
Inducing Specification of Interaction Protocols and Business
Processes and Proving their Properties

Apprendimento di specifiche di procolli di interazione e processi di
business e verica delle loro proprietà

Marco Alberti, Marco Gavanelli, Evelina Lamma, Fabrizio Riguzzi, and SergioStorari

Il Milione: A Journey in the Computational Logic in Italy

32



SOMMARIO/ ABSTRACT

Questo articolo descrive le nostre recenti attività di ricerca
per apprendere (con tecniche di Programmazione Logica
Induttiva) specifiche modellate in programmazione logica
e per verificare (attraverso una procedura di dimostrazione
abduttiva) le propriet̀a di sistemi cos̀ı specificati. I sistemi
realizzati qui descritti sono stati applicati rispettivamente
per l’apprendimento e la verifica di proprietà di protocolli
di interazione in sistemi multi-agente, servizi Web, proto-
colli di screening e processi di business.

In this paper, we overview our recent research activity
concerning the induction of Logic Programming specifica-
tions, and the proof of their properties via Abductive Logic
Programming. Both the inductive and abductive tool here
briefly described have been applied to respectively learn
and verify (properties of) interaction protocols in multi-
agent systems, Web service choreographies, careflows and
business processes.

Keywords: Computational logic, Induction, Abduction,
Interaction protocols, Careflows, Business processes.

1 Introduction

Thanks to its declarative semantics and its underlying
proof theory, Logic Programming, and Computational
Logic (CL, for short) in a broader sense, have been proved
high-level formal languages for specification and verifica-
tion. The adoption of logic for computer programming
was promoted and improved in the late seventies also
in Italy by a clever community. Logic Programming is
grounded on a purely declarative representation language,
and a theorem-prover or model-generator (like in Answer
Set Programming) as the problem-solver. The main task
of the problem-solver is the verification that an (existen-
tial) query holds in the given specification. Variants of the
problem-solver can be also exploited to enrich the repre-

sentation language and empower the reasoning with new
features, such as hypothetical and non-monotonic reason-
ing, or to prove properties arising from the specification
itself. Induction techniques can be also applied, to learn
(general and formal) specification from logs and exten-
sional databases or to further abstract specifications.

In this paper, we describe the recent activity carried out
at ENDIF, University of Ferrara (also jointly with DEIS,
University of Bologna) concerning the induction of CL-
based specifications, and the proof of their properties. To
this purpose, in the former activity we exploit Inductive
Logic Programming techniques (ILP for short), and the
DPML algorithm [12] in particular. This algorithm learns
a specification expressed in a CL-based language from
labeled traces (a database of events recording happened
interactions or activities). The target language, named
SCIFF, was originally defined for the specification of in-
teraction protocols in the context of the UE IST-2001-
32530 Project, and has been later adopted to specify web
service choreographies [1], careflows [11] and business
processes [5]. A system is specified in theSCIFF lan-
guage by a knowledge base (a logic program) and a set
of SCIFF forward rules, calledintegrity constraints. Each
integrity constraint relates occurring events (in the body)
with an expected behaviour (typically in the head) in terms
of expectations about events. Expectations can be posi-
tive (for mandatory events) or negative (forbidden events).
Given aSCIFF specification, the compliance of the system
to the specifications can be checked on-the-fly through the
SCIFF proof-procedure [3], that abduces the expected be-
haviour and verifies its matching with the actual one.

The adoption of a CL-based language in specifying a
system paved also the way to follow a proof-theoretic ap-
proach for proving or disproving properties of the given
SCIFF specification. To this purpose, we exploit abduc-
tion, and in particular an extension of theSCIFF proof-
procedure called g-SCIFF [2]. g-SCIFF is an abductive
proof-procedure which, starting from a goal, verifies, in
a generative manner by abduction, whether there exists

Il Milione: A Journey in the Computational Logic in Italy

33



a scenario (i.e., a set of generated events) supporting the
goal, consistent with the given integrity constraints, and
not self-contradictory (e.g., an event does not unify with
any forbidden one). In this case, this scenario represents
a witness for the goal, and also corresponds to extensions
identified by the declarative semantics.

