
Reasoning With Weighted Ontologies

Rafael Peñaloza

Theoretical Computer Science TU Dresden, Germany
penaloza@tcs.inf.tu-dresden.de

Abstract. We study the problem of reasoning over weighted ontologies.
We assume that every axiom is labeled with an element of a distributive
lattice (called its weight) and try to compute its so-called boundary, with
respect to a given property. We show that axiom pinpointing is the most
general instance of this problem. Finally, we present three applications
of the problem of boundary computation.

1 Introduction

In recent years, the study of pinpointing and other related problems has gained
notoriety, due to the need to correct ontologies of very large size. The main
motivation for pinpointing arises from the fact that ontology development is an
error prone activity. Once an ontology grows beyond the few hundred axioms, it is
not hard to encounter unexpected consequences that follow from it. Although not
all unexpected consequences are necessarily wrong—indeed, they may be correct
instances which were just previously unknown to the knowledge engineer—there
is always a need to understand why they follow and, given the case, correct the
ontology to get rid of them.

Axiom pinpointing deals with the problem of finding minimal subsets of an
ontology that entail a given consequence. These sets usually receive the name of
MinAs or justifications. There exist two basic approaches toward pinpointing.
One tries to find a monotone Boolean formula φ, called the pinpointing formula,
that encodes the set of all MinAs through a bijection with the minimal valuations
that satisfy φ [1, 2]. The other idea is to compute the MinAs directly [16, 19,
10]. The latter approach is in fact a special case of the former, in which the
pinpointing formula is restricted to appear in disjunctive normal form.

Even when working on particular problems, the study of general solutions can
be helpful for shining light over specific problems or characteristics that may not
be evident at first sight. Thus, the study of pinpointing of general tableaux [2]
showed that termination is not as trivial as intuition may suggest. On the other
hand, the automata-based pinpointing algorithm described in [1] has taught us
something more about the pinpointing formula. The construction requires a dis-
tributive lattice [8]; the set of all monotone Boolean formulas over a set P of
propositional variables forms the free distributive lattice of |P | generators, and
the pinpointing formula is an element of this lattice. Evenmore, the algorithm
that finally allows us to compute the pinpointing formula from a so-called ax-
iomatic automaton is actually shown to work for any distributive lattice. Thus,

one can wonder whether one can study the pinpointing formula in a general
way, by reasoning about general distributive lattices. This paper tries to give a
positive answer to that question.

We introduce the notion of a boundary for a property. The boundary is a
generalization of the pinpointing formula, where the axioms may be labeled ar-
bitrarily, with elements of any distributive lattice. In other words, we have a
weighted ontology. Intuitively, a boundary is an element of the lattice that sepa-
rates the subontologies from which the property follows of those from which the
property does not follow. We then investigate whether it is possible to compute
such a boundary. In a way, we show that we already have a deep understanding
of the boundary, through our knowledge of the pinpointing formula. In fact, we
show that the pinpointing formula can be seen as an abstract representation of
all the boundaries for a given property, which can be instantiated via a homo-
morphism between the free distributive lattice and the particular lattice under
consideration at the moment.

Reasoning over weighted ontologies has applications beyond a better under-
standing of axiom-pinpointing. In general, we can think of axioms holding a
weight that can represent how trusted it is, or how much it costs to access or
use it, etc.

The paper is divided as follows. In Section 2, we motivate and introduce
our notion of boundaries for properties. Then, in Section 3 we show that the
boundary can always be computed as the image of the pinpointing formula
through an adequate lattice homomorphism. Finally, before our conclusions, we
present in Section 4 three scenarios where the computation of a boundary solves
a reasoning problem with respect to DLs.

2 Property Boundaries

We start this section by introducing the properties we want to reason about. In
general, a property can be defined as a set of inputs, whose elements correspond
exactly to those satisfying the property. In this work we want to reason with
respect to knowledge bases, which are basically sets of axioms. However, not ev-
ery set of axioms can be called a knowledge base. Consider, for instance, acyclic
TBoxes: these are sets of concept definitions that are irredundant and acyclic.
Notice that every subset of an acyclic TBox is itself an acyclic TBox. Following
these ideas, we consider knowledge bases as sets of axioms satisfying an admis-
sibility restriction (we call these sets admissible) such that if T is admissible,
then every subset of T is also admissible.

