Dealing with incomplete normative states

Juan Manuel Serrano
University Rey Juan Carlos
Madrid, Spain
juanmanuel.serrano @urjc.es

Abstract—This paper puts forward a normative framework for
computational societies which enables the handling of incomplete
knowledge about normative relations. In particular, attempts to
perform a social action are evaluated as permitted, prohibited (i.e.
not permitted) or pending for execution (i.e. neither permitted nor
prohibited). This latter category of attempts can eventually be
resolved as permitted or prohibited attempts using the speech acts
allow and forbid. We make use of the support for incompleteness
of action language K in the formalisation of the framework. The
proposal will be illustrated with some scenarios drawn from the
management of university courses.

I. INTRODUCTION

Empowerments and permissions are two common normative
devices in the design of computational societies [1], [2],
[3]1, [4], [5]. The former notion allows us to model the
institutional capabilities ascribed to agents of the society; the
latter one serves to represent those desirable institutional states
or courses of action which do not lend themselves to violation.
The relations between both notions are commonly considered
application-dependent, i.e. in some domains permission may
be a necessary condition for empowered agents to act, whereas
in others empowerment alone may be a sufficient condition.
Concerning permissions, a difference is also made between
regimentation and enforcement mechanisms in the implemen-
tation of normative systems [6]: regimented infrastructures
(e.g. AMELI [7]) effectively prevent agents from executing
some action if the corresponding permission does not hold;
on the contrary, systems based upon enforcement rely on a
subsidiary normative corpus of checking and sanctioning rules
to bias the behaviour of agents towards the desired courses
of actions. Finally, a common assumption in the literature
is to consider that both empowerments and permissions are
necessarily either true or false.

This paper challenges this last assumption for the case
of permissions. In particular, it considers those situations
in which the designers of the computational society do not
have enough knowledge so as to generate a complete set of
permission rules for certain classes of actions. For instance, let
us consider a computational society designed to support the
management of university courses. As part of the resulting
specification, empowerment and permission rules are defined
which partially regulate the social processes of the application
domain, namely assignments, examinations, tutoring, lectur-
ing, and so forth. In particular, the following norms concerning
the creation of assignment groups will be considered. Firstly,
empowerment to sef up a working group for some assignment
is granted to any student of the course who has not yet passed

Sergio Saugar
University Rey Juan Carlos
Madrid, Spain
sergio.saugar@urjc.es

that assignment. The attempt of setting up an assignment
group will be permitted if, and only if, the assignment has
been published, the specified submission deadline has not yet
passed and the student is not participating in any other working
group for that assignment. Alternatively, instead of setting
up her own working group, a student may join a working
group set up by another colleague in order to collaborate
with him. Empowerment conditions for joining assignment
groups coincide with those identified for the setting up of
new groups. Some of the permission conditions for setting up
working groups are also relevant, although only as necessary
conditions. In particular, if some student attempts to join some
working group and the corresponding submission deadline
passed or she is already participating in another working
group, then the attempt will be prohibited (i.e. not permitted).
If none of these conditions hold, then there are no grounds for
prohibiting the attempt. However, this does not mean that there
are grounds for permitting the execution of the social action,
since the ultimate decision on the permission or prohibition
of the attempt lies with the initiator of the group (i.e. the
student who set up the group). Thus, sufficient conditions for
permitting or prohibiting the joining action can not be specified
in advance by the designer of the society. In these scenarios, it
would be very convenient to give the initiator of the group the
possibility of either allowing or forbidding the corresponding
social action so that the attempt is eventually permitted or
prohibited.

This paper puts forward a formal model of permission which
enables the representation of incomplete information about
the normative status of social action attempts, such as the
one commented above. Moreover, it formalises the meaning
of the speech acts allow and forbid in the context of the
previous model. In order to proceed with this formalization,
we build on the notions of empowerment and permissions
reported in [5]. That work introduces an operational semantics
of computational societies using the action language C+ [8].
In this paper, we opt for the alternative action language K [9]
due to its support for incompleteness.