The paper is organized as follows. In Section 2 we
briefly introduce theSCIFF language. In Section 3, we
show how learning from interpretations can be exploited
to learn aSCIFF theory, and also discuss some experimen-
tal results. In Section 4, we present g-SCIFF and discuss
its application to the learned specification of the previous
section. Related work is mentioned throughout the paper.
Finally, we conclude in section 5.

This work has been carried out in strict collaboration
with the DEIS group. This paper is complementary to [7]
contained in this same issue, issue, where they focus on in-
teraction specification and verification in several domains.

2 TheSCIFF Language

TheSCIFF proof-procedure is an abductive proof proce-
dure, able to reason about dynamically happening events,
and to generate corresponding expectations. To represent
that an eventev happened (i.e., an atomic activity has
been executed) at a certain timeT , SCIFF uses the sym-
bol H(ev, T ), whereev is a term andT is a number indi-
cating the time. Hence, an execution trace is modeled as
a set of happened events, also calledscenarioor history
(HAP). For example, we could formalize thatbob has
performed activitya at time5 as follows: H(a(bob), 5).
Furthermore,SCIFF introduces the concept of expecta-
tion, which plays a key role when defining global interac-
tion protocols, choreographies, and more in general event-
driven processes. It is quite natural, in fact, to think of
a process in terms of rules of the form: “if A happened,
then B is expected to happen”. Positive (resp. negative)
expectations are denoted byE(ev, T ) (resp.EN(ev, T )),
meaning thatev is expected (resp. expected not) to happen
at timeT . To satisfy a positive (resp. negative) expecta-
tion an execution trace must contain (resp. not contain) a
matching happened event.
SCIFF Integrity Constraints (ICs for short) are forward

rules of the formBody → Head:

Body → Disj1 ∨ . . . ∨Disjn (1)

whereBody is a conjunction of happened events and liter-
als of predicates defined in aSCIFF knowledge base, and
Disjj is a conjunction of expectations (positive and nega-
tive) and literals from the knowledge base.

Variables in common toBody andHead are universally
quantified (∀) with scope the whole IC. Variables occur-
ring in positive (negative) expectations inHead(C) are ex-
istentially (universally) quantified with scope the disjunct
where they appear.

An example of an IC is

H(a(bob), T ) ∧ T < 10
→ E(b(alice), T1) ∧ T < T1

∨ EN(c(mary), T1) ∧ T < T1 ∧ T1 < T + 10
(2)

The meaning of the IC (2) is the following: ifbob has ex-
ecuted actiona at a timeT < 10, then we either expect
alice to execute actionb at some time (∃T1) later thanT or
we expect thatmary does not execute actionc at any time
(∀T1) within 9 time units afterT .

The interpretation of an IC is the following: if there ex-
ists a substitution of variables such that the body is true in
an interpretation representing a trace, then one of the dis-
juncts in the head must be true.

Roughly speaking,SCIFF combines occurred events
with the specified rules, to suitably generate the cor-
responding expectations; then, expectations are verified
against the execution trace: a positive expectation must
have a corresponding matching event, whereas a nega-
tive expectation forbids the presence of a matching event
into the trace. If such conditions are not met (i.e., a pos-
itive/negative expectation is not/is matched by a corre-
sponding event), then the expectations are violated, and the
execution trace is evaluated as non-compliant.

The main and original application of theSCIFF proof-
procedure is to verify whether an execution of the process
concretely adheres to the specification, i.e., to perform
compliance checking. SCIFF is seamlessly able to check
compliance both at run-time, by dynamically collecting
and reasoning upon occurring events, or a-posteriori, by
analyzing the log of an observed execution trace.

3 Inducing SCIFF specifications

Since ICs can be seen as an extension of logical clauses, we
can apply the techniques developed in the learning from in-
terpretations setting of Inductive Logic Programming [13]
to the problem of inducing ICs. In particular, in [12] we
modified the Inductive Constraint Logic (ICL) algorithm
[9] that takes as input a set of interpretations labeled as
positive or negative and returns a clausal theory that is true
in as many positive interpretations as possible and false in
as many negative interpretations as possible. We called
the resulting system DPML [12], for Declarative Process
Model Learner.