We define a property as a set of tuples of the form (I, T), where I is an
input and T is an admissible set of axioms. Such tuples are called axiomatized
inputs. We are interested only in properties that are monotone with respect to
the knowledge base in the sense that whatever follows from T must also fol-
low from any (admissible) superset of T . A property P is called a consequence
property (abbreviated as c-property) if (I, T) ∈ P implies that for every ad-
missible set of axioms S, if T ⊆ S, then (I,S) ∈ P. Examples of c-properties

are unsatisfiability of concepts or subsumption w.r.t. TBoxes. The reason for
imposing this monotonicity in the properties is to keep in track with previous
notions of pinpointing. Recall that axiom pinpointing tries to find all minimal
subontologies from which the a given consequence follows; if the property re-
lating ontologies with consequences is not monotone, finding such minimal sets
does not make much sense.

Rather than just reasoning over a knowledge base T , we are interested in
computing what will be later called a boundary based on weights associated
to each of the axioms. This boundary will allow us to understand how weight-
dependent portions of the ontology influence the property. This is now explained
more formally.

Let (S,≤) be a distributive lattice and Γ = (I, T) an axiomatized input. A
mapping lab : T → S is called a labeling function. Intuitively, we want to compute
the highest point sΓ in the lattice where we can cut our ontology without losing
the property; i. e. that the property still follows from the ontology having only
axioms whose label is greater than or equal to sΓ . This generalizes the notion of
a pinpointing formula [2].

Definition 1 (Pinpointing formula). Let (I, T) ∈ P, lab a function mapping
each t ∈ T with a unique propositional variable, and P the set of all propositional
variables labeling an element of T . A monotone Boolean formula φ over P is
called a pinpointing formula for (I, T) if for every S ⊆ T it holds that (I,S) ∈ P
if and only if the valuation {lab(t) | t ∈ S} satisfies φ.

Notice that the set of distinct monotone Boolean formulas over P defines a
distributive lattice where the order is defined by φ ≤ ψ iff ψ ⇒ φ. In this setting,
conjunction corresponds to the greatest lower bound operator, and disjunction
to the least upper bound. Additionally, each valuation V uniquely identifies an
element of the lattice φV =

∧
p∈V p and a subontology TV = {t ∈ T | lab(t) ∈ V}.

This latter definition is equivalent to TV = {t ∈ T | φV ≤ lab(t)}.
In the general case, we want to follow the same ideas as for pinpointing; thus,

we define for every element s of the lattice S the subset Ts = {t ∈ T | s ≤ lab(t)}.
We are then looking for an element sΓ ∈ S that behaves as a pinpointing formula
with respect to the lattice S and the labeling function lab; i. e. such that for every
s ∈ S it holds that s ≤ sΓ if and only if (I, Ts) ∈ P. Unfortunately, such a value
does not necessarily exist, as shown by the following example.

Example 1. Consider the distributive lattice (S4,≤4) having the four elements
S4 = {0, a1, a2, 1}, where 0 and 1 are the least and greatest elements, respec-
tively, and a1, a2 are incomparable w.r.t. ≤4. Let T be a set formed by the axioms
ax1 and ax2, which are labeled by the elements a1 and a2 of S4, respectively, and
let P be the c-property defined as P = {(I,S) | |S| ≥ 1}, where |S| denotes the
cardinality of S. It is easy to see that, given the axiomatized input Γ = (I, T),
there is no element sΓ that satisfies the condition described above. Indeed, if we
choose 0 or a1, then a2 violates the condition, as a2 6≤ sΓ , but (I, Ta2) ∈ P. And
if 1 is chosen, then 1 itself violates it, as 1 ≤ sΓ but (I, T1) /∈ P.

