example in this paper, we argue that similar approaches can be applied
to find canonical definitions for other fragments of logical languages.

1 Introduction

Description Logic Programs (DLP) were introduced as a family of fragments of descrip-
tion logic (DL) that can be expressed in first-order Horn-logic [1,2]. Since common rea-
soning tasks are still undecidable for first-order Horn-logic, its function-free fragment
datalogis of particular interest, and the term “DLP” today is most commonly used to
refer to tractable DLs that can be translated to equisatisfiable datalog. This statement is
slightly more concrete than describing DLP as a subset of the“expressive intersection”
of DL and datalog [1], but it is still insufficient to characterise DLP. In particular, it is
well-known that other tractable DLs such asEL can also be translated to equisatisfiable
datalog programs [3,4]. The union of DLP andEL is an intractable DL (for some dis-
cussion, see [3]), but one may still wonder whether DLP is merely one among several
equivalent subsets of the “expressive intersection” of DL and datalog.

But tractability was not among the original design goals of DLP, and one might also
weaken this principle to require merely a polytime transformation to datalog. Since rea-
soning in datalog is still ET complete, this would not preclude intractable logics.
Could the union of DLP andEL then be considered as an extended version of DLP?
Possibly yes, since it is contained in the DL Horn-SHIQ for which a satisfiability-
preserving datalog transformation is known [5]. However,EL and DLP can be trans-
lated to datalog axiom-by-axiom, i.e. in amodular fashion, while the known datalog
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transformation for Horn-SHIQ needs to consider the whole knowledge base. But how
can we be sure that there is no simpler transformation given that both data-complexity
and combined complexity of datalog and Horn-SHIQ agree? The answer is given in
Proposition1 below.

In any case, it is obvious that the design principles for DLP –but also forEL and
Horn-SHIQ – are not sufficiently well articulated to clarify the distinction between
these formalisms. This paper thus gives explicit characterisation of DLP (Section3),
not in terms of concrete syntax but in terms of general designprinciples, which captures
the specifics of the known DLP for datalog. An essential principle isstructuralityof the
language: a formula should be in DLP based on its term structure, not based on concrete
entity names that it uses. Moreover, we ask whether DLP couldbe defined as a larger, or
even as thelargest, DL language satisfying the design principles. A significantly larger
variant of DLP is introduced in Section4. This paper does not give a conclusive answer
on whether or not this extended DLP is the largest possible, but we conjecture this to
be true, and we sketch the proof currently under construction (Section5). We conclude
with an outlook on further application areas for the presented approach (Section6).
Proofs and other details omitted herein for lack of space canbe found in [6].

2 Preliminaries

We useSROIQfree to denote the DLSROIQ without simplicity and regularity con-
straints. Knowledge bases are defined over finite sets of individual namesI , concept
namesA, and role namesR, andS = 〈I ,A,R〉 then is asignature. For this paper, we
assume that the universal roleU is no special symbol (it can still be introduced by suit-
able axiomatisation), and we write∃R.A and∀R.A as>1R.A and60R.¬A, respectively.

We writeNNF(KB) for the negation normal form (NNF) of a knowledge base KB,
defined as usual. ByDNF(KB) we denote the disjunctive normal form, which is obtained
by exhaustively replacing subconcepts of the form (C⊔D)⊓ E with (C⊓ E)⊔ (D⊓ E).
Note that we do not distribute Boolean concept constructorsover role restrictions, i.e.
our DNF may still contain complex nested concepts.
SROIQfree knowledge bases KB (and their signatures) can be expressed as seman-

tically equivalent theories of first-order logic with equality FOL= (with according sig-
nature). When usingSROIQ in the context ofFOL=, we will always assume some
(arbitrary) such translation to be used. We considerdatalogto be the Horn-fragment of
FOL= without function symbols; see [6] for further details.