DPML modifies ICL by replacing the procedure for test-
ing the truth of a clause in an interpretation with aSCIFF-
like procedure, by defining a generality order among ICs
and, on the basis of this order, by defining a refinement op-
erator. In this way, we can perform search in the space of
ICs and evaluate each candidate against the training set.

In DPML the θ-subsumption generality order among
clauses is modified in order to take into account the fact
that the head is a disjunction of conjunctions. With the
new generality relation, we can obtain a generalizationD
of an ICC by adding a literal to the body, adding a disjunct

Il Milione: A Journey in the Computational Logic in Italy

34



to the head, removing a literal from a disjunct in the head
or adding a literal to a disjunct in the head. This general-
ization operator is used by DPML to search the space of
ICs from specific to general.

The literals to be added are defined by thelanguage bias,
an intensional definition of the search space. In DPML the
language bias is a set of assertions in the form of pairs
(BS,HS), whereBS is a set that contains the literals that
can be added to the body andHS is a set that contains the
disjuncts that can be added to the head.

InducingSCIFF theories is also interesting because it
has been shown [6] that other declarative process lan-
guages such as DecSerFlow [16] or ConDec [15] can be
mapped toSCIFF. Therefore, if we can ensure that the
form of the learned ICs corresponds to one of the con-
straints of these languages, we could learn such constraints
by first learning ICs and then translating them into Dec-
SerFlow or ConDec. By providing DPML with a language
bias that suitably restricts the search space of ICs, DPML
returns a theory with ICs in the desired form, that can be
automatically translated into one of the above declarative
process languages (see also [11]).

We implemented the whole process of induction plus
translation in the DecMiner [11] plug-in of ProM.
DecMiner assists the user in all the phases of the learn-
ing process, from the definition of the language bias, to the
labeling of traces, to the translation of the mined ICs into
ConDec constraints.

In particular, the language bias is automatically gener-
ated starting from a set of general templates, one for each
ConDec constraint, that are then instantiated to generate
specific assertions. Since the number of all possible in-
stantiations can be huge, DecMiner asks the user to select
a subset of activitiesA and a subset of ConDec constraints
T , and it generates only the instantiations of these con-
straints with the selected activities.

DPML and DecMiner have been tested on artificial and
real datasets. The artificial datasets were randomly gener-
ated from three process models, namely the NetBill pro-
tocol [8], an electronic auction protocol [4] and a hotel
and spa process [11]. The real dataset regards the health-
care process of cervical cancer screening in the Emilia-
Romagna Italian region. DPML and DecMiner results
were compared with those of theα-algorithm [17] and of
the Multi-Phase Miner (MPM) [18] that learn procedural
process models.

We now briefly discuss the methodology followed by il-
lustrating the application of DecMiner to the hotel and spa
case: the model, inspired by the example presented in [14],
describes a simple process of renting rooms and services
in a hotel and spa. After registering at the front desk, the
client can request one or more rooms, laundry and massage
services. Each service, identified by a code, is followed
by the registration of the service costs into the client bill.
Moreover, if the client chooses a “Shiatzu” massage, the
spa presents her/him a special offer. The cost related to the

number of nights can be billed before check-out, during
check-out or even after check-out.

The SCIFF representation of the hotel model is com-
posed of eight ICs. One of them:

H(massage service(Type, ma id(IDls)), Tls)
→ E(bill massage service(ma id(IDbls)), Tbls)

∧IDls = IDbls ∧ Tbls > Tls.

specifies that a massage service must be followed by the
registration of the cost into the client bill.

Five training sets have been generated by randomly
building a trace and then classifying it with the ICs of the
correct model. The trace is then assigned to the set of pos-
itive or negative traces depending on the result of the test.
The process is repeated until 2000 positive traces and 2000
negative traces have been generated.

DecMiner, theα-algorithm and MPM were applied to
each training set and the learned model was tested on a
randomly generated testing set. DecMiner achieved an
average accuracy of 99.96%, higher than those of theα-
algorithm and MPM.