The rest of the paper is structured as follows. Firstly, the
most salient features of action language K for the purpose
of this paper will be reviewed. Then, the general framework
for social action processing will be introduced, describing
the major features of the action description in language K.
Next, the speech acts of allowing and forbidding will be
formalised. Last, the major differences with previous work
will be discussed and current work briefly described.

II. REVIEW OF ACTION LANGUAGE K

Action languages are formal techniques for representing
and reasoning about the performance of actions in dynamic
domains. The semantics of action languages is given in terms
of transition systems, namely graphs whose states and arcs
represent, respectively, the possible configurations of the do-
main and its evolution due to the concurrent execution of a set
of actions. Commonly, action languages such as C+ describe
transitions between states of the physical world, i.e. states
which represent complete configurations of the domain, where
each fluent is necessarily either true or false. In contrast, action
language K [9][10] allows us to describe transitions between
states of knowledge, where the truth values of some fluents
may be neither true nor false, but unknown. The motivation
behind action language K was thus to support agents with an
incomplete view of the world in their planning processes.

An action description in language K is composed of a set
of fluent and action declarations, a set of causation rules and
a set of executability conditions:

o A fluent or action p is declared using an expression of

the form:

p(Xl,. .
where X, are variables and ¢; are positive literals (i.e.,
true atoms) which specify the types of the corresponding
variables!.

o Causation rules are expressions of the form:

caused f if B after A

L,Xp) requires ti,.. .ty

If the subexpression f is a fluent literal, the causation
rule expresses that f is known to be true in the current
state if B holds in the current state and A also holds
in the preceding state. The subexpressions B and A are
actually sequences of literals, possibly prefixed with the
default (or weak) negation operator not. The expression
not f holds if f is not known to be true, whereas the
expression not —f holds if f is not known to be false.
If both expressions hold then the truth value of f is
unknown.

o The subexpression B can only refer to type or fluent
predicates, whereas A can also refer to action predicates.
If sequences B and A are empty, the corresponding if
and after parts can be dropped from the expression.
If the after part is empty the rule is called static,
otherwise the causation rule is dynamic. Moreover, if
f is the atom false, the causation rule represents an
static (resp. dynamic) integrity constraint which allows us
to filter out from the transition system ill-formed states
(resp. transitions). Dynamic rules can be used to represent
the non-executability conditions and effects of actions. In
particular, the following macro rule is a shorthand of a
dynamic constraint to represent that condition B blocks
the execution of action a [10, sec. 2]:

nonexecutable a if B

IThis is actually a slightly simplified version of this construction. See [10]
for the full version and the meaning of fype predicates.

o Executability statements are primitive (i.e. not macro)
expressions of the form

executable a if B

This kind of declaration expresses that action a is eligible
for execution in any state of knowledge in which B holds.
If we want the execution of action a to be not only
possible but also mandatory, then a dynamic constraint
can be declared. Since this a common requirement, this
paper introduces the following macro rule which allows

us to declare B as a sufficient condition for executing a:

) executable aif B
executeda if B &
caused false after not a, B

III. SOCIAL ACTION PROCESSING

Departing from its original motivation, action language K
will be used in this paper for describing transitions between
states of institutional worlds, rather than states of knowledge
of some planning agent. In particular, the technical apparatus
of language K will be exploited to represent institutional
states where some normative fluents (e.g., permissions) may
have an inherent, non-epistemic indeterminacy. In software
engineering terms, the dynamic domain to be modeled is
thus the social middleware infrastructure in charge of the
management of the institutional state of the computational
society, rather than the software components participating as
agents in the society. The corresponding action description
is partitioned in several sub-specifications corresponding to
the different types of social entities of the computational
society, namely social interactions, agents and social actions.
A complete account of this specification, however, is beyond
the scope of this paper?. Instead, the focus here will be on the
major features concerning the processing of social actions.

