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Abstract. The goal of this paper is to report our experiences from integrating 
item-based collaborative filtering into the Web 2.0 site linkfun.net. We discuss 
the necessary steps to implement the selected Slope One algorithm in our real 
world application. It was necessary to conduct performance optimization to 
allow for recommendations without any delays in page generation on our site. 
Firstly, we significantly reduced the data model by including only items 
similarities for pairs of items where both items been rated by at least k users. 
Secondly, we precomputed recommended items for users. By analyzing the 
empirical results, we found out that user activity increased on the site after 
introducing the recommender. In addition, users rated recommended videos 
higher on average than others which indicates that the recommender allowed 
users to find preferred videos more effectively. 

Keywords: recommender systems, collaborative filtering, slope one, 
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1   Introduction 

Web 2.0 applications such as MySpace, YouTube or FlickR have gained much 
interest in industry and academia in recent years. Users can easily upload content such 
as videos, photos or links in order to share them with others. However, most current 
sites lack structured intelligence and finding meaningful information can be difficult 
[1]. Recommender systems and collaborative filtering are techniques to deal with this 
problem as they filter information items according to a user’s needs and taste. 

In this project, we are investigating the integration of a collaborative 
recommendation system in the real world Web 2.0 site www.linkfun.net (Fig. 1)1. This 
site allows users to share links to funny content such as videos. While other sites like 
YouTube feature all kind of videos, linkfun.net focuses on humorous content. In 
addition, linkfun.net does not host the videos itself, but users provide links to content 
on various other sites. The overall goal of the work presented in this paper was to 
provide good recommendations to users and thus increase user interest in the site and 
expanding the community and value of linkfun.net. Notable requirements included the 

                                                            
1 The user interface of linkfun.net is currently in German only 
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integration of the recommendation without decreasing the performance of the site, 
extra hardware needs or additional effort for the users. 

 
 

 

Fig. 1. Screenshot www.linkfun.net 

 
The rest of this paper is organized as follows. The next section gives some 

background on recommender systems and discusses which type of system appears 
well suited for our scenario in principle. In section 3, we explain the necessary steps 
to integrate the filtering functionality in linkfun.net. In section 4, we present the 
empirical results from the analysis of log files. Finally, we conclude the paper with a 
short summary and an outlook. 

2   Recommender Systems and Collaborative Filtering 

The basic idea of recommender systems is to recommend products like books and 
CDs and other items such as restaurants or videos to an active user. To do so, the 
system computes the chance that a user likes an item. This is based on information 
about the user the items and possibly other data such as contextual information. 
Characteristics of recommender algorithms include the quality of recommendations, 
storage and runtime complexities, anonymity and extensibility of the model. 
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2.1   Individual Recommender Systems 

In general, we distinguish between individual and collaborative recommender 
systems. Individual recommenders determine fitting items based on the profile of the 
active user. Thereby, the system matches explicitly entered or implicitly observed 
user preferences and interests with items meta data. Hence, this type of recommender 
system is often called content-based recommender system. One way of implementing 
this kind of recommender is to use a rule system. However, the content-based 
approach is not well suited for Web 2.0 content because additional information about 
the items and/or users is required. Moreover, an individual recommender does not fit 
the social and collaborative nature of Web 2.0 applications. 

2.2   Collaborative Recommender Systems 

The second category of recommender systems are based on collaborative filtering 
(CF). CF utilizes the ratings of other users for items, for example a rating on a scale of 
1 to 5. The vector of all ratings of a user for various items is called a user’s rating 
vector. CF seems appropriate for Web 2.0 because it needs no information about 
items and implements the “word of mouth” idea that is also prevalent in Web 2.0. 
Users like to express their opinions on content and basic rating schemes already exist 
in some sites.  

