
Visual Support for Work Assignment in YAWL

Francesco Cardi1, Massimiliano de Leoni1, Michael Adams2,
Arthur H.M. ter Hofstede2, and Wil M.P. van der Aalst2,3

1 SAPIENZA - Universit̀a di Roma, Rome, Italy
fcardi82@gmail.com , deleoni@dis.uniroma1.it
2 Queensland University of Technology, Brisbane, Australia

mj.adams@qut.edu.au , a.terhofstede@qut.edu.au
3 Eindhoven University of Technology, Eindhoven, The Netherlands

w.m.p.v.d.aalst@tue.nl

1 Introduction

A basic function of Process-aware Information Systems (PAISs) is to offer work to
resources. The elementary pieces of work are calledwork items, e.g. “Approve travel
request XYZ1234”. Work items are offered to users via so-calledwork-list handlers,
which take care of work distribution and authorisation issues.

Typically, PAISs use a so-called “pull mechanism”, i.e. work is offered to all re-
sources that qualify and one resource selects it for execution. Even though resources
are free to select any work items they qualify, they should pick the right work items
in the right order. The right order is thus balancing resources’ personal needs and the
overall benefit of their respective organisations. In order to drive to the right choice, ba-
sic information is provided, e.g. task name, due date, etc. To the best of our knowledge
(see [1]), commercial and open source PAISs present work lists simply as a list of work
items, each with a short textual description. Context-aware systems provide contextual
information, but the different viewpoints are not merged together.4

This paper aims at describing the operationalisation of an innovative worklist han-
dler that overcomes this limitation. This worklist handler has been implemented as a
component of the YAWL Process Management System5, although it has been conceived
as being independent to any particular PAIS. This worklist handler provides participants
with a more detailed insight of the context in which processes are carried out. In ad-
dition, it aims to provide support for work item selection by taking into account the
circumstances and attributes of all of the users currently active.

In order to achieve these results, we have introduced the metaphor ofmaps. A map
can be a geographical one (e.g. a map of a university campus), but may also be a process
schema, an organisational diagram, a Gantt chart, etc. Work items are then visualised
as dots on these maps. By allowing the choice of the map to be configurable, different
types of relationships can be shown, thus providing a deeper insight into the context of
the work to be performed.

Resources may also be shown on maps, e.g. by using their position. Besides the
“map metaphor” we also use the “distance metaphor”— from the viewpoint of the
user, some work items are close while others are far away. This distance may be ge-
ographic, e.g. a field service engineer may be far away from a malfunctioning printer

4 E.g. Taskmind - http://www.taskmind.net/en/community/.
5 The YAWL Web Site - http://www.yawlfoundation.org.



Fig. 1. The reference architecture

at the other side of the campus. However, many other distance metrics are possible. For
example, one can support metrics capturing familiarity with certain types of work, lev-
els of urgency, and organisational distance. It should be noted thatthe choice of metric
is orthogonal to the choice of mapthus providing a high degree of flexibility in context
visualisation. Resources could, for example, opt to see a geographical map where work
items display their level of urgency and their positions are calculated based on a func-
tion supplied at design time. The complete description of the general framework can be
found in [1].

2 Implementation

This innovative worklist handler has been concretely implemented as a Java Applet.
This choice is motivated by the fact that we aim to integrate it with YAWL’s standard
worklist handler, referred to as theResource Service, which is a web application. By
using the Resource Service, users can access their work queues to view their offered,
allocated, started and suspended work items. The visual worklist handler provides an
overlay to the Resource Service, so that users have the option to view a worklist as a
traditional queue or in the form of a map of their choice.

Figure 1 shows the overall architecture of the implementation. The Visualisation
Applet connects toVisualisation Framework Services, which is a collective name for
a number of modules that provide information regarding the depiction of maps and
the placement of work items (e.g. URLs to locate map images, work item positions on
various maps, work item metrics). The framework services use information that is stored
partly in a database, theVisualisation Repository, and partly obtained by querying the
YAWL Engine and the Resource Service throughinterfaces EandW. Interface E is
used to acquire logging information, which is needed to compute the values for certain
metrics. Interface W allows the applet to obtain information about work items (e.g. their
status) and users (e.g. work items assigned or offered to a given participant), as well as
about running process instances (e.g. variable values).