Let F be aFOL= formula, or aSROIQfree axiom or concept expression, and let
S be a signature. An expressionF′ is a renamingof F in S if F′ can be obtained
from F by replacing each occurrence of a role/concept/individual name with some
role/concept/individual name inS . Multiple occurrences of the same entity name in
F neednot be replaced by the same entity name ofS in this process. A languageL
over a signatureS is a subset of allSROIQfree concept expressions and axioms over
S . Infinite signatures are not admissible when studying computational complexities,
so we need notation to extend the signature of a DL language: Alanguage schemeis
a classL of languages such that (1) for every signatureS , there is a languageL(S )



overS in L, and, (2) for any two signaturesS andS ′, and every concept expres-
sion or axiomC fromL(S ), we find thatL(S ′) contains every concept expression or
axiomC′ obtained fromC by (uniformly and one-to-one) replacing all occurrences of
individual, concept and role names fromS into such fromS ′. We say thatL contains
an axiom of concept expressionC if there is a signatureS such thatC ∈ L(S ). The
notation is extended to knowledge bases KB: we write KB∈ L to express KB∈ 2L .

We need a notion of semantic correspondence between logicaltheories of DL and
datalog. Semantic equivalence is too strong – it does not allow the use of auxiliary
symbols for expressing a logical relationship – while equisatisfiability is too weak –
it allows complex semantic translations that are not tractable. The following is a more
appropriate middle-ground:

Definition 1. Let T and T′ be two first-order logic theories and letS be the signature
over which T is defined. We say that T′ emulatesT if for everyFOL= formulaϕ over
S , T′ ∪ {ϕ} is satisfiable if and only if T∪ {ϕ} is.

This notion can be generalised by constraining the set of “test formulae”ϕ. Emula-
tion is loosely related to conservative extensions [7]: every conservative extension ofT
emulatesT. However, for a conservative extensionT′ of T we haveT ⊆ T′, while we
want the logical (sub)languages ofT andT′ to be different.

3 Considerations for Defining DLP

In this section, we discuss why defining DLP is not straightforward, and we specify
design principles to guide our subsequent definition. The goal is a notion of DLP that
is characterised by these principles, as opposed to DLP being somead hocfragment of
DL that just happens to be expressible in datalog. The first design principle fixes our
choice of syntax and underlying DL:

DLP 1 (DL Syntax) DLP knowledge bases should beSROIQfree knowledge bases.

The second principle states that the semantics of a DLP knowledge base can be
expressed in datalog. Since we want to allow the datalog transformation to introduce
auxiliary predicate symbols, we requireemulation(Definition 1) instead of semantic
equivalence:

DLP 2 (Semantic Correspondence)There should be a transformation functiondatalog
that maps a DLP knowledge base KB to a datalog programdatalog(KB) such that
datalog(KB) emulates KB.

DLP 2 is a strong requirement with many useful consequences since it implies
that the entailment of anyFOL= formula over the signature of KB can be checked
in datalog(KB). Note that this is a stronger requirement than preservation of assertional
consequences.

The principles DLP 1 and DLP 2 do not yet provide sufficient details to attempt
a definition of DLP. A naive approach could be to define a DL ontology to belong
to DLP if it can be expressed by a semantically equivalent datalog program. Such a
definition is of little practical use: every inconsistent ontology can trivially be expressed



in datalog, so a DL reasoner is needed to decide whether or nota knowledge base should
be considered to be in DLP. This is undesirable from a practical viewpoint. It is thus
preferable that a definition can be checked without complex semantic computations:

DLP 3 (Tractability) Containment of a knowledge base KB in a DLP language over
some signatureS should be decidable in polynomial time with respect to the size of
KB andS .

Syntactic language definitions are often subpolynomial, e.g. if they can be decided
in logarithmic space, but polytime language definitions might still be acceptable. For
example, simplicity constraints inSROIQ require polytime checks.

The downside of a syntactic approach is that semantically equivalent transforma-
tions on a knowledge base may change its status with respect to DLP. This is not a
new problem – many DLs are not syntactically closed under semantic equivalence – but
it imposes an additional burden on ontology engineers and implementers. To alleviate
this problem, a reasonable further design principle is to require closure under at least
some forms of equivalence preserving transformations, such as negation normal form
and disjunctive normal form as defined earlier:

DLP 4 (Closure Under NNF and DNF) A knowledge base KB should be in DLP iff
its negation normal formNNF(KB) and its disjunctive normal formDNF(KB) are.