The reason why the property in this example fails to have an adequate sΓ arises
from asking the condition that s ≤ sΓ iff (I, Ts) ∈ P to be satisfied by every
element s ∈ S. Indeed, if we look again at the case of pinpointing, we only
ask this condition to follow for every valuation; that is, for formulas having no
disjunction. Recall that in this specific lattice, disjunction corresponds to the
least upper bound (or join) operator. Then, valuations are join prime elements
of the free distributive lattice; that is, they cannot be constructed as the join of
other elements of the lattice. This notion will allow us to overcome the problem
shown in Example 1.

Definition 2 (Join prime). Let (S,≤) be a lattice. Given a set R ⊆ S, let R⊗
denote the closure of R under the meet operator.1 An element s ∈ S is called
join prime relative to R if for every R′ ⊆ R⊗, s ≤

⊕
r∈R′ r implies that there is

an r0 ∈ R′ such that s ≤ r0. The element s is called simply join prime if it is
join prime relative to S.

Obviously, any element that is join prime relative to a set R is also join prime
relative to any subset of R. Moreover, if s is join prime relative to R and belongs
to the sublattice generated by R, then s ∈ R⊗. Nonetheless, the converse is not
true; that is, there may be elements of R⊗ that are not join prime relative to R.
We will consider only the elements that are join prime relative to the image of
the labeling function lab to define the boundary.

Definition 3 (Boundary). Let (S,≤) be a lattice, P a c-property, Γ = (I, T)
an axiomatized input and lab : T → S a labeling function. Let Slab be the image
of lab and S∗lab the sublattice generated by Slab. An element s ∈ S∗lab is called a
boundary for Γ in P if for every element r ∈ S∗lab that is join prime relative to
Slab it holds that r ≤ s iff (I, Tr) ∈ P.

Returning to Example 1, we have that Slab = {a1, a2} and S∗lab = S4. The only
element of S4 that is not join prime relative to Slab is 1, which is itself a boundary.

Notice that we have restricted the discourse in Definition 3 to the join prime
elements relative to Slab that belong to S∗lab. This restriction is done without loss
of generality. Indeed, as S is a distributive lattice, so is S∗lab. Then, every element
s of S∗lab can be written as the join of all the join prime elements (relative to
Slab) in S∗lab that are smaller or equal to s. This in particular shows that for
every r ∈ S that is join prime relative to Slab, if (I, Tr) ∈ P, then there is a
r′ ∈ S∗lab join prime relative to Slab such that (I, Tr′) ∈ P. For simplicity, for
the rest of this paper we will assume w.l.o.g. that S = S∗lab. As the ontology is
finite and finitely generated distributive lattices are also finite, this assumption
in particular entails that S is also finite.

3 Boundaries Through Pinpointing

Up to now we have presented the pinpointing formula of a property w.r.t. a given
axiomatized input as a special case of boundary, from which we attempted to
1 To avoid confusion with the Boolean operators, we denote the lattice operators by
⊕ (join) and ⊗ (meet).

develop the general notion. As it turns out, the pinpointing formula can be seen
as an abstract representation of a boundary w.r.t. distributive lattices. Given a
labeling function, the pinpointing formula can be then instantiated to the desired
boundary. We proceed now to explain this in more detail.

Recall that the definition of pinpointing formula requires a labeling function
that maps each axiom in T to a unique propositional variable. The closure of
the image of this labeling function over the logical operators disjunction and
conjunction yields the lattice of all monotone Boolean formulas over the set
of labels. This lattice, which we will denote BT , is in fact the free distributive
lattice generated by |T | incomparable elements. As the labels of any two different
axioms are incomparable w.r.t. BT , this mapping in fact defines the most general
distributive lattice one can produce through a labeling function. We will exploit
these characteristics building an homomorphism between BT and the distributive
lattice S that preserves the boundary; i. e. that maps the pinpointing formula to
the boundary on S.

In the following, we consider a c-property P and an axiomatized input Γ =
(I, T) such that Γ ∈ P. We denote by labB the labeling function that maps
each axiom in T with a unique propositional variable in BT , and by φΓ the
pinpointing formula for Γ .