A. Social interactions

The institutional state of computational societies is hierar-
chically structured in terms of a tree of social interactions. The
root of this tree, or top-level interaction, represents the social
context within which the whole agent activity takes place;
the other sub-interactions represent the social contexts for
particular joint activities (i.e. social processes). For instance,
assignment groups are represented by social interactions which
are sub-interactions of courses, another type of social interac-
tion. Social interactions may be initiated within the context of
some other interaction, and eventually finished by the social
middleware. The conditions which cause the execution of these
actions are, in general, dependent on the type of interaction.
Thus, university courses are automatically initiated when the
new academic year begins, and assignment groups are initiated
when some student successfully declares its initiation through
the performance of the ser up social action — in accordance
with the empowerment and permission rules of the society. In
this latter case, the initiator of the social interaction can be
defined as the performer of the ser up action.

2But see the C+ version [5] of the specification (which is not able to handle
incomplete states), and the full K implementation available from http://zenon.
etsii.urjc.es/~jserrano/speech/k-impl.tgz

fluents: 1
state_i(I,S) requires 2
interaction(I), interaction_state(S). 3
context_i(I1,I2) requires 4
interaction (Il), interaction (I2). 5
initiator (I ,A) requires 6
interaction(I), agent(A). 7

8
actions: 9
initiate (I1,I2) requires 10

interaction(Il1), interaction (I2). 1

always: 13

nonexecutable initiate (I1,I2) if 14
state_i(I1,open). 15
caused state_i (Il ,open) after 16
initiate (I1 ,12). 17
caused context_i(Il1,I2) after 18
initiate (I1 ,12). 19

20

Listing 1. K-specification of social interactions

Listing 1 shows some relevant features of the specification
in language K of social interactions. In particular, it shows the
declaration of fluents state_i, context i and initiator , which
represent, respectively, the run-time state of social interactions
(either open or closed, values of the interaction_state predicate
defined elsewhere), its interaction context and the possible
initiator. Also shown is the declaration of the initiate action
together with its non-executability conditions and effects (lines
14-19). These rules are declared within the scope of the
always section, since they apply to every possible institutional
state.

B. Agents

Agents are software components which interact through the
social middleware as members of a given social interaction
context, with the purpose of achieving some goal. In order to
do so, they are empowered to perform social actions such as
setting up new interactions, joining existing interactions, and
so forth. For instance, the purpose of students is to pass the
course to which they belong as members. In order to achieve
this goal, students are empowered to set up working groups
or to join existing ones in order to carry out some mandatory
assignment. In case that the purpose of agents is too complex,
its whole activity may be arranged in terms of a role-playing
hierarchy of further agents. Thus, the activity of students
within the context of working groups is represented by a
new kind of agent role played by the course student. Agent
roles are played and abandoned by the social middleware
according to certain conditions. For instance, a course student
role is automatically abandoned as soon as the agent passes
the subject; a working group student is automatically created
for the initiator of the working group, and for any student who
successfully manage to join a pre-exiting working group.

Listing 2 partially shows the K-specification of the agent

fluents: 1
state_a(A,S) requires 2
agent(A), agent_state(S). 3
context_a(A,I) requires 4
agent(A), interaction (I). 5
player (Al,A2) requires 6
agent (Al), agent(A2) 7

8
actions: 9
play (A,I) requires 10
interaction(I), agent(A). 1
play_for (Al,A2,1) requires 12
agent(Al), agent(A2), interaction(l). 1

14
always: 15
nonexecutable play(A,I) if 16
state_a (A, playing). 17
caused state_a (A, playing) after 18
play (A, 1). 19
caused context_a(A,l) after 2
play (A, 1). 21
executed play(Al,I) if 2
play_for (Al1,A2,1). 23
caused player (Al,A2) after 2
play_for (Al1,A2,1). 25

. 26

Listing 2. K-specification of agents

type, which includes the declaration of general fluents and
actions shared by any kind of agent. Particularly, it shows the
declaration of the fluents state_a, context_a and player, which
represent the run-time state of agents (playing or abandoned),
the social interaction context to which the agent belongs and
its player agent, respectively. Also, it shows the declaration
of the actions play and play_for. The former one causes some
agent to be created within some social interaction context.
The general specification only includes its non-executability
condition and effect (lines 16-21). The action play_for causes
some agent to be played (line 22) for a particular player agent
(line 24).