Closure under NNF will turn out to be mostly harmless, while closure under DNF
imposes some real restrictions to our subsequent treatment. We still include it here since
it allows us to generally present DL concepts as disjunctions, such that the relationship
to datalog rules (disjunctions of literals) is more direct.

The above principles still allow DLP to be defined in such a waythat some DLP
knowledge base subsumes another knowledge base that is not in DLP. This behaviour
is undesirable since it requires implementations and knowledge engineers to consider
all axioms of a knowledge base to check if it is in DLP, which motivates the following
principle:

DLP 5 (Modularity) Consider two knowledge bases KB1 and KB2. Then KB1∪KB2

should be in DLP if and only if both KB1 and KB2 are. Moreover, in this case the
datalog transformation should bedatalog(KB1∪KB2) = datalog(KB1)∪datalog(KB2).

Modularity changes our goal from defining DLPknowledge basesto defining DLP
axioms. Note thatSROIQ with global constraints (regularity, simplicity) does notsat-
isfy DLP 5 (to see this, set KB1 = {Tra(R)} and KB2 = {⊤ ⊑ >1R.⊤}) which is why
we considerSROIQfree instead. The above principles already suffice to establish an
interesting complexity result:

Proposition 1. Consider a class K of knowledge bases that belong to a language satis-
fying DLP 1 to DLP 5, and such that the maximal size of axioms inK is bounded. Then
deciding satisfiability of knowledge bases in K is possible in polynomial time.

Proof. By DLP 2, satisfiability of KB∈ K can be decided by checking satisfiability of
datalog(KB). Assume that the size of axioms in knowledge bases inK is at mostn. Up to
renaming of symbols, there is only a finite number of different axioms of sizen. We can



assume without loss of generality that the transformationdatalog produces structurally
similar datalog for structurally similar axioms, so that there are only a finite number
of structurally different datalog theoriesdatalog({α}) that can be obtained from axioms
α in K. The maximal number of variables occurring within these datalog programs is
bounded by somem. By DLP 5, the same holds for all programsdatalog(KB) with
KB ∈ K. Satisfiability of datalog with at mostm variables per rule can be decided in
time polynomial in 2m [8]. Sincem is a constant, this yields a polynomial time upper
bound for deciding satisfiability of knowledge bases inK. ⊓⊔

The previous result states that reasoning in any DLP language is “almost” tractable.
Many DLs allow complex axioms to be decomposed into a number of simpler normal
forms of bounded size, and in any such case tractability is obtained, but we will see that
not all DLP axioms can be decomposed in DLP. Yet, Proposition1 shows why Horn-
SHIQ cannot be in DLP: ET worst-case complexity of reasoning can be proven
for a classK of Horn-SHIQ knowledge bases as in the above proposition, see [9].

None of the above principles actually require DLP to containany knowledge base
at all. An obvious approach thus is to define DLP to be the largest language that adheres
to all of the chosen design principles. The question to ask atthis point is whether this is
actually possible: is there a definition of DLP that adheres to the above principles and
that includes as many DL axioms as possible? The answer is a resounding no:

Proposition 2. Consider a languageL DLP that adheres to the principles DLP 1 to
DLP 5. There is a languageL ′DLP that adheres to DLP 1 to DLP 5 while covering
more knowledge bases, i.e.L DLP ⊂ L ′DLP.

This shows that any attempt to arrive at a maximal definition of DLP based on the
above design principles must fail. Any definition still requires further choices that, lack-
ing concrete guidelines, are necessarily somewhat arbitrary. While it is certainly useful
to capture some general requirements in explicit principles, our approach of defining
DLP would not improve over existingad hocapproaches.