Consider now a distributive lattice S and let labS be a labeling function
mapping each axiom in T to an element of S. We build a function h : BT → S
inductively, as follows: for every propositional variable p ∈ BT , let t ∈ T be
such that labB(t) = p; then h(p) = labS(t). Given two formulas φ1, φ2 ∈ BT , we
define h(φ1 ∧ φ2) = h(φ1) ⊗ h(φ2) and h(φ1 ∨ φ2) = h(φ1) ⊕ h(φ2). Obviously,
the function h is an homomorphism. We show now that it maps the pinpointing
formula to a boundary.

Theorem 1. Let φ be a pinpointing formula for Γ , then h(φ) is a boundary for
Γ in P.

Proof. Assume w.l.o.g. that φ is in DNF; that is, φ = φ1 ∨ . . . ∨ φn, where
each φi is a conjunction of propositional variables. Then, for every i, 1 ≤ i ≤ n,
h(φi) ∈ (Slab)⊗, and h(φ) =

⊕n
i=1 h(φi). We need to show that, for every r ∈ S

join prime relative to Slab, r ≤ h(φ) iff (I, Tr) ∈ P. For r ∈ S, define the
valuation Vr := {labB(t) | r ≤ labS(t)}. Notice that Tr = TVr and h(Vr) = r. We
have then that (I, Tr) ∈ P iff (I, TVr) ∈ P which, as φ is a pinpointing formula,
holds iff Vr satisfies φ iff r = h(Vr) ≤ h(φ). ut

This theorem tells us that computing the pinpointing formula for an axioma-
tized input suffices for obtaining the boundary w.r.t. any distributive lattice and
any labeling function. There exist several methods for computing the pinpoint-
ing formula either by modifying a decision procedure [2, 1, 16, 13] (glass-box),
by using it as a black-box [10], or by a mixture of both glass- and black-box
approaches [4, 19]. Unfortunately, it has also been shown that pinpointing is a
hard task [3]. Obviously, as computing the pinpointing formula is an instance of
boundary computing, the hardness results that exist for pinpointing must also
follow in this more general case. It is however possible that for particular lattices

and labeling functions, the problem is a simpler one. In such a case, trying to
compute first the pinpointing formula and then mapping it to the boundary will
unavoidably produce a suboptimal procedure.

For instance let S be a (finite) total order, which is obviously a distributive
lattice where all the elements are join prime. Given a labeling function lab, we
can compute a boundary for Γ making polynomially many calls to a reasoner
as follows. Let sn < . . . < s2 < s1 be all elements of S. Starting from i = 1,
iteratively test whether (I, Tsi) ∈ P. If the answer is no, then increase i by one,
and test again; otherwise, i. e. if the answer is yes, then si is the boundary. This
black-box process needs at most n calls to the reasoner. Notice that n is bounded
by the number of axioms in T , as S is in fact the image of lab. Thus, if P can
be decided in polynomial time in the size of T , then this method computes the
boundary in polynomial time in the same measure. In the next section we will
show a setting where finding a boundary over a total order is useful.

In [1], we have shown that automata deciding a c-property can be transformed
into weighted automata over the distributive lattice BT in such a way that the
so-called behaviour of these weighted automata yields a pinpointing formula. We
then showed how to efficiently compute such a behaviour in time polynomial on
the number of states of the automaton. In fact, our algorithm is able to compute
the behaviour of any weighted automaton over any distributive lattice. It is then
not difficult to see that the same method can be used for computing the boundary
directly, without detouring first through the pinpointing formula. Clearly, one
can likewise modify the tableau-based glass-box method [2] to take values from
an arbitrary distributive lattice, and even black-box approaches making use of
Reiter’s Hitting Set Tree algorithm [15] such as the ones presented in [10, 19] can
benefit from a direct use of the lattice elements while computing a boundary.

On the other hand, computation of a boundary through the pinpointing
formula has the clear benefit of needing to be done only once and be applicable
even if the lattice or labeling function change, as long as the ontology itself
remains unmodified.

