
Computational Logic in Genova
Logica Computazionale a Genova
Viviana Mascardi, Giorgio Delzanno, Maurizio Martelli

DISI, Università degli Studi di Genova,
Via Dodecaneso 35, 16146, Genova, Italy

E-mail: {viviana.mascardi,giorgio.delzanno,
maurizio.martelli}@unige.it

Il Milione: A Journey in the Computational Logic in Italy

38



SOMMARIO/ABSTRACT

La Logica Computazionale gioca un ruolo molto rilevante
nella ingegnerizzazione di sistemi complessi: può essere
usata per specificare sistemi al livello di astrazione più op-
portuno, la specifica può essere eseguita fornendo gratuita-
mente un prototipo funzionante e, grazie alla sua semantica
ben fondata, può essere usata per verificare formalmente
proprietà di programmi e sistemi, cosa fondamentale nello
sviluppo di applicazioni critiche dal punto di vista della si-
curezza.

Nell’ultimo decennio, il Gruppo di Programmazione
Logica del Dipartimento di Informatica e Scienze
dell’Informazione (DISI) dell’Università degli Studi di
Genova ha applicato la Logica Computazionale per model-
lare, prototipare e verificare sistemi complessi. Le tre linee
di ricerca hanno ampie aree di sovrapposizione: i sistemi
complessi che prendiamo in considerazione sono spesso
sistemi multiagente per i quali proponiamo linguaggi di
modellazione, ambienti di prototipazione e tecniche di ver-
ifica. Inoltre usiamo la logica temporale sia per modellare
agenti BDI cooperativi, sia per verificare processi a stati
infiniti.

In questo articolo descriviamo le attività condotte
recentemente in ciascuna direzione di ricerca.

Computational Logic plays a very relevant role in engi-
neering complex systems: it can be used to specify systems
at the right level of abstraction, the specifications can be
executed, thus providing a working prototype for free, and
thanks to its well-founded semantics it can be used to for-
mally verify properties of programs, which is fundamental
when safety critical applications are developed.

In the last decade, the Logic Programming Group at the
Department of Computer and Information Science (DISI)
of Genova University has been applying Computational
Logic for modelling, prototyping, and verifying complex
systems. These three research lines are largely overlap-
ping: the complex systems we take under consideration

are often multiagent systems, for which we propose mod-
elling languages as well as prototyping environments and
verification techniques. Also, we use temporal logic both
for modelling cooperative BDI agents and for verifying
infinite-state processes.

In this paper, we describe the activities that we carried
out in the recent years in each research line.

Keywords: Computational Logic, Intelligent Agents,
Rapid Prototyping, Verification of Protocols.

Logic Languages for Modelling Rational Agents

Many logics for modelling beliefs, desires and inten-
tions of agents, such as Rao and Georgeff’s BDI logic
[36, 34, 35] and Wooldridge’s LORA [40], are based
on temporal logics like CTL/CTL∗ (Computational Tree
Logic, [24, 17]) where the structure of time is branching
in the future and linear in the past. In 2005 we started to
explore the advantages of substituting ATL∗ (Alternating-
Time Temporal Logic [1]) to CTL∗ in Rao and Georgeff’s
logic. This activity, resulted into the formalization of
BDIATL [33], was born from our effort to find a BDI logic
suitable for modelling the behaviour of agents structured
according to the CooBDI architecture [2].

A CooBDI agent, whose behavioral specification was
given using Prolog, is characterised by a built-in mech-
anism for retrieving plans from cooperative agents, for
example when no local plans suitable for achieving a
certain desire are available. In particular, the coopera-
tion strategy of an agent includes the set of agents with
which is expected to cooperate (its partner agents, or its
“friends”). BDIATL allows us to express new commit-
ment strategies that are more realistic than those proposed
by Rao and Georgeff (and that could not be defined in their
logic), since they take collaboration among agents into ac-
count. In particular, we can express three variants of Rao
and Georgeff’s “open minded” commitment: “independent
open minded”, “optimistic open minded”, and “pessimistic

Il Milione: A Journey in the Computational Logic in Italy

39



open minded”. In these commitment strategies we exploit
the new feature that ATL∗ adds to CTL∗, namely coopera-
tion modalities, to express the way of thinking of CooBDI
agents.

