
Verso un framework e un linguaggio logico per la
programmazione Web

Towards a Logic Language and Framework for Web Programming
Giulio Piancastelli Andrea Omicini Enrico Denti

Il Milione: A Journey in the Computational Logic in Italy

15



SOMMARIO/ABSTRACT

Nonostante la popolarità del World Wide Web come
piattaforma di sviluppo, una adeguata descrizione dei
suoi principi architetturali e criteri di progettazione è
stata ottenuta solo recentemente, grazie alla introduzione
dello stile architetturale REST (Representational State
Transfer), che definisce la risorsa come la fondamentale
astrazione della informazione. Difatti, i linguaggi e
gli strumenti correntemente usati per programmare il
Web soffrono in genere della mancanza di una corretta
comprensione dei suoi vincoli architetturali e progettuali,
e di una difformità tra le astrazioni di programmazione che
rende difficile sfruttare appieno le potenzialità del Web.
I linguaggi dichiarativi sono particolarmente adatti alla
costruzione di sistemi di programmazione rispettosi della
architettura e dei principi del Web. Tra le tecnologie
di programmazione logica, tuProlog è espressamente
progettato per essere uno dei componenti abilitanti di
infrastrutture basate su Internet: le sue proprietà in-
gegneristiche lo rendono peraltro adatto per il Web,
dove la programmazione logica permette la modifica
del comportamento delle risorse a tempo di esecuzione.
Di conseguenza, questo articolo presenta un modello di
programmazione logica per risorse Web basato su Prolog
e delinea un framework per sviluppare applicazioni Web
fondato su quel modello.

Despite the popularity of the World Wide Web as a de-
velopment platform, a proper description of its architec-
tural principles and design criteria has been achieved only
recently, by the introduction of the Representational State
Transfer (REST) architectural style which defines the re-
source as the key abstraction of information. In fact, lan-
guages and tools currently used for Web programming gen-
erally suffer from a lack of proper understanding of its ar-
chitecture and design constraints, and from an abstraction
mismatch that makes it hard to exploit the Web potential.
Declarative languages are well-suited for a programming

system aimed at being respectful of the Web architecture
and principles. Among logic technologies, tuProlog has
been explicitly designed to be one of the enabling com-
ponents of Internet-based infrastructures: its engineer-
ing properties make it suitable for use on the Web, where
logic programming allows modification of resource be-
haviour at runtime. Accordingly, in this paper we present a
Prolog-based logic model for programming Web resources,
and outline a framework for developing Web applications
grounded on that model.

Keywords: World Wide Web, REST, Contextual Logic
Programming, tuProlog, Prolog.

1 Motivation and Background

Despite the World Wide Web steadily gaining popularity
as the platform of choice for the development and fruition
of many kinds of Internet-based systems, a proper descrip-
tion of the Web architectural principles and design criteria
has been achieved only recently, by the introduction of the
Representational State Transfer (REST) architectural style
for distributed hypermedia systems [4]. REST defines the
resource as the key abstraction of information, and pre-
scribes communication and interaction among resources to
occur through a uniform interface by transferring a repre-
sentation of a resource current state.

Yet, from the early years of procedural CGI scripts to
the modern days of object-oriented frameworks, Web ap-
plication programming has always focussed on different
abstractions, such as page [5], controller [11], and more
recently service [7], thus suffering from a mismatch that
has made it difficult to exploit the full potential of the Web
architectural properties. In fact, a page is just the result of
a computation involving one or more resources, and deals
only with representation issues on the client side. A con-
troller happens to be a programming framework abstrac-
tion, sharing almost nothing with the underlying Web plat-
form. Finally, services disregard Web standards such as

Il Milione: A Journey in the Computational Logic in Italy

16



URI and HTTP, so they do not get the benefits of the REST
architecture in terms of cacheability, connectedness, ad-
dressability, uniformity, and interoperability [10].