4 Applications of the Boundary

Additionally from the computation of a pinpointing formula, there exist other
scenarios where the computation of a boundary is a problem of interest. In
this section we present three such cases: access control formalisms, fuzzy, and
possibility reasoning.

4.1 Access Control

Consider the following setting. We have a distributive lattice defining a rights
hierarchy. Each axiom in an ontology is associated to a security level : an element
in the rights hierarchy representing the minimum rights necessary for accessing
or viewing the axiom. Lower elements of the rights hierarchy represent higher

security levels; thus, for instance, public axioms may be labeled with the supre-
mum element 1, while confidential information should have a security level close
to the infimum of the lattice.

This ontology is then accessed by users. Each user is associated also with
an element of the lattice, which corresponds to its access level. The access level
represents the rights this user has for watching axioms in the ontology: she should
be able to see all the axioms having a security level that is at most as high as
her access level. In other words, if s is the access level of the user, then she has
access to the subontology Ts.

Obviously, the goal of an ontology is not merely to rest alone and be observed
by the users; instead, users should be able to reason over it and deduce implicit
consequences from the explicitly stated axioms. However, a user with access
level s should be able to see only those consequences that follow from Ts, but
not others that may be derivable from axioms with a higher security level. Thus,
reasoning should depend on the user’s access level.

One possible way of performing this reasoning is to first compute the subon-
tology Ts and only derive consequences from it. Although such a method would
yield the correct results, it is in many cases impractical and undesirable. Con-
sider for instance the computation of the concept lattice from the ontology. This
task is usually very time consuming, but may be done once and for all, and then
stored in an easily accessible way. If we decide to perform reasoning with respect
to each of the ontologies Ts, then it would be necessary to compute a concept
hierarchy for each access level s, and store them independently. A better strategy
is simply to compute the boundary of each subsumption relation building the
hierarchy.

For the boundary to behave in the desired manner, the access levels assigned
to users need to be join irreducible relative to the set of labels of axioms. This
restriction actually makes sense for an access control application. Indeed, ele-
ments that are not join prime have an ambiguous behaviour. Informally, if we
denote as Ps all the consequences that can be deduced from Ts, then an access
level of the form s1 ⊕ s2 refers to an individual that can see all consequences in
Ps1 ∩Ps2 , but not those in Ps1 \Ps2 . This is a very strange condition, to say the
least.

Additionally, it is not uncommon that security and access levels change with
time. A simple example of this would be financial information that becomes
public after several years being confidential, or an individual that is promoted to
a more trusted position. In such a case, computing the pinpointing formula as an
abstract representation of the boundary appears as a good idea since changes in
the labeling function that defines the security level do not affect the pinpointing
formula, and hence no new reasoning, apart from updating the homomorphism
from BT to the rights hierarchy, is necessary.

4.2 Fuzzy Reasoning

A totally different application of a boundary is aiding in reasoning in DLs ex-
tended with fuzzy operators. More precisely, we consider Gödel norm and its

residuum. For a better understanding, we briefly recall the main concepts of
fuzzy logic and instantiate them to the fuzzy ALC.

Generally speaking, a fuzzy logic is a logic in which the crisp constructors
(such as conjunction and disjunction) are replaced by fuzzy constructors, gen-
erally instantiated in the shape of t-norms and residua. These functions try to
simulate the behaviour of the well-known crisp operators, but allowing for val-
ues in the whole range between 0 and 1. More formally, a triangular norm (or
t-norm for short) is a function t : [0, 1] × [0, 1] → [0, 1] that is commutative,
monotone, associative and has 1 as its neutral element. A t-norm usually re-
places the conjunctive operator of the logic. There exist several t-norms (see,
e.g. [11] for examples) but we focus here on the minimum t-norm, also known
as the Gödel t-norm, defined as tG(a, b) = min{a, b}.