Finally, the implementation provides aVisualisation Designer, which is used by ad-
ministrators to define maps as well as to specify the policies for positioning work items.
For instance, the Visualisation Designer allows dragging and dropping of tasks of pro-
cess specifications onto maps so as to determine work item positions. The Designer then
stores the proper data in the Visualisation Repository for later retrieval. The positioning



of work items on maps can be statically defined at design-time or determined at run-
time according to certain policies. In the latter case the Visualisation Designer allows
one to specify at design-time an XQuery expression over case variables for given pairs
< T, M > whereT andM are respectively a task and a map. When the applet has to
position a certain work item of taskT on mapM , it performs the XQuery over the case
variables involved, which returns the actual work item position onM .

While the implementation is targeted at YAWL, it remains generic, i.e. it is relatively
easy to embed the visualisation framework in other PAISs that make available interfaces
providing the information required.

3 A Sample Use Case

In this section we briefly describe a sample use case of the new worklist handler which
concerns emergency management. Let us assume an earthquake has occurred in the city
of Brisbane (Australia) and several civil-protection teams are sent to the area to handle
the emergency. For each location of interest a process needs to be followed, which can
be generalised as the execution of four activities. The first is to take some emergency
remedial actions to aid the population. Then, an emergency worker takes photos of the
wounded, while another fills in a questionnaire about the situation. Finally, an emer-
gency worker collects the photos and the questionnaire and contacts headquarters in
order to obtain further instructions. According to the feedback, the activities for that
area may need to be repeated.6 Figure 2 shows two screenshots of the Visualisation
Designer. In these screenshots, tabs are used to show the defined maps. Each tab allows
users to specify the work item positioning for the corresponding map. In order to posi-
tion some tasks of a certain process on a certain map, the designer first parses the YAWL
process specification. Then, theTask Listwindow appears, which contains a list of all
tasks in the process. Figure 2(a) shows how to position tasks statically. The designer
chooses the proper map and then drags and drops tasks from theTask Listwindow onto
the map. Figure 2(b) shows the dynamic positioning of work items. Instead of dragging
and dropping, users can double click to open a new window where an XQuery expres-
sion can be specified to compute thex andy coordinates. If applicable, the window
allows the designer to preview the values resulting from the evaluation of the XQuery
applied to a randomly chosen case. Figure 3 shows two screenshots of the applet of the
worklist handler. Specifically, Figure 3(a) illustrates a geographic map. The small dots
correspond to work items positioned on the map. They are coloured according to the
currently selected metric, in this example the Geographic Distance. This metric mea-
sures the proximity of a user to the locations where work items should be executed. A
design decision was made that for offered work items (i.e. work items not yet assigned
to a participant) a colour close to white represents a low metric value whereas a colour
close to red represents a high metric value. In addition, according to the general frame-
work described in [1], there are special colours denoting work item status (e.g. purple
means ‘allocated to specific participants’). When dots overlap, they are joined to form
bigger dots, since otherwise some of them would be invisible. The diameters of such
dots grow logarithmically with the number of work items amalgamated, and their colour
is determined by the colours of the underlying dots. The applet also shows the locations

6 Two videos that demonstrate the example can be found at www.yawlfoundation.org/videos.



(a) Definition of a static positioning on a “process specification” map

(b) Definition of a dynamic positioning on a time-line map

Fig. 2. Screenshots of the Visualisation Designer

of participants on maps in the form of triangles. One green triangle denotes the position
of the participant who is logged on through that running instance of the applet. The
other gray triangles show the positions of other participants. In line with the authori-
sations specified, clicking on a participant leads to a pop-up showing the list of work
items that this participant would see in their applet. The applet is also organised using
tabs, one for each map. Figure 3(b) depicts the “process definition” map where work
items are located on top of the corresponding tasks. Work items on the left-hand side



(a) A “geographic” map

(b) A “process specification” map

Fig. 3. Screenshots of the Visualisation Applet

are those having no specific position on the map. Indeed, for a certain map, positioning
of some work items may be meaningless.

References

1. de Leoni, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Visual Support for Work Assign-
ment in Process-Aware Information Systems. In: Proceedings of the 6th International Confer-
ence on Business Process Management (BPM’08), Milan, Italy, September 2-4. Volume 5240
of Lecture Notes in Computer Science., Springer (2008)