Declarative programming has never been accepted into
the Web mainstream, even though logic languages have
shown they could effectively handle both communication
and co-ordination in a network-based context [1], and logic
technologies have been successfully used to engineer in-
telligent components at the core of Internet-based infras-
tructures [2]. However, the REST focus on resource rep-
resentations as the main driver of interaction, and the cor-
responding Web computation model, suggest that declara-
tive languages could play a significant role in the construc-
tion of resource-oriented applications. The advantage of
using elements from logic programming languages such
as Prolog lies in the representational foundations of the
Web computation model: a declarative representation of
resources may be manipulated and, given the procedural
interpretation of Prolog clauses, directly executed by an
interpreter when a resource is involved in a computation.

Accordingly, we define a resource programming model
(called Web Logic Programming [9]), which exploits ele-
ments of the logic paradigm and suitable logic technolo-
gies (i.e. the tuProlog engine [2]) so as to build a Web
application framework aimed at easing rapid prototyping,
and allowing the prototype to evolve while supporting Web
architectural properties such as scalability or modifiability.

2 Web Logic Programming

Web Logic Programming (WebLP) [9] is a Prolog-based
logic model to program resources and their interaction in
application systems following the constraints of the World
Wide Web architecture. To describe WebLP, we need both
to characterise its main data type abstraction and to define
its underlying computation model.

2.1 Resources

REST defines a resource as any conceptual target of an hy-
pertext reference. Any information that can be named can
be a resource, including virtual (e.g. a document) and non-
virtual (e.g. a person) objects. Starting from this abstract
definition, the main properties of resources can be easily
determined: a name (in the form of an URI); data, repre-
senting the resource state; and behaviour, to be used, for
instance, to change state or manage the interaction with
other resources. The defining elements of resources can
be easily mapped onto elements of well-known logic pro-
gramming languages such as Prolog. For each resource R
we specify its name N(R) as the single quoted atom con-
taining the resource URI identifier; data and behaviour can
be further recognised as facts and rules, respectively, in a
logic theory T (R) containing the knowledge base associ-
ated to the resource.

In particular, if adopted resource names are descriptive

and have a definite structure varying in predictable ways
[10], they feature an interesting property on their own:
any path can be interpreted as including a set of resource
names. More precisely, we say that resource names such
as the following:

http://example.com/sales/2004/Q4

encompass the names of other resources, and ultimately
the name of the resource associated with the domain at the
root of the URI:

http://example.com/sales/2004
http://example.com/sales
http://example.com

This naming structure suggests that each resource does not
exist in isolation, but lives in an information context com-
posed by the resources associated to the names encom-
passed by the name of that resource.

To account for the possible complexity of Web computa-
tions that may involve more information than it is enclosed
in a single isolated resource, the context C(R) is intro-
duced as the locus of computation associated with each re-
source. The context of a resource is defined by the compo-
sition of the theories associated with the resources linked
to names which are encompassed by that resource name,
including the theory associated with the resource itself.
Given a resource R with a name N(R) so that:

N(R) ⊆ N(R1) ⊆ . . . ⊆ N(Rn)

the associated context C(R) is generated by composition:

C(R) = T (R) · T (R1) · . . . · T (Rn)

where any theory T (Ri), containing the knowledge base
associated to the resource Ri, can be empty – for instance
when there is no entity associated to the name N(Ri).

2.2 Computation Model

According to REST, the Web computation model revolves
around transactions in the HTTP protocol. Each transac-
tion starts with a request, containing the two key elements
of Web computations: the method information, that indi-
cates how the sender expects the receiver to process the
request, and the scope information, that indicates on which
part of the data set the receiver should apply the method
[10]. On the Web, the method information is contained in
the HTTP request method (e.g. GET, POST), and the scope
information is the URI of the resource to which the request
is directed. The result of a Web computation is a response,
telling whether the request has been successful or not, and
optionally containing the representation of the new state of
the target resource.

Adopting a logic programming view of the Web compu-
tation model, for each HTTP transaction the request can be
translated to represent a deduction by retaining the scope

Il Milione: A Journey in the Computational Logic in Italy

17



information to indicate the target theory, and by mapping
the method information onto a proper logic goal. Then, the
computation takes place on the server side of the HTTP
transaction, in the context associated to the resource target
of the request. Finally, the information resulting from goal
solution is translated again into a suitable representation
and sent back in the HTTP response.