Other logic-based languages conceived for specifying
BDI-style and, more in general, rational agents, are Con-
goLog [27], AGENT-0 [38], Concurrent METATEM [25],
Ehhf [20], the IMPACT language [23], and “Dynamics in
Logic” [10]. In 2004, we published a survey of these six
languages [32], chosen because of the availability, for each
of them, of a working interpreter or an automatic mech-
anism for animating specifications. In our survey we de-
scribed the logic foundations of each language and we gave
an example of use. A comparison along twelve dimensions
(purpose of use, language support to time, sensing, concur-
rency, nondeterminism, etc.) was also provided.

Computational Logic for MAS Prototyping

It is well known that computational logic and logic pro-
gramming in particular are very suitable to implement so-
phisticated, self-aware agents able to reason about them-
selves and the other agents in a multiagent system (MAS).
DCaseLP (Distributed Complex Applications Specification
Environment based on Logic Programming [31]) is an en-
vironment for rapid prototyping of MASs developed by the
Logic Programming Group at DISI. DCaseLP was initially
born as a logic-based framework, as the acronym itself
suggests, and then evolved into a multi-language proto-
typing environment that integrates both imperative (object-
oriented) and declarative (rule-based and logic-based) lan-
guages, as well as graphical ones. The languages and tools
that DCaseLP integrates are UML and an XML-based lan-
guage for the analysis and design stages, Java, JESS [26]
and tuProlog [22] for the implementation stage, and JADE
[12] for the execution stage. Software libraries for integrat-
ing JESS and tuProlog agents into the JADE platform and
for translating UML class diagrams into JESS and tuProlog
code are also provided1. The methodological integration of
DCaseLP with the “Dynamics in Logic” agent program-
ming language is described in [6].

All the applications that we developed with DCaseLP in
collaboration with Italian industries, exploit tuProlog for
implementing the MAS.

The most recent application, described in [30], is a MAS
that monitors processes running in a railway signalling
plant, detects functioning anomalies, provides diagnoses
for explaining them, and early notifies problems to the
Command and Control System Assistance. This work is
part of an ongoing project that involves DISI and Ansaldo
Segnalamento Ferroviario, the Italian leader in design and
construction of signalling and automation systems for rail-
way lines.

1The source code of DCaseLP libraries together with manuals and tu-
torials is available from http://www.disi.unige.it/person/
MascardiV/Software/DCaseLP.html.

The work described in [37] deals with an electronic im-
plementation of different auction mechanisms. There are
many different auction mechanisms that can be classified
according to their features [29]. We ran experiments with
all the implemented mechanisms under the hypotheses,
that, according to the “Revenue Equivalence Theorem”
(RET [39]), lead to the existence of an optimal bidder’s
strategy. The experiments demonstrated that RET is satis-
fied (up to some error due to discretisation), giving empir-
ical evidence of the correctness of the implementation.

Many applications had also been developed using the
ancestor of DCaseLP, CaseLP: a prototype of a multime-
dia, multichannel, personalised news provider, [19], was
developed in collaboration with Ksolutions s.p.a. as part of
the ClickWorld project, a research project partially funded
by the Italian Ministero dell’Istruzione, dell’Università e
della Ricerca (MIUR). Older industrial applications in-
volve freight train traffic [18] and vehicle monitoring [4].

The industrial applications of CaseLP and DCaseLP
show an increased industrial interest and trust in both
agent-based and declarative technologies, and demonstrate
the liveliness of computational logic outside the bound-
aries of academia.

Verifying Interaction Protocols with Logic

We have recently developed a tool aimed at supporting
verification of finite-state interaction protocols in a MAS
setting, West2East [16], that exploits “WEb Service Tech-
nologies to Engineer Agent-based SofTware” starting from
the specification of an Agent Interaction Protocol (AIP).
West2East exploits AUML [11] for representing AIPs,
many different languages, including standard languages
for Web Services, for sharing them, and Computational
Logic to reason about them. In particular, West2East con-
sists of a set of libraries for

1. Translating visual AUML AIPs to various formats:
starting from an AUML interaction diagram graphi-
cally drawn using any UML editor, West2East gen-
erates the corresponding representation in many for-
mats, including a Prolog term.