We differentiate between two variants of CF, user- and item-based collaborative 
filtering. The recommendation process of user-based CF basically consists of two 
steps. First, neighborhood creation: Determine a set of k users that have rated 
similarly to the active user in the past. Second, recommendation of new items for the 
active user. For neighborhood creation, the active user’s rating vector is compared to 
the vectors of all other users. To do so, different metrics have been proposed in the 
literature, for example Euclidean distance, cosine similarity or Pearson-Spearman 
correlation [2]. Thus, user-based CF analyzes the available raw data, namely the user-
item matrix of ratings. In the second step, the algorithm selects items, which the 
active user has not rated yet, but which have been rated positively in the 
neighborhood of the active user. User-based CF has proven very useful and accurate 
in applications such as Web shops. However, this type of collaborative recommender 
has several drawbacks. First of all, there is the new user problem. User-based CF 
cannot generate a suggestive recommendation if the active user has not rated any 
items. In a Web 2.0 site such as linkfun.net, new or occasional users may represent a 
high share of the user base. A second relevant problem of user-based CF is that the 
approach is computationally costly. The approach operates on the raw data of ratings, 
which have to be analyzed each time a prediction is computed. 

2.3   Item-based Collaborative Filtering 

The alternative approach is item-based CF. Item-based CF does not consider the 
similarity of users, but of items [3]. Thus, the user-item matrix is not analyzed line by 
line, but column by column. One significant difference to user-based CF is the 

Workshop on Adaptation and Personalization for Web 2.0, UMAP'09, June 22-26, 2009

122



independence from who the active user is: the item similarities can be precomputed to 
build an item-item matrix. The item-item matrix is the model of the algorithm. 
Therefore, this type of recommendation algorithm is also called model-based 
collaborative filtering. One element Si;j of the item-item matrix expresses the 
similarity between items i and j, determined from the users’ ratings. The ratings 
vector of the active user is then used to recommend items that are similar to items the 
active user has rated positively in the past. 

It is important to note that item-based CF has little in common with individual, 
content-based filtering. This is because the users’ ratings are solely used for 
computing the item similarity. Meta data of items is irrelevant. Item-based CF has an 
advantage over user-based CF with regard to the complexity of the computation. The 
item-item matrix can be calculated as an intermediate result, independently from the 
active user. The main advantage of item-based CF is performance, because generating 
recommendations from the model instead of the raw data of ratings is much more 
efficient. 

Slope One [4] is an example of an item-based CF algorithm. The main idea of the 
approach is to use differentials of ratings and store them in the item-item matrix. 
Slope One uses predictors of the form f(x) = x + b, which precompute the average 
difference between the ratings of two items for users who rated both items [4]. 
Consequently, the model can be updated on the fly, without the need to recalculate the 
model when a rating is made. In addition, it is not demanding as much information 
from new users. One rating is enough to be able to generate recommendation for a 
user. Finally, [5] describes a straightforward implementation in PHP using a SQL 
database. Linkfun.net was also implemented in PHP and SQL, so we decided to base 
our recommender on Slope One. More details on Slope One and our implementation 
are given in the next section. 

3   Data Model, Recommendations and Optimization 

In this third section of the paper we explain the design decisions when integrating 
Slope One into linkfun.net and implementing the collaborative filtering method. 

3.1   Data Model 

The initial situation in linkfun.net was that users were able to give ratings on a scale 
from 1 to 5 with 5 being the best grade. However, the application did only save the 
aggregated average value for each item. Information about the individual ratings of 
users was not kept. Slope One and all other CF algorithms do need the detailed user-
item matrix though. 

Hence, the existing ratings had to be discarded and a new data model had to be 
designed. This new model consists of three database tables to store the necessary 
information: 

- Table rating to store the user ratings for items, with one rating 
corresponding to one row in this table. 
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- Table dev for the average deviations of ratings for an item-item pair [5]. This 
table implements the item-item matrix or, in other words, the model of Slope 
One.  

- Table rating_recom to log when a video was recommended to a particular 
user and optionally how the user rated it after the recommendation.  

 
Every time a user u rates an item i, our system updates rating and calculates the 

impact on dev. To do so, the algorithm first determines all items u has rated, 
computes their rating differentials to i and updates the affected entries in dev. 

3.2   Generating Recommendations 

The model can then be used to generate and display the top five recommended items – 
primarily videos – when a user accesses linkfun.net. Slope One distinguishes between 
non-personalized and personalized recommendations [5]. Non-personalized 
recommendations are not based on collaborative filtering in the strict sense. After a 
user rates just one item i, the algorithm searches for items, which have the highest 
rating differential to i, i.e. were rated best in comparison to i. 