A computation invoked by a goal G on a resource R trig-
gers the deduction of G on the context C(R). The com-
position of theories forming C(R) is then traversed in a
very similar way as units in Contextual Logic Program-
ming (CtxLP) [6]. The goal G is asked in turn to each the-
ory: the goal fails if no solution is found in any theory, or
succeeds as soon as it is solved using the knowledge base
in a theory T (Ri). Furthermore, when the goal G is substi-
tuted by the subgoals of the matching rule in the theory, by
default the computation proceeds from C(Ri) rather than
being restarted from the original context.

As an example, consider the user jdoe in a book-
shelf sharing application, where her shelf is repre-
sented by the resource S, identified by the URI
http://example.com/jdoe/shelf. Suppose that,
according to a proper naming scheme, the resource B for
biology books lives at /jdoe/shelf/biology. When
a GET request is issued for that resource, a predicate
pick biology books/1 is ultimately invoked on B,
depending on a pick books/3 predicate that is neither
defined in B nor in S. The theory chain in C(B) is then
traversed backwards up to the http://example.com
resource, as depicted in Figure 1, where a suitable defini-
tion for pick books/3 is finally found. Definitions for
other predicates invoked by it are then searched starting
from the context of the root resource, rather than C(B)
where the computation originally started.

The fixed structure of URIs as resource identifiers makes
the composition of theories forming a context static, dif-
ferently from CtxLP, where it was possible to push or pop
units from the context stack at runtime. The structure of
identifiers and resources in the Web architecture also dic-
tates a unique direction in which the theories associated
to resources composing a context can be traversed: from
the outermost (associated with the resource on which the

Figure 1: The /jdoe/shelf/biology resource re-
sponds to a HTTP GET request by eventually invoking the
pick biology book/1 predicate, which in turn calls
pick books/3. The context is traversed until a proper
definition for it is found in the / resource.

Figure 2: The logic theory of a resource representing sales
for the fourth quarter of 2004 can be identified by two dif-
ferent names and therefore live in two different contexts.

computation has been invoked) to the innermost, passing
through the theories belonging to each of the composing
resources, until the host resource is finally involved.

2.3 Dynamic Resource Behaviour

The behaviour of a resource can be regarded as dynamic
under two independent aspects. First, two or more URIs
can be associated to the same resource at any time: that
is, the names N1(R), . . . , Nm(R) may identify the same
resource R, thus the same knowledge base contained in
the theory T (R) associated to the resource. Each different
name Ni(R) also identifies a different context Ci(R) that
the same resource R may live within, (see Figure 2); there-
fore, predicates that are used in T (R), but are not defined
there, may behave in different ways based on the definition
given by the context where the resource is called.

The second dynamic aspect of a resource comes from
the ability to express behavioural rules as first-class ab-
stractions in a logic programming language: on the one
hand, well-known logic mechanisms for state manipula-
tion (the assertz/1 and retract/1 predicates) can
be exploited to change the knowledge base associated to
a resource; on the other, the HTTP protocol itself allows
changing a resource by means of a PUT request, whose
content should be considered as a modified version of the
target resource that has to replace (or be merged with) the
original version residing on the server.

As an example, imagine a reading wish list in the previ-
ous bookshelf application. Usually, when a book is added,
the resource representing the wish list could check local
libraries for book availability, and possibly borrow it on
user’s behalf; if no book can be found, the resource could
check its availability in online bookstores, reporting its
price to the user for future purchase. During the period of
time when an online bookstore offers discounts, the wish
list resource should react to the insertion of new books so
as to check that store first instead of libraries.

The Web application could then be instructed to change

Il Milione: A Journey in the Computational Logic in Italy

18



the behaviour of wish list resources by issuing HTTP PUT
requests that modify the computational representation of
those resources. The PUT requests would carry the new
rules in the content, so that wish list resources would ac-
cordingly modify their knowledge base. The application
could programmatically restore the old behaviour at the
end of the discount period, by sending another PUT request
containing the previous rule set for each wish list resource.