The proof of Proposition2 exploits complexity differences between datalog and
DL. Intuitively speaking, a definition of DLP cannot reach the desired maximum since
the computations required in this case would no longer be polynomial. DLP 5 does
ameliorate the situation slightly by restricting attention to axioms, but DLs can encode
complex semantic relationships even within single axioms.The core of Proposition2 in
this sense is that there is no polytime procedure for deciding whether aSROIQ axiom
can be expressed in datalog.

These considerations highlight a strategy for further constraining DLP to obtain a
clearly defined canonical definition. Namely, it is necessary to avoid the complicated
semantic effects that may arise when considering even single DL axioms. An intuitive
reason for the high complexity of evaluating single axioms is that parts of an axiom,
even if structurally separated, may semantically affect each other. An important obser-
vation is that the semantic interplay of parts of an axiom usually requires entity names
to be reused. For example,⊤ ⊑ A ⊓ ¬A is unsatisfiable since the conceptA is used in
both conjuncts, while the structurally similar formula⊤ ⊑ A ⊓ ¬B is satisfiable. So,
to prevent such semantic effects from affecting DLP, we can require DLP to be closed
under the exchange of entities:



DLP 6 (Structurality) Consider knowledge bases KB and KB′ such that KB′ is an
arbitrary renaming KB. Then KB is in DLP iff KB′ is.

Note that renamings need not be uniform, soA⊓ ¬B can be obtained fromA⊓ ¬A.
This is a very strong requirement since it forces DLP to be based on the syntactic struc-
ture of axioms rather than on the semantic effects that occur for one particular axiom
only. Together with modularity (DLP 5), this principle captures the essential difference
between a “syntactic” and a “semantic” transformation fromDL to datalog. Adhering
to DLP 5 and DLP 6, DLP can only include axioms for which all potential semantic
effects can be faithfully captured by datalog. Semantic computations for checking satis-
fiability must be accomplished in datalog, and not during thetranslation. This intuition
turns out to be quite accurate, but more is needed to establish formal results.

Structurality also interacts with normal form transformations. For example, the con-
cept (¬A⊔¬B)⊓C can be emulated in datalog using rules→ C(x) andA(x),∧B(x)→.
But its DNF (¬A⊓C) ⊔ (¬B⊓C) is only in DLP if its renaming (¬A⊓C) ⊔ (¬B⊓ D)
is, which turns out to be not the case. Therefore, the knowledge base{¬A ⊔ ¬B,C}
is in DLP but the knowledge base{(¬A ⊔ ¬B) ⊓ C} is not. We have discussed above
why such effects are not avoidable in general. The more transformationsare allowed
for DLP, the less knowledge bases are contained in DLP. Note that such effects do not
occur for negation normal forms.

4 Defining DLP

We now provide a direct definition of DLP and show that the resulting language can be
emulated in datalog. We call a language schemeL aDLP language schemeif it adheres
to the principles DLP 1–DLP 6 of Section3. A DLP languageis a language of the form
L(S ) for a signatureS and DLP language schemeL. Without loss of generality, it is
assumed thatdatalog(KB) is independent of the DLP language that KB is taken from.

It turns out that the above characterisation leads to a prohibitively complex syntactic
description of the language. Our first goal in this section therefore is to identify ways of
simplifying its presentation. Note that it is not desirableto simply eliminate “syntactic
sugar” in general, since the very goal of this work is to characterise whichSROIQ
knowledge bases can be considered as syntactic sugar for datalog.

Restricting to axioms in negation normal form seems to free us from the burden of
explicitly considering negative occurrences of non-atomic concepts. But NNF does not
allow for this simplification, since concepts of the form6n R.D still containD in nega-
tive polarity. A modified NNF is more adequate. We thus say that aSROIQfree concept
expressionC is in positive negation normal form(pNNF) if (1) all its subexpressions
6n R.D have the form6n R.¬D′, and (2) every other occurrence of¬ in C is part of a
subconcept¬A or ¬{a} with A ∈ A, a ∈ I . Concept expressionsC can be transformed
into semantically equivalent concept expressionspNNF(C) in positive negation normal
form in linear time.