To predict the rating for a particular item i for an active user u, the algorithm first 
selects the set of items rs, which were rated by u and also by at least one other user. In 
the second step, the differentials between the ratings of i and the items in rs are 
determined using the item-item matrix, respectively our database table dev. Finally, 
the differentials are summed up and divided by the number of items in rs. This results 
in a predicted rating for i. Note that the predicted rating is possibly higher than the 
highest grade, for instance 5 on a 1-5 scale. This is because Slope One works on 
rating differences [4]. However, it is only important to compare the predicted values 
of items to each other to be able to generate a ranked list of items for the personalized 
recommendations. 

3.3   Optimization 

 
The number of elements in the item-item matrix – i.e. the table dev – soon grew to 
over 3.4 million entries with about 2000 items (Table 1). This is due to the fact that 
with more ratings of users, more and more items receive at least one rating and more 
and more similarities between item pairs can be calculated. This led to delays in 
handling ratings and computing recommendations. It hurt the overall user experience 
on linkfun.net because page generation was noticeably slowed. This necessitated 
performance optimization. 

 
We implemented two solutions to improve performance: 

1. Reducing the data model and the number of entries of the table dev 
2. Precomputing recommended items for users 
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Table 1. Reducing the data model 

 Number of entries in dev Available videos for recommendation 
No threshold 3404049 1961 

k=2 2436997 1885 
k=3 1397523 1759 
k=4 605561 1555 
k=5 198889 1278 
k=10 43 19 
 
 
The basic idea to minimize the size of the item-item matrix is to only compute and 

store item similarities for pairs of items where both items been rated by at least k 
users [5]. The obvious drawback is that some items, which have received few ratings, 
are not represented in the item-item matrix anymore. Thus, these items are no longer 
available for recommendation. Table 1 shows the number of entries in dev and the 
number of available videos for certain values of the threshold k of necessary ratings. 
At that point of time, a reasonable value for k was k=4. This value reduces the 
numbers of entries in dev significantly from 3404049 to 605561 while keeping about 
80% of items available for recommendations. 

Despite this reduction, generating recommendations when a user hits the 
corresponding link took still too much time. Hence, the recommendation had to be 
precomputed. To do so, we created a new database table precomp_recom that 
stores five recommended items for every user. This table is updated according to the 
following schedule: 

- Once per day, the recommended items for all users are recalculated. This 
procedure takes about 15 minutes. It is performed during the night when less 
users access the site. 

- The recommendations are updated every 5 minutes for users that have rated 
items since the last update. 

 
The second condition ensures that recommendations are updated promptly and 

regularly for active users and reflect their latest ratings. In any case, the model, i.e. the 
item-item matrix as basis for the recommendations, may be slightly out of date. Yet 
this fact has to be accepted to allow for instant recommendations by precomputing 
them. 

In general, CF algorithms may suffer from cold start problems with new users or 
new items. For example, new items cannot be recommended until they receive at least 
one rating. This was not a problem in our case. Most of our items were rated within 
hours and thus were potentially considered for recommendations reasonably soon. As 
far as new users are concerned, newly registered users to linkfun.net were shown a 
message that they need to rate at least one video to obtain recommendations. 
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4   Empirical Results 

In this section, we analyze the log files to evaluate the effect of the CF function on 
linkfun.net. We were in particular interested in two questions: 

- User activity: what were the effects of the recommender system on user 
activity? 

- Quality of recommendations: were recommended videos rated higher on 
average than other items? 

4.1   User Activity  

At time of research, there were 490 registered users of linkfun.net, although some of 
the registered users frequented the site rather seldom. 150 users rated at least one item 
and 50 users actively used the recommendation function. Overall, there were 10500 
ratings and 100000 times a video was played by users. About 60% of the video 
playbacks occurred after using the recommendation function. 
 