For every t-norm that is left continuous there is a unique binary operation
r called the residuum or R-implication, such that r(x, y) = sup{z | t(x, z) ≤
y}. The name of R-implication is motivated by the fact that this operation is
typically used to replace the crisp implication. With these two operators, we
can then define others in such a way that desired logical properties are satisfied.
For instance, fuzzy disjunction (called triangular conorm or s-norm for short) is
defined as s(x, y) = 1− t(1− x, 1− y) as a generalization of De Morgan laws.

With these operators, we can define a variant of ALC, in which reasoning
is done with respect to fuzzy TBoxes. These TBoxes are sets of GCIs labeled
with a number in [0, 1] representing a degree in which the GCI must be satisfied.
When using the Gödel t-norm, this logic is a special case of the logic introduced
in [18].

The syntax of fuzzy-ALC is identical to that of ALC, except for fuzzy-GCIs
which, as said before, are tuples of the form (C v D,n), where C,D is a GCI
and n ∈ [0, 1]. A fuzzy-TBox is a set of fuzzy-GCIs.

The semantics of this logic is also based on interpretations, but in this case
they need to express not only whether e.g. an individual belongs to a concept, but
also to which degree this is done. Thus, an interpretation I is a tuple I = (∆I , ·I)
where ∆I is a non-empty set and ·I is a function that maps each concept name A
to a membership function AI : ∆I → [0, 1] and each role name r to a membership
function rI : ∆I ×∆I → [0, 1]. This function can then be extended to concepts
using the standard fuzzy interpretation for the crisp constructors [12, 20] as
follows:

(C uD)I(d) = t(CI(d), DI(d)),
(C tD)I(d) = s(CI(d), DI(d)),
(¬C)I(d) = n(CI(d)),
(∀r.C)I(d) = infe∈∆I{r(rI(d, e), CI(e)}},
(∃r.C)I(d) = supe∈∆I{t(rI(d, e), CI(e)}}.

An interpretation I is a model of the fuzzy-GCI (C v D,n) if and only if
infd∈∆I{r(CI(d), DI(d)}} ≥ n. I is a model of the fuzzy-TBox T if it is a
model of every fuzzy-GCI in T .

We are interested in the problem of fuzzy subsumption: we say that a con-
cept C is fuzzy subsumed by a concept D with degree n ∈ [0, 1] w.r.t. a fuzzy-

TBox T , denoted as (C vT D,n), iff for every model I of T it holds that
infd∈∆I{r(CI(d), DI(d)}} ≥ n.

It can be shown that if we consider Gödel t-norm tG with its standard s-
norm sG, residuum rG and negation nG, then for every n ∈ [0, 1] it holds that
(C vT D,n) if and only if C is (crisp) subsumed by D w.r.t. the ontology
Tn = {C v D | (C v D,m) ∈ T with n ≤ m}.

In fuzzy reasoning, it is interesting to find the best degree bound ; that is,
the highest value of n such that (C vT D,n) holds. In the particular case of
the Gödel norm, this problem reduces to finding the boundary with respect to
the total ordering in the segment [0, 1], but restricted to those values that label
some GCI in T . Notice that this yields a finite total ordering, and hence the
black-box approach sketched in the previous section can be used for computing
the best degree bound within the same complexity bound as merely deciding
subsumption w.r.t. crisp TBoxes. In particular, this means that this problem
can be solved for the fuzzy logic f-EL+ [17] in polynomial time measured in the
size of the TBox.

It is important to notice, however, that the choice of Gödel t-norm is funda-
mental for this approach to work. Indeed, the idempotency of this t-norm and
its associated conorm is the main responsible for the generation of the finite to-
tal order that makes the definition of boundary applicable in this setting. Thus,
although fuzzy logics can be defined for non-idempotent t-norms, the decision
procedure obtained by computing boundaries is of no aid in them.

4.3 Possibilistic Reasoning

One other application for the computation of boundaries refers to possibilistic
reasoning [6]. Similar to fuzzy reasoning, in possibilistic logic every axiom is
labeled with a value in the range (0, 1] that expresses the certainty one has of
the axiom. This kind of reasoning was introduced for dealing with inconsistent
knowledge, by giving priority to formulas with a higher possibilistic degree. This
property has made it a good candidate for dealing with uncertainty in DL [9, 7].