C. Social actions

The activity of agent components within a multiagent so-
ciety manifest itself through the performance of attempts.
This external action allows an agent component to perform
a given social action, namely to say something, manipulate
the environment or observe the current state of some social
entity. Due to lack of space, this paper will refer only to speech
acts and, particularly, to declarations such as set up and join.
Nevertheless, the processing of attempts by the social middle-
ware is independent of the kind of social action. This process
takes into account the empowerments and permission rules of
the society. In particular, empowerments shall represent the
institutional capabilities of agents, i.e. which social actions a
given agent is capable of performing; permissions shall denote
the circumstances under which these institutional capabilities
can be exercised. Attempts by agent components are processed
according to the following procedure:

« If the agent is empowered to perform the specified social
action, then the attempt will be taken into account;
otherwise, i.e. either if it is known for certain that the
agent is not empowered, or it can not be concluded that
it is empowered, the external action will be dismissed.
In this latter case, the institutional state of the multiagent
society will not be altered at all.

o If the agent is empowered to perform the action, but it
is known that the specified performer is not permitted
to perform it (i.e. it is prohibited), then the process is
finished with a prohibited attempt status. On the contrary,
if the agent is both empowered and permitted, then the
social action is performed by the middleware. The effects
caused through this execution depend on the kind of
social action being performed.

o If the agent is empowered to perform that action, but it is
neither known that the action is permitted nor prohibited,
then the social action is kept in a pending state. This
state will be eventually resolved into a performed or
prohibited state as soon as it is known whether the action
is permitted or prohibited.

This procedure is formalised as part of the social action type
specification, whose major features are shown in listing 3. The
signature of this specification includes the action declaration
attempt (Act,A), which represents the attempt made by some
agent component A to perform the social action Act. This
action is exogenous, i.e. its cause is to be found outside the
system being modeled; correspondingly, it is unconditionally
declared as executable (cf. line 20).

The different scenarios described above concerning the
processing of attempts are modeled through different groups
of static and dynamic rules. Firstly, if the intended agent
is empowered to perform the social action then it will be
declared as its performer (line 22), irrespective of the permis-
sion status. Empowerments, permissions and the performers
of social actions, are represented by the fluents empowered,
permitted and performer, respectively. If the agent attempting
to perform the social action is empowered then the social
action will be brought about in the next state to one of
three execution states (represented by the fluent state_sa):
pending, prohibited or performed (the possible values of the type
predicate social_action_state).

« Firstly, if it is known that the action is not permitted
(i.e. —permitted(Act,A)) then the resulting state will be
prohibited (line 24).

o Secondly, if it is permitted then the action will be
performed (line 27). Execution of actions is represented
by the action perform, whose only effect at this level of
abstraction is the change in the run-time execution state
(line 39).

o Last, if the social action is neither known to be permitted
nor prohibited, then the social action is kept in a pending
execution state in the resulting system state (line 30).
Eventually, the circumstances may change in such a
way that the social action is known to be permitted

fluents: 1
state_sa (Act,S) requires 2
social_action (Act), 3
social_action_state (S). 4
context_sa(Act,l) requires 5
social_action (Act), interaction (I). 6
performer (Act,A) requires 7
social_action (Act), agent(A). 8
empowered (Act ,A) requires 9

social_action (Act), agent(A). 10
permitted (Act) 1
requires social_action (Act). 12

13
actions: 14
attempt (Act,A) requires 15
social_action (Act), agent(A). 16
perform (Act) requires 17
social_action (Act). 18
always: 19
executable attempt(Act,A). 20
21
caused performer (Act,A) after 2
attempt (Act,A), empowered(Act,A). 23
caused state_sa(Act, prohibited) after 4
attempt (Act,A), empowered (Act,A), 2
—permitted (Act). 26
executed perform (Act) if 7
attempt (Act,A), empowered (Act,A), 28
permitted (Act). 29
caused state_sa(Act,pending) after 30
attempt (Act,A), empowered (Act,A), 31
not permitted (Act), not —permitted (Act).»