The sets of ICs returned by DPML/DecMiner can be
also used to check (intensional) properties. This can be
done by exploiting the g-SCIFF proof-procedure described
in the following.

4 Proving properties by g-SCIFF

TheSCIFF proof-procedure addresses the important soft-
ware engineering task of checking compliance during run-
time (or a-posteriori using anevent log), i.e., whether the
agents behave in a compliant manner with respect to a
given interaction protocol or specification. However, this
does not exhaust the possible uses of abductive reasoning:
the event literals composing the history can be assumed as
well, in order to foresee all the possible evolutions of the
system under test. Knowing the specification (in terms of
an abductive program), one could (in principle) generate
all the histories that the system can support and then study
them for common patterns or to formally prove properties
of the system.

Of course, explicitly generating all the histories is not
feasible, since the number of histories compliant to a pro-
tocol are typically infinite for protocols of practical use.
However, we can generate compliant histories in inten-
sional way, and then reason upon them: the hypothetical
events can contain variables, possibly subject to CLP con-
straints. In order to generate compliant histories,SCIFF
has been improved and extended to a generative version,
called g-SCIFF. g-SCIFF considersH literals as ab-
ducibles, and contains a new transition, calledfulfillment,
that fulfils the expectations by abducing matching events:

E(X,T ) → H(X,T ).

g-SCIFF is provably sound: all generated histories fulfil
the given specifications.

Il Milione: A Journey in the Computational Logic in Italy

35



In the literature, properties are often classified as safety
or liveness properties. Asafetyproperty is a universal
property: intuitively, it ensures that nothing bad will ever
happen (whenever the protocol/specification is respected).
A livenessproperty is, instead, existential: it ensures that
something good will eventually happen. A liveness prop-
erty can be passed to g-SCIFF as a goal containing positive
expectations: if the g-SCIFF proof-procedure succeeds in
proving the goal, the generated history witnesses that there
exists a way to obtain the goal while being conformant to
the protocol. A safety propertyφ can be negated (as in
model checking), and then passed to g-SCIFF as a goal
G ≡ ¬φ. If the g-SCIFF proof-procedure succeeds in
finding a historyHAP (i.e., |=HAP ¬φ), we have a coun-
terexample: the historyHAP satisfies the protocol and
does not enjoy the safety propertyφ.

The g-SCIFF proof-procedure is implemented in SICS-
tus 4, making extensive use of Constraint Handling Rules
[10] to implement its transitions.SCIFF and g-SCIFF
come in a same package, that can be freely downloaded
from the web1: the g-SCIFF behaviour is activated by sim-
ply setting an option.

The g-SCIFF proof-procedure has been applied to
the formal verification of various systems and proto-
cols. g-SCIFF was able to derive the flawedness of the
Needham-Schroeder security protocol [2], and the good
atomicity property of the NetBill protocol [2]. It is also
a basic component of the AlLoWS framework [1], for the
proof of interoperability between Web services.

The g-SCIFF proof-procedure operates top-down in a
deductive and abductive manner, by manipulating the spec-
ification driven by the goal, as usual in Logic Program-
ming, and also generating expectations asSCIFF does and,
by fulfillmentan (intensional) set of events needed to sup-
port the goal. This way, g-SCIFF can be used to prove
properties of anySCIFF protocol. For example, one may
wonder if the protocol allows a massage service not to be
followed by a shiatzu package offer. By expressing this
combination as a g-SCIFF query, the user can ask g-SCIFF
to generate an intensional history that satisfies the query
while fulfilling the protocol. In fact, g-SCIFF generates
such a history, with the constraint that the massage type
must not be shiatzu:

H(register client data, B),

H(massage service(type(T ), ma id(A)), H), T 6= shiatzu

H(bill nights, Y ),

H(bill massage service(ma id(A)), E),

H(charge, D),

H(complete check out, F ),

5 Conclusions

We have presented the CL-based languageSCIFF for the
specifications of complex systems with interacting entities,
such as multi-agent systems, business processes or web
services. Moreover, we have discussed how techniques
from Inductive Logic Programming were applied for in-
ducingSCIFF theories which can be then translated into

1http://lia.deis.unibo.it/sciff/

graphical languages. Finally, the abductive g-SCIFF proof
procedure can be used for proving properties of specifica-
tions, either learned or provided by the user.