While pNNF effectively reduces the size of a DLP definition by half, the definition is
still exceedingly complex. The construction of disjunctive normal forms is compatible
with pNNF, so we can additionally require this form of normalisation.Another source
of complexity is the fact thatSROIQ features many concept expressions for which



Body concepts: forC in normal form,C ∈ DB iffC ⊔ A (or ¬C ⊑ A) is in DLP

CBF ¬A | ¬{I } | ¬∃R.Self | 60R.¬(DB ∪ {⊥}) | CB ⊓ CB

DBF CB | DB ⊔ DB

Head concepts: forC in normal form,C ∈ DH iff A ⊑ C is in DLP

CH F CB | A | {I } | ∃R.Self | >nR.Dn! | 60R.¬DH | 61R.¬(DB ∪ {⊥}) | CH ⊓CH | D1!

DH F CH | DH ⊔DB | Da ⊔ C≥
Assertional concepts: forC in normal form,C ∈ Da iff {a} ⊑ C is in DLP

Ca F CH | >nR.D>n | Ca ⊓Ca

Da F Ca | Da ⊔DB

Disjunctions of nominal assertions of the form{I } ⊓ Ca

D1! F {I } ⊓ Ca

Dm+1! F Dm! ⊔D1!

Conjunction of negated nominals, i.e. complements of some nominal disjunction

C≥ F ¬{I } | C≥ ⊓ C≥
Filler concepts for>n in Da

D>n
F ⊤ | C≥ ⊔D+a | DB ⊔ (D≤m∩ D+a ) (m< n) |

Da ⊔ (D≤m∩D+a ) ⊔Dl! (for r ≔ n− (m+ l) we haver > 0 andr(r − 1) ≥ m)
where no disjuncts are added forD≤0 ∩D+a andD0!

Extended concepts with restricted forms of (“local”) disjunctions, used inD>n only

C+H F CH | >nR.D+n! | 60R.¬D+H | 6nR.¬(D≥ω−m∩D+a ) | C+H ⊓ C+H | D
+
1!

D+H F C+H | D
+
H ⊔DB | D+a ⊔C≥

C+a F C+H | >nR.(D+a ∪ {⊤}) | C
+
a ⊓ C+a

D+a F C+a | D
+
a ⊔ D+a

D+1! F {I } ⊓ C+a
D+m+1! F D+m! ⊔D+1!

D≤n (D≥ω−n) concepts contain (exclude) at mostn domain elements, see [6].

Fig. 1.Grammars for defining DLP concepts

all possible renamings are necessarily equivalent to⊤ or ⊥. Examples include⊤ ⊔ C,
>0R.C, but also63R.{a} ⊔ {b}.

Many unexpected DLP axioms are based on the observation thatsome DL concepts
do not allow for arbitrary interpretations. This is especially the case for concepts that use
nominals, but even DLs without nominals admit such constrained concept expressions.
An important special case are concepts that can only represent⊤ or⊥ in any renaming.
We say that aSROIQ concept expressionC is structurally valid(structurally unsatis-
fiable) if ⊤ ⊑ C′ (C′ ⊑ ⊥) is valid for every renaming (over arbitrary alphabets)C′ of
C. Moreover,C is structurally refutable(structurally satisfiable) if it is not structurally
valid (structurally unsatisfiable). It can be shown that thesets of allSROIQ concept ex-
pressions inpNNF that are structurally valid, unsatisfiable, refutable, or satisfiable can
be recognised in polynomial time (see [6]). Thus we can also eliminate such concepts
from our considerations.



Definition 2. A concept expression C is inDLP normal formif C = DNF(pNNF(C))
and

– if C has a structurally valid subconcept D, then D= ⊤ and either C= D or D
occurs in a subconcept of the form>n R.D,

– if C has a structurally unsatisfiable subconcept D, then D= ⊥ and either C= D
or D occurs in a subconcept of the form6n R.¬D.

A SROIQ concept expression can be transformed into an equivalent expression in
DLP normal form in polynomial time. The following definitions of DLP thus restrict to
concepts in DLP normal form. Commutativity and associativity of⊓ and⊔ are exploited
for further simplification.