33
caused state_sa(Act,prohibited) after 34
state_sa (Act,pending), —permitted (Act). 35
executed perform(Act) if 36

state_sa (Act,pending), permitted(Act) . x

caused state_sa (Act,performed) after 39
perform (Act). 40
Listing 3. K-specification of social actions

or prohibited. In those cases, the social action will be
resolved to the execution or the prohibition states by the
corresponding rules (lines 34-37). Otherwise, the social
action will persist until the performer agent is abandoned
(i.e. its run-time state is changed to abandoned) or the
interaction context is closed.

I'V. FORBIDDING AND ALLOWING SOCIAL ACTIONS

Those social actions pending for execution will be resolved
as prohibited or permitted attempts as soon as the rules of the
society enables a definite conclusion on its permission status.
As a complementary mechanism, particularly useful in the
absence of general rules, run-time agents may also change the
permission status through the speech acts allow and forbid>.

30f course, since allow and forbid are speech acts, their performance is
also governed by the corresponding empowerment and permission rules. For
instance, initiators of assignment groups are unconditionally empowered and
permitted to allow other students to join their groups. In other application
domains, however, it may happen, for instance, that some agent is required
to allow other agent to allow some other agent to do something.

fluents: 1
new_role (Join ,A) requires 2
join(Join), agent(A). 3

4
always: 5
executed play_for (Al1,A2,1) if 6
join(Join), perform(Join), 7
context_sa(Join,I), 8

9

performer (Join ,A2), new_role(Join ,Al).

Listing 4. K-specification of the join social action

This section provides a formal account of the meaning of these
speech acts and illustrates the formalisation of the assignment
group scenario with the execution of a planning query. To
account for a complete example, besides the allow and forbid
speech acts, the join declaration will also be formalised.

A. Formalizing social actions

The specification of a new type of social action t; pro-
ceeds, firstly, by declaring a rule social_action(x) :-—
t_1 (x). This rule establishes that any entity of the new type
shall be regarded as a social action, so that the rules which
define the general structure and dynamics of social actions (cf.
listing 3) are applicable for entities of that type. Secondly, new
fluents representing the additional arguments of the new social
action type must be declared. Last, new rules for representing
the post-conditions of the performance of the new type of
action, as well as their additional non-executability conditions,
etc., have to be declared as well.

For instance, listing 4 shows the formalisation of the join
declaration. By performing this speech act, the speaker de-
clares that a new role is played within some interaction by it.
The interaction and the speaker are represented by generic
fluents of social actions, namely context_sa and performer.
The new role to be played is declared as a new fluent,
new_role, pertaining to this kind of speech act. The rest of
the specification includes the particular effects associated to
the execution of this kind of declaration, which are indirectly
achieved through the internal action play_for (cf. listing 3).

Figure 5 shows the partial specification of the allow speech
act. In this case, the generic social action specification is
extended with the new fluent action_a, which represents the
social action targeted by the allow speech act. The specifi-
cation includes a condition which establishes that the social
action to be allowed must be pending for execution (line 6).
The effect of performing the allow action is to explicitly cause
that the social action is permitted (9). The specification of the
forbid speech act is similar to the one shown in listing 5. The
only major difference pertains to its post-condition, which in
this case resorts to the strong negation operator, i.e.

caused —permitted (Act) after
forbid (Forbid), perform(Forbid),
action_f (Forbid , Act)

fluents:
action (Allow , Act) requires
allow (Allow), social_action (Act).
always:
nonexecutable attempt(Allow ,A) if
allow (Allow), action (Allow, Act),
not state_sa(Act,pending).
caused permitted (Act) after
allow (Allow), perform (Allow), 10
action (Allow , Act). 1

