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Abstract

A key step in mapping the more conceptual stages
of design onto computational systems involves
identifying a vocabulary and ontology. While a
number of high-level ontologies have been pro-
posed, these are difficult to ground in terms of ac-
tual design instances, and manual definitions of the
symbols are often incomplete and difficult to main-
tain. As an alternative, we propose an ”infant de-
signer” paradigm which abstracts patterns for the
”functionally feasible regions” (FFR) while evalu-
ating many individual configurations in the design
space. These learned FFR patterns (which may
arise due to minimal levels of functional accept-
ability, or from optimization) often embody depen-
dency relationships among the design parameters,
i.e. the good designs lie along lower-dimensional
manifolds in the design parameter space. We show
how such manifolds exist in several design situa-
tions; each combination of the original design pa-
rameters may be thought of as a ”chunk”; the space
of these chunks models only the ”good designs”.
Next, we show how the patterns defined based on
these chunks constitute image schemas, which may
be implicit (e.g. the pattern for an FFR), or ex-
plicit (where the relationship is observable). These
patterns or image schemas are incipient semantic
model leading to symbols. We present examples
of how such image schemas are arrived at with the
help of universal motor design.

1 Efforts towards standardizing the design
vocabulary

Evolving a standardized vocabulary for design has emerged
as an important focus in engineering design. Possible appli-
cations include developing design repositories [Bohm et al.,
2005], computer assisted conceptual design [Gero and Fu-
jii, 2000], etc. It is clear that vocabularies are structured,
that is there are considerable relations between terms. Of-
ten, this is viewed as an ontology or as a structured rela-
tionship that captures a part of the semantics of these terms.
One popular view of the engineering system considers the

flow of energy, information, etc, and proceeds downward into
detailed design. With its roots in value engineering ideas
from the 1940s, these notions were seeded by the analysis
in Pahl and Beitz [Pahl and Beitz, 19881996] and a partic-
ularly influential study by Welch and Dixon [Richard and
Dixon, 1994], leading to modern ontological models like
the widely used functional basis model [Hirtz et al., 2002]
or implementations on ontology tools [Nanda et al., 2007;
Szykman et al., 2001].

The above represents the human-engineered approach to
defining symbols. This type of approach is initially tempt-
ing because it tends to meet immediate applications, but a
long history in knowledge-based systems has shown it to be
brittle, i.e. subject to failure under even minor deviations in
the domain. In general, it may be that symbols are more
meaningfully developed by abstracting from existing data.
The novel contribution of this paper is to show that at least
in certain types of design tasks, lower-dimensional surfaces
are revealed by multi-objective optimization. The intrinsic
dimensions in these pareto-surfaces might constitute one ap-
proach to obtaining “symbols” directly from experiential data
as opposed to engineering them by programming definitions /
rules. These approaches are detailed further in section 1.2 and
section 3, but first we look more closely at the term “symbol”,
and what is understood by its semantics.

1.1 The semantics of design symbols
Unfortunately the term “symbol”, as it is used in the logic
and computational theory is considerably different from its
usage in cognitive linguistics and in everyday life. In the
latter usage, symbols are imbued with meaning grounded on
experience, whereas in the formal usage, it is merely a to-
ken constructed from some finite alphabet, and is related only
to other such tokens. If we present an analogy, a blind man
knows “red” is a different color from “blue” and “green” but
his understanding of red is dramatically different from that of
a sighted person, because the semantic pole is not connected
to direct experience.On the other hand, “symbol” has come to
be understood in cognitive science (and also traditionally in
linguistics, e.g. de Saussure ( [De Saussure, 19161986]), as
the tight binding of the of the psychological impression of the
sound (the “phonological pole”) with the mental image of the
meaning (the semantic pole) [Langacker, 1986]. The mental
image or image schema includes all sorts of associations and
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Figure 1: Emergence of symbols based on experience: Often
the same abstract pattern (or chunk) appears in many experi-
ences (e.g. the notion of “containment” for peg in hole, bolt in
latch, plug in sink, etc.). If a chunk is valuable in compactly
representing many situations, it has a higher likelihood of be-
ing communicated, thus acquiring a phonological pole and
becoming a symbol. A symbol can then form other associa-
tions besides the initial chunk, all of which together constitute
its semantic pole or image schema.

is somewhat different for each user, though social convention
ensures a degree of overlap between mental images within the
language community.