Before providing the full definition of a large DLP language scheme, we provide
some interesting examples to sketch the complexities of this endeavour (datalog emu-
lations are provided in parentheses). DLP expressions of the form A ⊓ ∃R.B ⊑ ∀S.C
(A(x)∧R(x, y)∧B(y)∧S(x, z)→ C(z)) are well-known. The same is true forA ⊑ ∃R.{c}
(A(x) → R(x, c)) but hardly forA ⊑ >2R.({c} ⊔ {d}) (A(x) → R(x, c), A(x) → R(x, d)).
Another unusual form of DLP axioms arises when Skolem constants (not functions)
can be used as in the case{c} ⊑ >2R.A (R(c, s), R(c, s′), A(s), A(s′), s ≈ s′ → ⊥ with
freshs, s′) andA ⊑ ∃R.({c}⊓∃S.⊤) (A(x)→ R(x, c), S(c, s) with freshs). Besides these
simple cases, there are various DLP axioms for which the emulation in datalog is signif-
icantly more complicated, typically requiring an exponential number of rules. Examples
are{c} ⊑ >2R.(¬{a} ⊔ A⊔ B) and{c} ⊑ >5R.(A⊔ {a} ⊔ ({b} ⊓ 61S.({c} ⊔ {d}))). These
cases are based on the complex semantic interactions between nominals and atleast-
restrictions.

Definition 3. We define the language schemeDLP as follows. For a signatureS , the
languageDLP(S ) contains all axioms which areSROIQfree RBox axioms overS , or
GCIs C⊑ D overS wherepNNF(¬C⊔D) is aCDLP concept as defined in the following
grammars, withCH as defined in Fig.1, andD=n andC,⊤ as defined in Fig.2:

CDLPF ⊤ | ⊥ | CH | D=n | C,⊤

In spite of the immense simplifications that DLP normal form provides, the def-
inition of DLP still turns out to be extremely complex. We have not succeeded in
simplifying the presentation any further without loosing substantial expressive features.
Some intuitive explanations help to understand the underlying ideas. It is instructive to
also compare these intuitions to the above examples.

The core language elements are in Fig.1. Since all concepts are in DNF, each sub-
language consists of a conjunctive partC and a disjunctive partD. Definitions of DLP
typically distinguish between “head” and “body” concepts,andCH andCB play a sim-
ilar role in our definition.CH represents concepts that carry the full power of a DLP
GCI and that can serve as right hand sides (“heads”) of DLP GCIs. CB concepts can
be seen as negated generic left hand sides (“bodies”) of GCIs. However, these basic
classes are not sufficient for defining a maximal DLP.Ca characterises concept expres-
sions which can be asserted for named individuals – these areeven more expressive than
CH in that existential restrictions are allowed (intuitively, this is possible as in the con-
text of known individuals the existentially asserted role neighbours can be expressed by



Additional concepts based on global domain size restrictions

D=1
F {I } ⊓ Cp

H

D=m+1
F D=m⊔ ({I } ⊓ C=m+1

⊥ )

Additional head and body concept expressions for unary domains (“propositional” case)

Cp
BF C=1

⊥ | ¬A | ¬∃R.Self | Cp
B ⊓Cp

B | 60R.¬(Dp
B ∪ {⊥}) | 6nR.¬C (n ≥ 1)

Dp
BF Dp

B | D
p
B ⊔ Dp

B

Cp
H F Cp

B | A | {I } | ∃R.Self | Cp
H ⊓Cp

H | >1R.Dp
H | 60R.¬Dp

H

Dp
H F Cp

H | D
p
H ⊔Dp

B

Additional structurally unsatisfiable concepts for domains of restricted size

C=1
⊥ F ¬{I } | C

=1
⊥ ⊓ C | >nR.D=1

⊥ (n ≥ 0) | >nR.D (n ≥ 2)

C=m+1
⊥ F C=m+1

⊥ ⊓C | >nR.D=m+1
⊥ (n ≥ 0) | >nR.D (n ≥ m+ 2)