2. Generating code compliant to the AIP: starting from
the Prolog term, a tuProlog program for each agent
involved in the AIP is automatically generated by
West2East. After a manual completion for adding the
information missing in the AIP’s specification, such
as agents’ state and guards of conditions, the tuProlog
code can be run inside JADE thanks to the DCaseLP
libraries.

3. Reasoning about the AIP: a mechanism for allow-
ing tuProlog agents to reason about an AIP by ex-
ploiting meta-programming techniques is provided by
West2East. Existential and universal properties, such

Il Milione: A Journey in the Computational Logic in Italy

40



as “There is one path of the protocol where I will re-
ceive message1”, and “Whatever the path, I will send
message2”, can be verified.

In [21] we have further investigated in the relation be-
tween (constraint) logic programming and infinite-state
verification. More specifically, in [21] we show that a CLP
bottom-up evaluation procedure can be applied to auto-
matically verify safety and liveness properties for skele-
tons of communication protocols (with a fixed number of
processes) like mutual-exclusion algorithms. In the case-
studies described in [21] the source of infiniteness is the
presence of potentially unbounded integer variables in the
specification of individual processes. Constraints are used
here to symbolically represent infinite collections of sys-
tem configurations with a fixed number of processes.

Another interesting research line concerns with the ap-
plication of linear logic programming to verification of
infinite-state systems. Linear logic [28] is a suitable logi-
cal framework for the specification of concurrent systems.
The LO fragment [3] of full linear logic provides multi-
headed linear implications with only multiplicative dis-
junction and additive conjunction in the body. By exploit-
ing and generalizing the connection between verification
and logic programming described in [21], in [14] we have
defined a bottom-up evaluation strategy for (first order)
LO programs based on an effective fixpoint operator à-la
TP (the immediate consequence operator for (constraint)
logic programs). The LO TP operator works on first or-
der multi-headed LO clauses [14]. Furthermore, it can
be viewed as a symbolic predecessor operator for transi-
tion systems described via multiset rewriting systems de-
fined over first-order atomic formulas. In [15] we have
extended the bottom-up evaluation procedure to first order
linear logic specification with universally quantified goals.
In [13] we have applied the resulting procedure to ver-
ify properties of cryptographic protocols for any possible
number of principals and parallel sessions.

Conclusions

Research on computational logic in Genova is very lively,
and will be even more in the future thanks to the interest
on its practical applications raised outside the boundaries
of academia. Part of this research has been carried out in
joint projects with the Logic Programming and Automated
Reasoning Group in Torino. The results of these projects
are described in [7, 5], and the active collaboration in wit-
nessed by many other joint activities [8, 9].

The connections between the Logic Programming
Groups in Torino and Genova date back to more than 30
years ago. The heads of the groups, Alberto and Maurizio
Martelli, besides the same family name, share many com-
mon experiences: they worked together at the National Re-
search Council in Pisa, were involved in the committees of
conferences and workshops on Computational Logics, and,
when moved to Torino and Genova respectively, founded

research groups with the same objectives. The profitable
collaboration will be pursued in the future with the hope to
contribute in making research on Computational Logic an
Italian excellence.

REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-

time temporal logic. J. ACM, 49:672–713, 2002.
[2] D. Ancona and V. Mascardi. Coo-BDI: Extending the

BDI model with cooperativity. In J. A. Leite, A. Omicini,
L. Sterling, and P. Torroni, editors, Proc. of the 1st Declar-
ative Agent Languages and Technologies Int. Workshop,
DALT’03, Revised Selected and Invited Papers, LNAI,
pages 109–134. Springer, 2004.

[3] J-M. Andreoli and R. Pareschi. Linear ojects: Logical pro-
cesses with built-in inheritance. New Generation Comput.,
9(3/4):445–474, 1991.

[4] E. Appiani, M. Martelli, and V. Mascardi. A multi-agent
approach to vehicle monitoring in motorway. Technical re-
port, Computer Science Department of Genova University,
2000. DISI TR-00-13, Poster session of the Second Eu-
ropean Workshop on Advanced Video-Based Surveillance
Systems, AVBS 2001.