However, the notion of symbol is more far-reaching than
communication. It turns out that to some extent, the sym-
bols help divide up the world into classes, and eventually, it
may reflect changes in how we think. For instance, Korean
language makes a distinction between spatial tight-fit situa-
tions, kkita, (as in “put the cap on the pen”, “hand in glove”)
from other usages of “in” or “on”. Infants growing up in En-
glish and Korean linguistic environments were sensitive to
both contrasts, but English children appear to lose this sen-
sitivity around the time they start acquiring language, sug-
gesting that the language construct may have weakened their
sensitivity to these changes [McDonough et al., 2003].

On the other hand, incompatibility of design vocabulary is
rarely a problem between humans (that’s why exceptions of-
ten become memorable). If designers A and B are talking,
and A does not have a particular symbol λ, its image-schema
may emerge through a small amount of discussion; in many
cases, just a single example may be enough to stretch an ex-
isting concept λ′ in A to the current one. Of course, the new
symbol λ′ remains imprecise, and designer A is aware of it,
and subsequent uses of λ′ will serve to ground it. All this is
possible because the semantic pole for the human is a com-
plex, elastic set of associations that cannot be defined in terms
of a single predicate or even a range, it is the set of all situ-
ations where the symbol may be encountered (figure 2). All
these associations need to be learned, and cannot be inferred
based on a single definition (not to mention issues such as
nonmonotonicity); hence the programmer-given single defi-
nition, usually created to demonstrate the example at hand, is
a hopelessly inadequate semantics for a design symbol; and
that is why we need bottom-up symbol discovery in order to
ground a design vocabulary.
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Figure 2: Abstraction starts with ground instances: Sym-
bols like “hatchback”, “sedan”, or “jeep” may correspond an
abstract pattern or “image schema”, which is used to iden-
tify instances as belonging to a symbol category, but also in
composing symbols, and in interpreting higher abstractions.
Primitive design ontologies like is-a arise when instances al-
ready known as sedans or hatchbacks are also labelled as
“car” by a trusted user. Similarly, other relations e.g. “jeeps
can drive over rough terrain” would also be learned through
usage and become part of the image schema. The number
of such associations for each symbol is often very large, and
limiting these to a few user-determined definitions is a major
contributor to brittleness in knowledge systems.

1.2 Bottom-Up Semantics in design
An alternative that has been proposed for modeling design
concepts is to attempt to move more towards the human pro-
cess, to learn symbols based on design experience[Gero and
Fujii, 2000]. The human design process is a constant, moti-
vated exploration of the design space, e.g. through sketching.
All the while, the designer is focusing on the designs that are
“good” in some functional sense, and eventually, some kinds
of patterns emerge as the common characteristics of these de-
signs. This is one sense in which sketches “talk back” to the
designer [Goldschmidt, 2003]. These patterns result in con-
straints whereby many of the initial design variables can be
combined, a process cognitively known as chunking [Gobet
et al., 2001].

For example, in designing a padlock, we may learn that the
shackle diameter increases roughly in proportion with body
size. Thus these two parameters can then be brought down to
a single chunk. These chunks, which limit the choices used
in “good designs”, may be what are used by expert designers
[Gross, 1986].

An early attempt at discovering patterns in the design space
of shapes may be seen in relation to 2D shapes in the work of
[Park and Gero, 1999]. [Moss et al., 2004] have developed
a system in which a design observer agent considers trends
among good designs and try to extracts chunks. Similarly
a recent approach by [Sarkar et al., 2008], considers Singu-
lar Value Decomposition (SVD) on a co-occurance matrix of
matrix of variables and constraints to identify the relations
between different variable groups.
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However, none of these proposals attempt to learn their
symbols in a grounded manner, and therefore lack the flexi-
bility of the human designer. By grounded, we refer to the
progressive manner in which a human designer learns her
concepts - the more abstract ones are based on earlier, con-
crete concepts, but are still presented through instances. In
the end, many concepts are grounded in terms of a number
of experiential instances. For a human designer, this learn-
ing cannot be limited to the years of training as a designer,
but must include all of her knowledge about the world, the so
called commonsense knowledge. Thus, the fact that a fat peg
will not go into a thin hole is part of her prior knowledge. In-
deed, it is likely that the process by which she acquires these
patterns, built upon many layers of pre-existing knowledge,
may be similar in some salient ways with her earliest learn-
ing.