D=m
⊥ F C=m

⊥ | D
=m
⊥ ⊔ D=m

⊥

Concepts that can never hold for all individuals

C,⊤ F ¬{I } | C,⊤ ⊓C

D: concepts in DLP normal form that are not structurally validor unsatisfiable
C: concepts ofD that are no disjunctions

Fig. 2.Grammars for defining DLP concepts: special cases with restricted domain size

Skolem constants).Dm! concepts then can be viewed as collections of individual asser-
tions (e.g.{a} ⊓ B). Another way of stating such assertions is to useC≥ in a disjunction
(e.g.¬{a} ⊔ B).

By far the most complex semantic interactions occur for atleast-restrictions in ABox
assertions:D>n and all subsequent definitions address this single case. Forexample, the
DLP axiom{a} ⊑ >2R.(¬{b} ⊔ A⊔ B) can be emulated by the following set of datalog
rules, whereci are auxiliary constants:

R(a, c1), R(a, c2), b ≈ c1→ A(b), b ≈ c2→ B(b).
This emulation uses internal symbols to resolve apparentlydisjunctive cases in a

deterministic way. The datalog program does not represent disjunctive information: its
least model simply contains two successors that are not equal to b. The nested disjunc-
tion only becomes relevant in the context of some disjunctive FOL= formula, such as
∀x.x ≈ a∨ x ≈ b. The considered theory is no longer datalog in this case, andthe pro-
gram simply “re-uses” the disjunctive expressive power provided by the external theory.
The fact that the actual program is far from being semantically equivalent to the original
axiom illustrates the motive and utility of our definition ofemulation.

Many uses of nominals and atleast-restrictions lead to morecomplex interactions,
some of which require completely different encodings. This is witnessed by the more
complex arithmetic side condition used inD>n . Concepts inD≤m ∩ D+a correspond to
disjunctions ofm nominal classes, each of which is required to satisfy further disjunc-
tive conditions, as e.g.{b} ⊓ >1R.(A ⊔ B). Now a disjunction of an atomic class and
four such “disjunctive nominals” is allowed as a filler for>7 (since 3× 2 ≥ 4) but not
for >6 (since 2× 1 < 4). Also note that the disjunctive concepts likeD+H andD+a that
are allowed in fillers do not allow all types of disjunctive information but only a finite



amount of “local” disjunctions. For example,{a} ⊔ B⊔C requires one “local” decision
abouta, whereas concepts like{a} ⊓60R.¬(B⊔C) or {a} ⊓62R.¬⊥ require arbitrarily
many decisions for allR successors.

The remaining grammars in Fig.2 take care of less interesting special cases. Most
importantly,Cp

H covers all concepts that can be emulated if the interpretation domain is
restricted to contain just one individual.C,⊤ contains axioms which make the knowl-
edge base inconsistent as they deny the existence of a nominal.

Further details about the datalog transformation ofDLP are provided in [6].

5 Maximality of DLP

We conjecture that the DLDLP of Definition 3 is the largest DLP language scheme.
Proving this is not straightforward, since it requires us toensure that no further kind
of axioms could admit a datalog emulation. The definition ofDLP is also a result
of (sometimes surprising) failures in trying to prove this result. The earlier example
emulations already hint at the complexity of the problem. The general proof technique is
sketched in the following, and further updates on the statusof the maximality conjecture
are given in the technical report [6]. Structurality (DLP 6) is essential throughout the
proof since it enables us to pick suitable renamings for eachargument.

A useful observation is that any DLP language scheme can be extended to include
all axioms ofDLP, since it can be shown that the union of any two DLP language
schemes is still a DLP language scheme. Equipped with the basic toolbox ofDLP ax-
ioms, it can then be shown that certain basic types of axioms can never be in DLP since
their emulation would contradict basic properties of datalog. Examples of two basic
such properties are the least model property and the complexity result of Proposition1.
The former entails that, for any datalog programP, if P has a model where the exten-
sion of predicateA is empty, and another model where the extension of predicateB is
empty, thenP has a model where both extensions are empty. This precludes datalog
from emulating statements likeA⊔ B. Complexity properties can also be exploited:

Lemma 1. No DLP language scheme contains axioms of the form A⊑ ∃R.⊤.