L TR Y S S VO C R

Listing 5. K-specification of the allow social action

initially:
—has_state_sa(joinl). —has_state_a(s21).
—has_state_sa(allowl).

always:
state_a (sl ,playing).
state_a(s2,playing). context_a(s2,top).
state_1i(wgl,open). initiator (wgl,sl).
state_a(sll,playing). context_a(sll,wgl).
player(sll,sl). empowered(s2,joinl).
action_a(allowl ,joinl). 10
empowered (allowl ,s11). permitted (allowl). u

goal: 12
member (wgl ,A), player(A,s2)? (3) 13

1
2
3
4
context_a(sl,top). 5
6
7
8
9

Listing 6. Working group scenario

B. Planning query

This section illustrates the semantics of the previous speech
acts through a simplified implementation of the working group
scenario. This implementation, shown in listing 6, features a
consistent situation where the top-level interaction represents
the university course to which two student agents, s; and o,
belong as members. The university course has a single working
group wgs, previously set up by student s;. The activity of this
student within the working group is represented by the role
s11. The query posed to the DLV* planner (an implementation
of action language K as a front end to the DLV answer set
programming framework [9], [11]) asks for the possible ways
in which the student s may play a role within the working
group wys, in exactly three planning steps.

The output of the DLV* planner is shown below. As ex-
pected, the first action that needs to be performed is an attempt
by agent so to join the working group. Two additional objects
have to be declared in the scenario in order for this action
to be performed: a join social action, join;, and the agent
to be played within the working group, s2;. These objects
initially belong to the pool of objects which are available
for the planning process*. Since the student is empowered to
perform the join action but no permission rules are declared,
the attempt to perform it results in a pending status. The next
state features an attempt by agent s11 to allow the performance
of the join action, namely to perform action allow;. Since this

4Formally, these are objects which have no state, e.g. agents which are
being neither played nor have been abandoned.

agent is both empowered and permitted to perform that social
action, the permissions to execute the join; action are in effect
in the next state. This, in turn, causes the performance of the
join action and the consequent playing of the student agent
within the working group.

STATE 0: state_a(s2,playing)

empowered (s2, joinl)

state_1i (wgl, open)
new_role (joinl, s21)

ACTIONS: attempt (joinl, s2)

STATE 1: state_sa(joinl,pending) performer (joinl, s2)
empowered(sll,allowl) permitted(allowl)
action_a(allowl, joinl)

ACTIONS: attempt (allowl,sll) perform(allowl)

STATE 2: state_sa(allowl,performed)

state_sa(joinl, pending)
permitted(joinl)
perform(joinl) play_for(s21,s2,wgl)
state_a(s21,playing) player(s2l,s2)
context_a(s21,wgl)

performer (joinl, al

ACTIONS:
STATE 3:

play(s21,wgl)

V. DISCUSSION

The model of empowerment and permission put forward
in this paper contrasts with other approaches based on ASP
[3], [12], the event calculus [4] or action languages [2] in
several respects. Firstly, the subjects of empowerments and/or
permissions in these approaches are events which represent the
observable or institutional actions to be evaluated. Moreover,
normative fluents are boolean so that these events are evaluated
in a single transition step either as permitted or prohibited.
In contrast, permissions are applied in our framework to a
particular kind of social entity, viz. social actions, which
can be assigned a permitted and prohibited status, but also
an unknown one. Thus, our framework does not force the
designer of the computational society to add a complete set
of permission rules.

Secondly, the strong negation operator allows the designer to
explicitly declare prohibition rules, whereas other approaches
have to resort to the default “everything which is not per-
mitted, is prohibited”, which may not always be adequate. In
particular, explicit prohibitions are very convenient in order
to represent necessary conditions of permission rules. For
instance, the following rule states that a necessary condition
to join some working group is that the deadline for submitting
the corresponding assignment has not passed yet:

caused —permitted (Join) if
context_sa(Join ,W), working_group (W),
assignment (W,A), deadline (W,D),
current_time (T), D<T.