In this work, we propose to take the first step towards build-
ing such a grounded semantics, which we call the birth of
symbols. In a human design scenario, say while “talking” to
a sketch, a designer may get a conscious awareness of a con-
straint without verbalizing it - this is referred to as reification,
becoming real - and is a key step in forming new symbols.
Sometimes, amorphous implicit schemas, which are formed
well before we are aware of them [Gladwell et al., 2005] are
incipient symbols, but they need to prove their mettle before
they become true symbols. This interpretation is in line with
a long tradition in psychology and linguistics, that symbols
are “aware” or conscious [Mandler, 2004].

2 Infant designer
A system learning symbols is like a baby who is first discov-
ering regularity of object behaviour in the world. She can
make various choices, and evaluate them based on some no-
tion of function. Considering the peg-in-hole task just alluded
to, we see how she might learn the concept that a peg must be
smaller than a hole.

The functional model considered is simple - the design is
functionally feasible if the peg can go in (actually our system
computes the configuration space - the penetration region dis-
appears when w > t). We consider a horizontal version of the
peg-in-hole - a latch is entering a slot on a bolt, say. Figure 3
shows how after evaluating a number of instances in the de-
sign space of latch-widths w and slot-widths t; in (w, t) space,
a clear 45 degree line emerges, separating the “good designs”
from the bad.

Does this constitute symbolic knowledge for the infant de-
signer? Most likely not. However, it is something that might
become a symbol as she acquires other concepts that she
can refer to. What is interesting in the results of figure 3
is how, after experiencing just a few instances, the pattern is
inchoate, so the baby keeps trying to insert the fat square into
the smaller circle, filling up the negative (black) area of the
figure. Eventually the defining boundary becomes sharper,
and at some point it can be said to knows the principle, at
least implicitly.

At the next step for our infant designer, we consider the
concept that a designer knows as “fit”. By now our infant
learner will attempt to insert pegs only if they are smaller than

0 0.5 1
0

0.2

0.4

0.6

0.8

1

w

t

(a) Latch-in-Slot assembly (b) 10 instances

0 0.5 1
0

0.2

0.4

0.6

0.8

1

w

t

0 0.5 1
0

0.2

0.4

0.6

0.8

1

w

t

(c) 50 instances (d) 200 instances

Figure 3: Learning through experience that latch-must-be-
smaller-than-slot (w > t). (a) A latch of thickness t is fit-
ted to a slot of width w. The learned patterns are shown in
(w, t)-space in (b)-(d). The quality of the learned pattern
varies greatly with degree of experience: results shown for
a multi-layer perceptron after experiencing 10,50, and 200
design instances.

the slot. The function is defined in terms of the degree of fit
- how much does it wiggle? Defining the wiggle in terms of
the area of the free-space in the configuration space, we see
that if the wiggle desired is very small, we get the situation
on the left, and if it is very large, we get the situation on the
right. Eventually, the learner learns the concept of “fit” as
a chunk (composed as w − t) - thus, given a level of fit, it
imposes a constraint where w and t are related in a manner
where they constitute a one-dimensional chunk instead of two
independent variable.

Of course, from a machine learning perspective, both these
examples are rather elementary. Our objective in presenting
it is merely to emphasize the role of even the earliest knowl-
edge in many advanced design situations. These two con-
cepts are also among our earliest knowledge achievements;
typically, infants learn containment (peg in hole) by about
3 months, and tight vs loose by 5 months [Casasola et al.,
2003]. Many cognitive scientists believe that our concepts of
abstraction, including the is-a crucial to constructing hierar-
chies, is a metaphorical extension of containment [Lakoff and
Johnson, 1999].

3 Symbol emergence
As the designer matures from infancy, we can consider the
more general process by which symbols form. These may
correspond to the stages shown in figure 5. At first, the de-
signer explores with instances in the design space, distin-
guishing the good designs from the bad. Eventually a sub-
set of the design space emerges as the Functionally Feasible
region (FFR), or the space of “good designs”. Often, FFRs
correspond to narrow bands of functional feasibility. This
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Figure 4: Birth of the image-schema for “fit”: An insertion
task with different kinds of fit are shown in the top row and
the corresponding design spaces (w, t) with feasible and in-
feasible regions are shown below. The function is given as
the amount of play available (amount of free-motion or wig-
gle). If the desirable wiggle is specified, the two-dimensional
design space is effectively reduced to one since a relation
emerges between the feasible w and t. This mapping or image
schema is a early prototype of the concept of “fit”.