Proof. For a contradiction, suppose that there is a DLP language scheme that includes
axioms of the formA ⊑ ∃R.⊤. We can assume that allDLP axioms are also available.
The hardness proof given for Horn-FL− in [9] can be adopted to show that deciding
satisfiability for this DLP language is PS hard, even if axiom sizes are bounded.
Since P, PS, this contradicts Proposition1. ⊓⊔

Both of these simple arguments do not extend to more general cases. More po-
tent approaches are provided by model-theoretic properties that generalise the least
model property to first-order interpretations: theproduct modelandproduct element
construction, see [6] for details. Applying these approaches to all cases requires a
careful induction for various language definitions ofDLP. Individual proof steps can
be intricate in some cases, e.g. to see why no datalog programcan emulate{a} ⊑
>2R.(A⊔ ({b} ⊓ >1S.(C ⊔ D)) while it could emulate{a} ⊑ >2R.(A⊔ {b} ⊔ {c}) and
{a} ⊑ >3R.(A⊔ ({b} ⊓ >1S.(C⊔ D)).



6 Conclusions and Outlook

DLP provides an interesting example for the general problemof characterising syn-
tactic fragments of a logic that are motivated by semantic properties. We derived and
motivated a number of design principles for achieving such acharacterisation for DLP,
most notably the principles ofmodularity(closure under unions of knowledge bases)
andstructurality(closure under non-uniform renaming of signature symbols). We con-
jecture that the presented DLP language scheme is the largest one possible. Experiences
with the ongoing proof of maximality confirm the utility of structurality in such proofs.
Formalisms like our maximal DLP are unnecessarily large forpractical applications,
but understanding overall options and underlying design principles is indispensable for
making an informed choice of DL for a concrete task.

Our results also clarify the differences between DLP and the DLsEL and Horn-
SHIQ which can be expressed in datalog as well. First of all, neitherEL nor Horn-
SHIQ can be emulated in datalog (DLP 2). Instead,EL and Horn-SHIQ satisfy
a weaker version of DLP 2 where Definition1 is restricted to test formulaeϕ that
are conjunctions of simple ABox facts. This weakening of DLP2 allows for a larger
space of possible DL fragments, but it is not clear whether (finitely many) maximal
languages exist in this case. There is clearly no largest such language, since bothEL
andDLP abide by the weakened principles whereas their (intractable) union does not.
The weakened principles still exclude Horn-SHIQ that is not modular (DLP 5), as
shown by Proposition1. It is possible to define Horn-SHIQ as a structural language
(DLP 6) by using distinct signature sets for simple and non-simple roles. Again, it is
open which results can be established for Horn-SHIQ-like DLs based on the remaining
weakened principles.

This work also explicitly introduces a notion of semanticemulationwhich appears
to be novel, though loosely related to conservative extensions. In essence, it requires
that a theory can take the place of another theory in all logical contexts, based on a
given syntactic interface. Examples given in this paper illustrate that emulation can
be very different from semantic equivalence. Yet, our criteria can be argued to define
minimal requirements for preserving a theory’s semantics even in combination with ad-
ditional information, so emulation appears to be a natural tool for enabling information
exchange in distributed knowledge systems. We expect that the explicit articulation of
this notion will be useful for studying the semantic interplay of heterogeneous logical
formalisms in general.

The general approach of this paper – seeking a structural logical fragment that is
provably maximal under certain conditions – leads to a number of further research
questions. For example, what is the maximal fragment of SWRL(“datalog∪ SROIQ”)
that can be expressed inSROIQ? It should contain DL Rules [10] and some form of
DL-safe rules [11]. But also the maximalFOL= fragment that can be expressed in the
guarded fragment or the two-variable fragment might be of general interest. Ultimate
answers to such questions may indeed be obtained by a carefularticulation of basic
design principles.
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