Given an ontology T , where every axiom t has an associated certainty degree
π(t), we define, for every n ∈ (0, 1] the subontology Tn in the obvious way; that
is, Tn = {t ∈ T | π(t) ≥ n}. We can then reason about the necessity degree of
distinct consequences of this knowledge base [14]: we say that C is subsumed by
D with degree n w.r.t. T iff the following three conditions are satisfied: (i) Tn is
consistent; (ii) C vTn

D; and (ii) for all m > n, C 6vTm
D.

For deciding whether a subsumption follows with a given degree n0, the
computation of a boundary is useful in two different ways. First, one needs to
find the minimum n such that Tn is consistent. Notice that, due to Condition (i)
above, for any n smaller than such a minimum, reasoning will not yield any
consequence; this is known as the drowning problem of possibilistic logic [5].
Thus, we can actually cut the ontology to allow only those above the maximum
inconsistency level. This maximum inconsistency level is in fact the boundary
when considering inconsistency of ontologies as the c-property.

Once we have found the reduced consistent ontology, we need to find the
maximum n such that the subsumption relation follows from Tn. This corre-
sponds once again to the computation of a boundary, whose result is exactly the
necessity degree.

As in the previous subsection, the lattice considered for possibilistic reasoning
is a total ordering, where only finitely many elements are actually relevant.
Thus, possibilistic reasoning can be done within the same complexity bounds as
standard DL reasoning.

One thing that must be noticed in this case is that the drowning problem is
not always a desirable property, even in possibilistic reasoning. Thus, alternative
definitions have been devised for such reasoning (see, e.g. [14]). Although it is
not absolutely certain that boundary computation is not possible using these
alternative definitions, a näıve application of the methods presented in this work
yields an incorrect answer. Thus, if boundary computation is to be useful in this
setting, a more elaborate approach will be necessary.

5 Conclusions and Future Work

We have presented the problem of boundary computation, which allows us to rea-
son about portions of ontologies, depending on weights associated to the axioms.
A previously known instance of boundary computation, which also worked as
motivation for our general framework, is that of axiom pinpointing. We showed
that the pinpointing formula can be seen as an abstract representation of all
boundaries with respect to a given property. In fact, given an instance of a dis-
tributive lattice S and a labeling function lab, there is an homomorphism that
maps the pinpointing formula to the boundary w.r.t. S and lab. Thus, previously
known methods for computing the pinpointing formula can be directly applied
to the computation of a boundary. Additionally, if the lattice S and the labeling
function lab are known and fixed, the methods can be easily adapted to compute
this boundary directly, without detouring through the pinpointing formula, im-
proving this way the total execution time of the algorithm. We have shown the
usefulness of our general approach by presenting three basic applications addi-
tionally to pinpointing. First, we showed how the boundary can help reasoning
over a rights hierarchy, to control access to an ontology and the consequences
derivable from it. Then we showed how boundaries relate to non-standard logics
by showing their applicability to special cases of fuzzy- and possibilistic reason-
ing.

This paper gives just the first steps towards a general study of boundaries,
and as such there is much work that can still be done. For one, it would be
desirable to find more settings where the computation of a boundary yields a
value of interest. Another area of future research is the analysis of distributive
lattices and labeling functions, with the aim of finding classes where computing
the boundary requires less resources than pinpointing, which is known to be hard
even for very inexpressive logics. Third, we are interested in finding out whether
similar ideas can be applied to more general algebraic structures, rather than

distributive lattices. Such a generalization could be helpful for reasoning with re-
spect to other t-norms, or the variants of possibilistic logic. Alternatively, it could
be used to compute properties that change over time, or where the repeated use
of the same axiom has a different influence on the result than a single applica-
tion. Last, pinpointing has shown that it is not always necessary to compute the
exact pinpointing formula, and that approximate solutions are sometimes easy
to compute. We would like to investigate settings where approximate boundaries
would be of interest, particularly when an approximation suffices to adequately
solve a problem.