The assignment group scenario also served to illustrate a
situation where empowerments and permission rules concern-
ing a single type of social action are, respectively, complete
and incomplete. This represents a good case in favour of the
distinction between empowerments and permissions, which
some approaches neglect (dispensing with one of the two
notions).

Lastly, two normative social actions, allow and forbid, are
smoothly introduced within the normative framework in order
to handle those situations of incomplete normative knowledge.
The semantics proposed for these actions is aimed at particular
cases that can not be solved using the general normative

knowledge of the society. This ad-hoc character tallies well
with the natural language meaning of the corresponding En-
glish speech act verbs [13].

The normative framework reported in this paper is part of
a larger research project aimed at the specification of a lan-
guage for programming social applications [5], viz. software
systems designed to support human interaction in arbitrary
social contexts. This broad class of target applications include
common online communities, but also other software systems
deployed in more specialised settings such as business process
management. This general goal partly explains some of the
features of the proposed normative framework, such as its bias
towards regimentation. Current work focuses on extensions to
support commitments, an essential construct for many social
application domains.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their detailed comments. Research sponsored by the Spa-
nish MICINN, project TIN2006-15455-C03-03.

REFERENCES

[11 A.J. 1 Jones and M. J. Sergot, “A formal characterisation of institution-
alised power,” Logic Journal of the IGPL, vol. 4, no. 3, pp. 427-443,
1996.

[2] A. Artikis, M. Sergot, and J. Pitt, “Specifying norm-governed compu-
tational societies,” ACM Transactions on Computational Logic, vol. 10,
no. 1, 2009.

[3] O. Cliffe, M. D. Vos, and J. A. Padget, “Answer set programming for
representing and reasoning about virtual institutions,” in CLIMA VII, ser.
Lecture Notes in Computer Science, K. Inoue, K. Satoh, and F. Toni,
Eds., vol. 4371. Springer, 2006, pp. 60-79.

[4] N. Fornara and M. Colombetti, “Specifying artificial institutions in the
event calculus,” in Handbook of Research on Multi-Agent Systems:
Semantics and Dynamics of Organizational Models, V. Dignum, Ed.
IGI Global, 2009, ch. 14, pp. 335-366.

[5] J. M. Serrano and S. Saugar, “Run-time semantics of a language
for programming social processes,” in 9th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA IX), ser. Lecture
Notes in Artificial Intelligence, M. Fisher, F. Sadri, and M. Thielscher,
Eds., vol. 5405. Springer, 2009, pp. 37-56.

[6] D. Grossi, Designing Invisible Handcuffs. SIKS Dissertation Series No.
2007-16, 2007.

[7] M. Esteva, B. Rosell, J. A. Rodriguez-Aguilar, and J. L. Arcos, “AMELI:
An agent-based middleware for electronic institutions,” in Proceedings
of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, vol. 1, 2004, pp. 236-243.

[8] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner, “Non-
monotonic causal theories,” Artif. Intell., vol. 153, no. 1-2, pp. 49-104,
2004.

[9] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, “A logic pro-
gramming approach to knowledge-state planning, ii: The divk system,”
Artif. Intell., vol. 144, no. 1-2, pp. 157-211, 2003.

[10] ——, “A logic programming approach to knowledge-state planning:
Semantics and complexity,” INFSYS Research Report, Tech. Rep. 1843-
01-11, Oct. 2002.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The dlv system for knowledge representation and reasoning,”
ACM Trans. Comput. Log., vol. 7, no. 3, pp. 499-562, 2006.

M. Gelfond and J. Lobo, “Authorization and obligation policies in dy-
namic systems,” in Logic Programming, 24th International Conference,
ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, ser. Lecture
Notes in Computer Science, M. G. de la Banda and E. Pontelli, Eds.,
vol. 5366. Springer, 2008, pp. 22-36.

A. Wierzbicka, English speech act verbs. A semantic dictionary. Aus-
tralia: Academic Press, 1987.

(11]

[12]

[13]