Table 2. User activity with regard to rating items 

Total number of users 490 100% 
Users with more than 1 rating 150 30,6% 
Users with more than 5 ratings 87 17,8% 

Users with more than 10 ratings 67 13,7% 
Users with more than 20 ratings 54 11,0% 
Users with more than 50 ratings 30 6,1% 
Users with more than 200 ratings 12 2,4% 

 
 

Table 2 shows the distribution of the number of user ratings. The table shows, that 
a rather small user base (“early adopters”) contributed to most of the ratings. Twelve 
users have accounted for about 8600 ratings or roughly 75% of all ratings.  

For overall user activity we looked at the visitor logs after the recommendation 
function was introduced. Fig. 2 illustrates the sessions and page visits per month over 
the course of the research period. While the number of sessions increased only 
gradually, we noticed a far bigger increase in page impressions. This means that the 
average time users spent on the site grew considerably. Although we are not able to 
measure the exact impact of the recommender on site activity, the overall goal of 
increasing user activity was met. 

 
 
 

Workshop on Adaptation and Personalization for Web 2.0, UMAP'09, June 22-26, 2009

126



 

Fig. 2. Sessions (left bars) and page visits (right bars) per month 

4.2   Quality of Recommendations 

As far as the quality of recommendations is concerned, we investigated the ratings the 
users gave to the videos. Overall, the videos were rated high on average with many 
videos receiving the best grade. This may be due to the fact that linkfun.net is a 
specialized community where users only provide links to funny content that may cater 
to a similar taste. We noticed a trend that this high rating average increased even 
further after the introduction of the recommender function (Fig. 3). Our assumption is 
that the rating and recommendation scheme allowed users to find preferred videos 
more effectively. 

 

 

Fig. 3. Trend of average ratings per week 

 

Workshop on Adaptation and Personalization for Web 2.0, UMAP'09, June 22-26, 2009

127



To evaluate the quality of recommendations in more detail, we compared the 
ratings of videos that were recommended to a user with the ratings of videos that were 
not in the list of recommendations. The latter category consists of videos accessed 
from the homepage of the site or from a “newest videos” section. We found out that 
recommended videos received higher grades: the average rating was 4.4 in 
comparison to 4.0 for non-recommended videos. 

 
 

 

Fig. 4. Distribution of ratings: recommended videos (left bars) vs. 
non-recommended videos (right bars) 

 
Fig. 4 shows the distribution of ratings for the videos in more detail. For example, 

67,9% of recommended videos were rated with the top grade (“5”), while the 
percentage of top-graded non-recommended videos is significantly lower (57,3%). 

5   Conclusion 

In this paper, we have described our experiences from integrating the item-based 
collaborative filtering algorithm Slope One into the Web 2.0 site linkfun.net. We 
explained the necessary steps including the data model. After we have done some 
performance optimization, the recommender function ran smoothly on the site, 
without any delays in user experience or additional hardware requirements. The 
performance optimization included reducing the data model of item similarities and 
precomputing recommended items for users. Overall, the Slope One algorithm proved 
to be very practicable and fitting for the examined site. By evaluating our 
implementation, we found out that user activity increased on the site after introducing 
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the recommender. In addition, users rated recommended videos higher on average 
than others.  

As far as related work is concerned, there are several applications which also use 
SlopeOne in practice. For example, InDiscover (http://www.indiscover.net) is a site 
for promoting independent musician and recommending new music to interested 
customers. Their system uses RACOFI which is a framework for rule-based 
collaborative filtering partly based on Slope One [6]. However, there is no published 
information about performance optimization or empirical results. There is plenty of 
research in improving recommender systems, mostly with a focus on prediction 
quality [7], but there are few reports on experiences from applying recommender 
algorithms in practical Web 2.0 applications. Leimstoll and Stormer discuss in [8] 
how collaborative filtering can be integrated in online shops in principle. Their 
proposal is somewhat similar to our approach, although no experiences from real 
world applications are reported. 

One goal of our planned future activities is to integrate implicit ratings that can be 
observed from user behavior. So far, all recommendations are based on explicit 
ratings users have made. We are currently investigating methods to measure the exact 
time a user spends with a video. When a user is watching a video until completion, 
one can assume that she liked the video, which relates to a good rating. If the user 
cancels the playback soon after the start, we would assign a low rating. Subsequently, 
we want to measure whether recommendation based on these implicit ratings derived 
from user observation performs as well as the explicit user ratings. 
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