3 tuProlog: Logic Technology for the Web

tuProlog is a minimal Java-based system explicitly de-
signed to integrate configurable and scalable Prolog com-
ponents into standard Internet applications, and to be used
as the core enabling technology for the provision of basic
coordination capabilities into complex Internet-based in-
frastructures [2]. Alongside configurability and scalability,
tuProlog has been designed to offer additional engineer-
ing properties suitable for distributed systems and archi-
tectures: ease of deployment, lightness, and interoperabil-
ity in accordance with standard protocols (RMI, CORBA,
TCP/IP). Those properties are a good match for the archi-
tectural properties described by REST, so that tuProlog can
be reasonably employed as the core inference engine tak-
ing care of resource computations and interactions.

With the aim of sketching a WebLP framework, a min-
imal Prolog engine such as tuProlog would need to be
augmented with a construct very similar to logic contexts,
for which various implementation techniques exist, rang-
ing from the least intrusive meta-interpretation to the most
effective virtual machine enhancing. With a similar in-
tent, the architecture of tuProlog has been recently re-
engineered to feature the malleability property [8], espe-
cially important in allowing a light-weight Prolog technol-
ogy to be extended with similar ease as the Prolog basic ex-
ecution model can be extended on the pure linguistic side.

The pervasive integration with Java featured by tuProlog
[3] is so much important as we consider how much an es-
tablished platform for Web development Java has become
in the latest years. In order to build a WebLP framework,
some Java technology which has proven itself effective
for some parts of the Web computation model can be ex-
ploited, provided that the abstractions underlying the tech-
nology are sound within the Web architectural style. As
a first example of such technology, the existing Apache
Tomcat web server/container can be considered a multi-
threaded efficient environment where tuProlog can be in-
tegrated, exploiting component life-cycle management and
an HTTP uniform interface implementation. JavaServer
Pages are a further example, as an extensible technology
to produce resource representations to be consumed on the
client side of Web applications. Where instead abstractions
suffer from mismatch with respect to the REST architec-
tural style, as the case is for Java servlets used as appli-
cation controllers, they can be dismissed or re-used with a
different purpose, for instance as mere HTTP dispatchers.

4 Future Work

The development of tuProlog as a server-side Web technol-
ogy and of the WebLP framework will be the main focus
of our activity in the near future. Afterwards, we also plan
to explore possible extensions of the programming model,
mostly based on experience in building a variety of appli-
cations on the framework.

REFERENCES

[1] E. Denti and A. Omicini. Engineering multi-agent
systems in LuCe. In International Workshop on
Multi-Agent Systems in Logic Programming (MAS
’99), Las Cruces, NM, USA, 30 November 1999.

[2] E. Denti, A. Omicini, and A. Ricci. tuProlog: A
light-weight Prolog for Internet applications and in-
frastructures. In I.V. Ramakrishnan, editor, Practical
Aspects of Declarative Languages, volume 1990 of
LNCS, pages 184–198. Springer, 2001.

[3] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm
Java-Prolog integration in tuProlog. Science of Com-
puter Programming, 57(2):217–250, August 2005.

[4] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[5] R. Lerdorf and K. Tatroe. Programming PHP.
O’Reilly, April 2002.

[6] L. Monteiro and A. Porto. A Language for Con-
textual Logic Programming. In Logic Programming
Languages: Constraints, Functions, and Objects.
The MIT Press, 1993.

[7] E. Newcomer and G. Lomow. Understanding SOA
with Web Services. Addison-Wesley, 2005.

[8] G. Piancastelli, A. Benini, A. Omicini, and A. Ricci.
The architecture and design of a malleable object-
oriented Prolog engine. In 23th ACM Symposium
on Applied Computing (SAC 2008), Fortaleza, Ceará,
Brazil, 16–20 March 2008.

[9] G. Piancastelli and A. Omicini. A Logic Program-
ming model for Web resources. In 4th International
Conference on Web Information Systems and Tech-
nologies (WEBIST 2008), Funchal, Madeira, Portu-
gal, 4–7 May 2008.

[10] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly, May 2007.

[11] D. Thomas, D. Heinemeier Hansson, L. Breedt,
M. Clark, T. Fuchs, and A. Schwarz. Agile Web De-
velopment with Rails. Pragmatic Bookshelf, 2005.

Il Milione: A Journey in the Computational Logic in Italy

19