may be because they are the result of (possibly unconscious)
multi-objective optimization - thus, if there are k design ob-
jectives, then they constitute a k − 1 surface in the objec-
tive space. In continuum design situations (i.e. the search
space is continuous and not combinatorial), if the function
measures that map from the design variable space to the ob-
jective space are continuous, their Jacobians would be well-
posed, and the near neighbours in the objective space may
correspond to near neighbours in the design space. While
this assumption is flawed for a large class of difficult opti-
mization problems (e.g. Quadratic assignment), it often holds
for a large if not preponderant fraction of real tasks. Thus, in
such situations, we may designs that lie along a k− 1 pareto-
surface (or “manifold”) in the objective space (shown as a
folded patch in the figure), and a similar lower-dimensional
manifold in the design space as well. Each dimension of this
lower dimensional space reflects an inter-relation between in-
dependent design parameters (e.g. the shackle diameter and
the lock size). Sometimes, some of these dimensional map-
pings or chunks may recur in many design situations - this
makes the chunk useful, which is an important criteria for
becoming a symbol. In the interim, the designer may use
these chunks with a dim awareness of it for a long period,
even several years. Later, a label may get attached to it, and
many other associations would eventually accrue to this term
/ image-schema pair; it would then constitute a truly reified
symbol.

Thus a key aspect of design symbol formation is dimen-
sionality reduction, - i.e. finding low-dimensional patterns
in high-dimensional space. There are two classes of dimen-
sionality reduction algorithms - linear methods like PCA or
ICA [Bishop, 2006], or nonlinear approaches, which may
be global (Isomaps [Tenenbaum et al., 2000] ) or local (Lo-
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Figure 5: The symbol emergence process: our main interest
is to discover and learn structural or behavioral chunks that
result in good designs, corresponding to functionally feasi-
ble regions (FFRs) in the designs space. FFRs typically re-
flect multiple functional criteria, and may be obtained from
some approximate optimization, or from user specified min-
imal functional criteria. A set of FFR instances can be used
to learn a pattern of functional feasibility, the quality of this
pattern improves with experience as earlier. Once the FFR
is sufficiently rich, one may also discover that they lie along
some low-dimensional manifold (Rd) embedded in the high-
dimensional design space RD (d � D). The lower dimen-
sional space is then a chunked representation for the initial
design space. If this relation becomes conscious, it may then
become a design symbol.

cally Linear Embedding or LLE [Saul and Roweis, 2003] and
Laplacian Eigenmaps [Belkin and Niyogi, 2002]). Here we
present some results based on the LLE algorithm, which is an
eigenvector method that works based on the assumption that
the same weighted sum between neighbours would hold both
in the high and the low dimensional spaces (algorithm 1).

3.1 Universal Motor example
We illustrate the working of the process based on the Univer-
sal Motor,which has been well studied in the product family
design literature [Simpson, 1998]. The design space con-
sists of eight design variables: Nc (number of wire turns
on armature) Ns (number of turns on each field pole), Awa

(cross-section area of armature wire), Awf (cross-section
area of the field wire), ro (radius of motor), t (thickness
of stator) , I: (current drawn by motor), L (stack length).
Function is measured through a set of performance behav-
iors: strength, mass, energy and efficiency. The correspond-
ing performance metrics in terms of these design variables
can be πtorque(~v) = NcφI

Π , πmass(~v) = masswindings +
massarmature+masswindings, πpower(~v) = VtI−I2(Ra+
Rs) − 2I , and πefficiency(~v) = πpower

VtI
. (following [Simp-

son, 1998]). We may now consider that the feasible designs
have (i) the magnetizing intensity H < 5000 and (ii) the outer
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Algorithm 1 Local Linear Embedding
1. Compute the neighbors Xj of each data

point,Xi.

2. Compute the weights Wij that best
reconstruct each data point Xi from its
neighbors, minimizing the reconstruction
error (ε(W ) =

∑
i
|Xi −

∑
j
WijXj |2) by

constrained linear fits.

3. Compute the vectors Γi best reconstructed
by the weights Wij, minimizing the
quadratic form (Φ(Γ) =

∑
i
|Γi −

∑
j
WijΓj |2) by

its bottom nonzero eigenvectors.

radius of the stator ro greater than the thickness of the stator
t.