Acknowledgements

We are in debt with the Artificial Intelligence group at
DEIS, University of Bologna who shared with us most of
the activity here reported.

REFERENCES
[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and

M. Montali. An abductive framework for a-priori verificationof
web services. InPPDP 2006, pages 39–50. ACM Press, 2006.

[2] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. Security protocols verification in abductive logic pro-
gramming: a case study. InESAW 2005, pages 283–295, 2005.

[3] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and
P. Torroni. Verifiable agent interaction in abductive logicprogram-
ming: the SCIFF framework.ACM Transactions on Computational
Logics, 9(4), 2008. Accepted for publication.

[4] A. Chavez and P. Maes. Kasbah: An agent marketplace for buying
and selling goods. InPAAM 1996, pages 75–90, London, 1996.

[5] F. Chesani, P. Mello, M. Montali, and S. Storari. Testingcareflow
process execution conformance by translating a graphical language
to computational logic. InProc. of the11th Conference on Artificial
Intelligence in Medicine (AIME 07), number 4594 in LNAI, 2007.

[6] F. Chesani, P. Mello, M. Montali, and S. Storari. Towardsa DecSer-
Flow declarative semantics based on computational logic. Technical
Report DEIS-LIA-07-002, University of Bologna, 2007.

[7] F. Chesani, P. Mello, M. Montali, and P. Torroni. Modeling and
verification of business processes and choreographies in ALP. In-
telligenza Artificiale. In this issue.

[8] B. Cox, J.C. Tygar, and M. Sirbu. NetBill security and transaction
protocol. In1st USENIX Workshop on Electronic Commerce, 1995.

[9] L. De Raedt and W. Van Laer. Inductive constraint logic. In ALT
1995, volume 997 ofLNAI, 1995.

[10] T. Frühwirth. Theory and practice of constraint handling rules.J.
of Logic Prog., 37(1-3):95–138, 1998.

[11] E. Lamma, P. Mello, M. Montali, F. Riguzzi, and S. Storari.In-
ducing declarative logic-based models from labeled traces.In BPM
2007, volume 4714 ofLNCS, 2007.

[12] E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying inductive
logic programming to process mining. InILP 2007, volume 4894
of LNAI, 2007.

[13] S. Muggleton and L. De Raedt. Inductive logic programming: The-
ory and methods.J. Logic Prog., 19/20:629–679, 1994.

[14] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. Declare: Full
support for loosely-structured processes. InEDOC 2007, pages
287–300. IEEE Computer Society, 2007.

[15] W.M.P. van der Aalst and M. Pesic. A declarative approach for
flexible business processes management. InBPM 2006, volume
4103 ofLNCS, 2006.

[16] W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards atruly
declarative service flow language. InWS-FM 2006, volume 4184 of
LNCS, 2006.

[17] W.M.P. van der Aalst, T. Weijters, and L. Maruster. Workflow min-
ing: Discovering process models from event logs.IEEE Trans.
Knowl. Data Eng., 16(9):1128–1142, 2004.

[18] B. F. van Dongen and W. M. P. van der Aalst. Multi-phase process
mining: Building instance graphs. InER 2004, volume 3288 of
LNCS, pages 362–376, 2004.

Il Milione: A Journey in the Computational Logic in Italy

36



Contacts

Marco Alberti, marco.alberti@unife.it
Marco Gavanelli, marco.gavanelli@unife.it
Evelina Lamma, evelina.lamma@unife.it
Fabrizio Riguzzi, fabrizio.riguzzi@unife.it
Sergio Storari, sergio.storari@unife.it

tutti affiliati al

Dipartimento di Ingegneria,
Universit̀a di Ferrara
Via Saragat, 1
44100 Ferrara

Il Milione: A Journey in the Computational Logic in Italy

37