References

1. F. Baader and R. Peñaloza. Automata-based axiom pinpointing. In A. Armando,
P. Baumgartner, and G. Dowek, editors, Proceedings of the International Joint
Conference on Automated Reasoning (IJCAR 2008), volume 4667 of LNAI, pages
226–241, Sydney, Australia, 2008. Springer-Verlag.

2. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 2009. Special Issue: Tableaux’07. To appear.

3. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the description
logic EL+. In J. Hertzberg, M. Beetz, and R. Englert, editors, Proceedings of the
30th German Annual Conference on Artificial Intelligence (KI’07), volume 4667
of LNAI, pages 52–67, Osnabrück, Germany, 2007. Springer-Verlag.

4. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom pin-
pointing in the description logic EL+. In Proceedings of the 3rd Knowledge Repre-
sentation in Medicine (KR-MED’08), volume 410 of CEUR-WS, 2008.

5. S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade. Inconsistency man-
agement and prioritized syntax-based entailment. In Proc. of the 13th Int. Joint
Conf. on Artificial Intelligence (IJCAI’93), pages 640–647, 1993.

6. D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In Handbook of logic in
artificial intelligence and logic programming (vol. 3): nonmonotonic reasoning and
uncertain reasoning, pages 439–513, New York, NY, USA, 1994. Oxford University
Press, Inc.

7. D. Dubois, J. Mengin, and H. Prade. Possibilistic uncertainty and fuzzy features
in description logic. A preliminary discussion. In E. Sanchez, editor, Fuzzy logic
and the semantic web, pages 101–113. Elsevier, http://www.elsevier.com/, 2006.

8. G. Grätzer. General Lattice Theory. Birkhäuser, Basel, second edition edition,
1998.

9. B. Hollunder. An alternative proof method for possibilistic logic and its application
to terminological logics. Int. J. Approx. Reasoning, 12(2):85–109, 1995.

10. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang, K.-I.
Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber,
and P. Cudré-Mauroux, editors, Proceedings of the 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007,
volume 4825 of LNCS, pages 267–280, Busan, Korea, 2007. Springer-Verlag.

11. G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice Hall PTR, 1995.

12. R. C. T. Lee. Fuzzy logic and the resolution principle. Journal of the ACM,
19(1):109–119, 1972.

13. T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable termi-
nologies for the description logic ALC. In Proc. of the 21st Nat. Conf. on Artificial
Intelligence (AAAI 2006). AAAI Press/The MIT Press, 2006.

14. G. Qi, J. Z. Pan, and Q. Ji. Extending description logics with uncertainty reasoning
in possibilistic logic. In ECSQARU ’07: Proceedings of the 9th European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, volume
4724 of LNAI, pages 828–839, Berlin, Heidelberg, 2007. Springer-Verlag.

15. R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57–95, 1987.

16. S. Schlobach, Z. Huang, R. Cornet, and F. Harmelen. Debugging incoherent ter-
minologies. Journal of Automated Reasoning, 39(3):317–349, 2007.

17. G. Stoilos, G. B. Stamou, and J. Z. Pan. Classifying fuzzy subsumption in fuzzy-
EL+. In F. Baader, C. Lutz, and B. Motik, editors, Proceedings of the 2008 De-
scription Logic Workshop (DL 2008), volume 353 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

18. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137–166, 2001.

19. B. Suntisrivaraporn, G. Qi, Q. Ji, and P. Haase. A modularization-based ap-
proach to finding all justifications for OWL DL entailments. In J. Domingue
and C. Anutariya, editors, Proceedings of the 3rd Asian Semantic Web Conference
(ASWC’08), volume 5367 of LNCS, pages 1–15. Springer-Verlag, 2008.

20. C. B. Tresp and R. Molitor. A description logic for vague knowledge. In Proc. of
the 13th Eur. Conf. on Artificial Intelligence (ECAI’98), pages 361–365, 1998.