We next outline two experiments designed to reveal the
inter-relationships in the parameter space when it comes to
the optimized designs. The results suggest that the optimized
designs are not scattered uniformly across the design space,
but reveal certain inter-relations between the design parame-
ters. Thus, the initial parameter space of 8 parameters may
actually constitute only two independent parameters when it
comes to the optimized designs. While these results hold only
for these design classes, the implications might be more gen-
eral, and imply far-reaching consequences in obtaining sym-
bols as dimension-reducing patterns in continuous parameter
space of a wide ranging set of problems. However, whether
these results will scale up to other remains a subject of con-
siderably more research; the results below only indicate that
this may be so.

3.2 Two-dimensional design space
In an initial experiment, we consider a minimal parameter
set for the universal motor - modeling the design variabil-
ity in terms of only two design parameters L and I , while
keeping other parameters constant [Simpson, 1998]. For a
desired functional range of power 280 W< πpower < 295,
the FFR (the valid designs resulting from this constraint) is
shown in Figure 6(a). These lie along a small band, which
can be thought of as a curved 1-D manifold (with a slight
thickness). 6(b).

The mapping between the nonlinear feasible region (Fig.
6 (b)) and the one-dimensional chunk for it below (Fig. 6
(c)) shows the continuity of mapping between these. If we
take three data points A,B, and C in L, I space. Let us say
X = [A B C], each data point is a real-valued vector, with
of dimensionality 2. With the help of Local Linear Em-
bedding (LLE) algorithm [Roweis and Saul, 2000], we con-
struct a neighborhood preserving mapping from L, I space
to Γ. The three points A= (32.0, 4.09), B= (22.5, 3.5455)
and C= (10.5, 12.000) and their corresponding mappings in
the lower-dimensional manifold are γA = −0.2102, γB =
−0.1430 and γC = 0.0007.

This reduction of the two design parameters to a single γ
represents the first stage of symbol formation. If, later, this
γ chunk is discovered in other situations, then a label, say
“gavagai”, may attach to it. Then as the term “gavagai” may
spread in the design community, and might occur in many
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Figure 6: Chunking on the L, I subspace for Universal Mo-
tors: (a) The implicit constraint on the L, I subspace of the
Design Space is learned for 2000 design instances under the
functional specification 280 W< πpower < 295 W. (b) The
feasible designs in the L, I subspace. (c) The mapping onto
a low-dimensional (1-D) space; this reveals that for good de-
signs, the stack-length L and the motor current I are related.
A,B, C: individual design instances in (b) and (c).

other situations, and each such association would form part of
the semantics of the term gavagai. A computational system
that learns this term in this way would need to participate in
such discussions in the design community to keep its seman-
tics current. This is another reason why static programmed
machine semantics, even if they can capture all the usages
at a given point of time, fail in the long run as human usage
changes.

3.3 High-dimensional spaces: Multi-Objective
Optimization

If we are to consider the eight-dimensional design space for
the Universal motor, a more useful approach towards finding
FFRs may be to consider a multi-objective optimization prob-
lem based on a set of performance metrics. If design solution
A is better than solution B in all the functional criteria, we
say that A dominates— B. The set of all non-dominated solu-
tions is the non-dominated front or pareto-front, and usually
lies along a surface in the space of objective functions. For
the Universal motors example, the multi-objective optimiza-
tion problem may be formulated as follows:

Multi-Objective Optimization

Minimize πmass(v)
Maximize πefficiency(v)
Maximize πtorque(v)
Subject to g1(v) ≡ r − t > 0

g2(v) ≡ 5000−H > 0,
g3(v) ≡ 2.0− πMass ≥ 0,
g4(v) ≡ 0.5 ≤ πtorque ≤ 5.0,
g5(v) ≡ 300 ≤ πPower ≤ 600
g6(v) ≡ πefficiency − 0.15 ≥ 0

(1)
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Figure 7: The non-dominated front for the Universal mo-
tor. (a) The non-dominated solutions (pareto-front) in the
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segregated (with some noise).
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Figure 8: Dimensionality of manifold for Universal Motors
based on . The FFR data is mapped onto manifolds of differ-
ent dimensions, and then mapped back to the original design
space and the error is estimated. The error drops sharply from
1-D to 2-D manifold, and then less sharply. The knee of the
curve at “2” is indicative of the intrinsic dimensionality of the
space.