[5] M. Baldoni, C. Baroglio, G. Berio, A. Martelli, V. Patti,
M. L. Sapino, C. Schifanella, M. Alberti, M. Ga-
vanelli, E. Lamma, F. Riguzzi, S. Storari, F. Chesani,
A. Ciampolini, P. Mello, M. Montali, P. Torroni, A. Bot-
trighi, L. Giordano, V. Gliozzi, G. L. Pozzato, D. Theseider
Dupré, P. Terenziani, G. Casella, and V. Mascardi. Mod-
eling, verifying and reasoning about web services. Intelli-
genza Artificiale. To appear.

[6] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli,
M. Martelli, V. Mascardi, V. Patti, and C. Schifanella. Rea-
soning about agents’ interaction protocols inside DCaseLP.
In J. A. Leite, A. Omicini, P. Torroni, and P. Yolum, ed-
itors, Proc. of the 2nd Declarative Agent Languages and
Technologies Int. Workshop, DALT’04, Revised Selected
and Invited Papers, volume 3476 of LNCS, pages 112–131.
Springer, 2004.

[7] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schi-
fanella, L. Torasso, and V. Mascardi. Personalization,
verification and conformance for logic-based communicat-
ing agents. In F. Corradini, F. De Paoli, E. Merelli, and
A. Omicini, editors, Proc. of the WOA 2005 National Work-
shop, Dagli Oggetti Agli Agenti, pages 177–183. Pitagora
Editrice Bologna, 2005.

[8] M. Baldoni, C. Baroglio, and V. Mascardi, editors. Pro-
ceedings of the Multi-Agent Logics, Languages, and Or-
ganisations, Federated Workshops, MALLOW’007, Agent,
Web Services and Ontologies, Integrated Methodolo-
gies (MALLOW-AWESOME’007) workshop, Durham, GB.
2007.

[9] M. Baldoni, A. Boccalatte, F. De Paoli, M. Martelli, and
V. Mascardi, editors. WOA, Workshop dagli Oggetti agli
Agenti, Proceedings. Seneca Edizioni (Italy), 2007.

[10] M. Baldoni, L. Giordano, A. Martelli, and V. Patti. Model-
ing agents in a logic action language. In Proc. of the Work-
shop on Practical Reasoning Agents, FAPR 2000, 2000.

Il Milione: A Journey in the Computational Logic in Italy

41



[11] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formal-
ism for specifying multiagent software systems. In P. Cian-
carini and M. Wooldridge, editors, Proc. of the 1st Agent-
Oriented Software Engineering Int. Workshop, AOSE’00,
Revised Papers, volume 1957 of LNCS, pages 91–104.
Springer, 2000.

[12] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. Wiley, 2007.

[13] M. Bozzano and G. Delzanno. Automatic verification of
secrecy properties for linear logic specifications of cryp-
tographic protocols. J. Symb. Comput., 38(5):1375–1415,
2004.

[14] M. Bozzano, G. Delzanno, and M. Martelli. An effec-
tive fixpoint semantics for linear logic programs. TPLP,
2(1):85–122, 2002.

[15] M. Bozzano, G. Delzanno, and M. Martelli. Model check-
ing linear logic specifications. TPLP, 4(5-6):573–619,
2004.

[16] G. Casella and V. Mascardi. West2East: exploiting WEb
Service Technologies to Engineer Agent-based SofTware.
IJAOSE, 1(3/4):396–434, 2007.

[17] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time tempo-
ral logic. In Logic of Programs, pages 52–71, 1981.

[18] A. Cuppari, P. L. Guida, M. Martelli, V. Mascardi, and
F. Zini. An agent-based prototype for freight trains traf-
fic management. In P. G. Larsen, editor, Proc. of the
5th FMERail Workshop. Held in conjunction with FM’99.
Springer, 1999.

[19] M. Delato, A. Martelli, M. Martelli, V. Mascardi, and
A. Verri. A multimedia, multichannel and personalized
news provider. In G. Ventre and R. Canonico, editors, Proc.
of the 1st Int. Workshop on Multimedia Interactive Proto-
cols and Systems, MIPS 2003, volume 2899 of LNCS, pages
388–399. Springer, 2003.

[20] G. Delzanno and M. Martelli. Proofs as computations in
linear logic. Theoretical Computer Science, 258(1–2):269–
297, 2001.