We use the well known NSGA-II [Deb, 2001] evolution-
ary algorithm, with population size 2000, and probability of
crossover 0.8, mutation probability 0.33 and 0.1 (for real/ bi-
nary). The estimated pareto front for maximizing both the
torque (πtorque) and efficiency (πefficiency) while minimiz-
ing the mass (πmass) is shown in Fig. 7(a). The designs in
this non-dominated front in objective space are identified in
the original 8-parameter design space. We now attempt to
see if these 8-D points actually constitute a lower dimension-
ality manifold, by considering the reconstruction error when
mapped to differing dimensionalities from 2 to 8 (figure Fig.
8; the sharp knee at 2 indicates considerable information ab-
straction, and Fig. 7(b) shows the mapping to a 2-dimensional
space obtained by LLE. This mapping reveals that neighbours
in the high dimensional space remain nearby in the lower-
dimensional space at least for this universal motor problem.

The results here signify that for the universal motor, ob-
taining the FFR as a 2-dimensional non-dominated surface in
objective space can lead to a dimensionality reduction to 2 in

the design space as well. These two dimensions possibly re-
flect inter-relations between the original eight parameters that
pertain to the better designs in the design space. In terms of
symbol formation, these two dimensions (“XX” and “YY”,
say), if they are found repeatedly in other domains as well,
may eventually become symbols. With sufficient experience,
the relation between these two parameters and the design may
eventually be encoded into design rules: e.g. “higher YY is
usually associated with the more efficient designs”. Subse-
quent experience may also alter the way we understand these
chunks, and therefore rules like the above that are built on it;
through this demonstration we are primarily arguing that by
keeping these symbols grounded, it would be possible to keep
updating their semantics and their inter-relations (the rules),
thus providing a truly flexible symbol system, in contrast to
static symbol systems.

We must be careful to point however, that in general a k−1-
dimensional pareto-surface in objective space may not map
to an equivalent manifold in design space - there are a large
number of situations where the performance metrics mapping
from design space to objective space are not so well-behaved,
and such results may not hold. Nonetheless, even if a subset
of design parameters are well-behaved, at least some dimen-
sionality reduction may occur in these spaces. To obtain an
estimate of the dimension of the manifold for our data set,
we use the technique based on the idea that a dimensionality
reduction algorithm should preserve information on a global
scale, so that the inverse mapping error should be minimal.
For a given input dataset X = {X1, . . . XN} ⊂ RD, the
dimensional reduction algorithm such as LLE provide a re-
duced dimensional representation Y = {Y1, . . . YN} ⊂ Rd

of the original data set X . How to determine the reduced-
dimensionality d is not clear; one approach may be to con-
sider several d’s and select that which minimizes the residual
bijection error (rd) =

∑
i ||f

−1
d (fd(Xi − Xi)||,[Martin and

Backer, 2005] wherefd : X → Y is the map produced by
LLE. By observing the behavior of rd for different values of
d shown in Fig. 8 we can suggest the intrinsic dimension
for the universal motor is most likely 2; i.e. the initial space
of 8 parameters can, given these optimization conditions, be
reduced to two incipient “symbols”.

4 Conclusion
The main contributions of this work is the proposal that non-
linear manifold learning may constitute an important step in
discovering latent relationships among the many parameters
that define how the world works. A key constraint is our in-
complete characterization of the situations in which such a
lower-dimensional characterization would exist.

Among the work that would need to be done next is to the
conjoints of more than one symbol; i.e. given the design ele-
ments each as an individual symbol, we need to be able to say
what the conjunction of these elements (the syntax) will do,
and whether the resulting object - a design instance - will be
adequate to meet the design task or not. Again, depending on
the “good designs” that emerge in the process, a combination
of symbols may come to be designated as a symbol on its own
right, leading to the birth of abstract symbols.
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The argument presented here implies that in the long run,
to create viable computer vocabularies for design or AI, we
must train the systems to learn these relationships, by expe-
riencing many design and real world situations. This may be
done in an accelerated manner, but the system must be ex-
posed to something like the vast array of experiences of a
human - or possibly many more, since the abstraction pro-
cesses as computationally available today may not be as effi-
cient. As different systems are deployed in solving different
problems, their somewhat differing input sets would result in
somewhat different abstractions for the same symbols. These
resulting design agents may therefore be somewhat less pre-
dictable than current computers, but such is the price of flex-
ibility.
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