[21] G. Delzanno and A. Podelski. Constraint-based deductive
model checking. STTT, 3(3):250–270, 2001.

[22] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm Java-
Prolog integration in tuProlog. Sci. Comput. Program.,
57(2):217–250, 2005.

[23] T. Eiter, V.S. Subrahmanian, and G. Pick. Heterogeneous
active agents, I: Semantics. Artificial Intelligence, 108(1-
2):179–255, 1999.

[24] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not
never” revisited: on branching versus linear time temporal
logic. J. ACM, 33(1):151–178, 1986.

[25] M. Fisher and H. Barringer. Concurrent METATEM pro-
cesses – A language for distributed AI. In Proceedings
of the European Simulation Multiconference. SCS Press,
Copenhagen, Denmark, 1991.

[26] E. Friedman-Hill. Jess in Action : Java Rule-Based Systems
(In Action series). Manning Publications, 2002.

[27] G. De Giacomo, Y. Lespérance, and H. J. Levesque. Con-
golog, a concurrent programming language based on the sit-
uation calculus. Artificial Intelligence, 121:109–169, 2000.

[28] J-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102,
1987.

[29] P. Klemperer. Auctions: Theory and practice. Princeton
University Press, 2004.

[30] V. Mascardi, D. Briola, M. Martelli, R. Caccia, and C. Mi-
lani. Monitoring and diagnosing railway signalling with
rule-based distributed agents. Technical report, Diparti-
mento di Informatica e Scienze dell’Informazione, Univer-
sity of Genova, Italy, 2008. Technical Report DISI-TR-08-
04.

[31] V. Mascardi, M. Martelli, and I. Gungui. DCaseLP: a pro-
totyping environment for multi-language agent systems. In
M. Dastani, A. El-Fallah Seghrouchni, J. Leite, and P. Tor-
roni, editors, Proc. of the 1st Int. Workshop on Languages,
Methodologies and Development Tools for Multi-Agent Sys-
tems, LADS’007, LNCS. Springer, 2008. To appear.

[32] V. Mascardi, M. Martelli, and L. Sterling. Logic-based
specification languages for intelligent software agents.
TPLP, 4(4):429–494, 2004.

[33] R. Montagna, G. Delzanno, M. Martelli, and V. Mascardi.
BDIATL: An alternating-time BDI logic for multiagent
systems. In M. P. Gleizes, G. A. Kaminka, A. Nowé, S. Os-
sowski, K. Tuyls, and K. Verbeeck, editors, Proc. of the 3rd
European Workshop on Multi-Agent Systems, EUMAS’05,
pages 214–223. Koninklijke Vlaamse Academie van Belie
voor Wetenschappen en Kunsten, 2005.

[34] A. S. Rao and M. P. Georgeff. Asymmetry thesis and side-
effect problems in linear-time and branching-time intention
logics. In J. Myopoulos and R. Reiter, editors, Proc. of
the 12th Int. Joint Conf. on Artificial Intelligence, IJCAI-
91. Morgan Kaufmann publishers, 1991.

[35] A. S. Rao and M. P. Georgeff. Deliberation and intentions.
In Proc. of 7th Conference on Uncertainity in Artificial In-
telligence. Morgan Kaufmann publishers, 1991.

[36] A. S. Rao and M. P. Georgeff. Modelling rational agents
within a BDI-architecture. In Proc. of the 2nd Int. Confer-
ence of Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann publishers, 1991.

[37] D. Roggero, F. Patrone, and V. Mascardi. Designing and im-
plementing electronic auctions in a multiagent system en-
vironment. In F. Corradini, F. De Paoli, E. Merelli, and
A. Omicini, editors, Proc. of the WOA 2005 National Work-
shop, Dagli Oggetti Agli Agenti, pages 157–163. Pitagora
Editrice Bologna, 2005.

[38] Y. Shoham. Agent-oriented programming. Artificial Intel-
ligence, 60:51–92, 1993.

[39] W. Vickrey. Auction and bidding games. In Recent ad-
vances in Game Theory, pages 15–27. Princeton University
Conference, 1962.

[40] M. Wooldridge. Reasoning about rational agents. Mit
press, 2000.

Il Milione: A Journey in the Computational Logic in Italy

42


