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Abstract—In formal approaches to inductive learning, the
ability to learn is understood as the ability to single out a cor-
rect hypothesis from a range of possibilities. Although most
of the existing research focuses on the characteristics of the
learner, in many paradigms the significance of the teacher’s
abilities and strategies is in fact undeniable. Motivated by
this observation, in this paper we highlight the interactive
nature of learning by proposing a game-theoretical and
logical approach. We consider learning as a sabotage-type
game between Teacher and Learner, and present different
variants based on the level of cooperativeness and the actions
available to the players. We characterize the existence of a
winning strategy in such games by formulas of Sabotage
Modal Logic, analyzing also their complexity. Our work
constitutes the first step towards a unified game-theoretical
and logical approach to formal learning theory.

I. I

The objective of this paper is to investigate how logics
for interaction in multi-agent systems can be used to rea-
son about strategic abilities and information flow during
the learning process. Formal learning theory (see e.g. [4])
is concerned with the process of inductive inference: it
formalizes the process of inferring general conclusions
from partial, consecutively given information, as in the
case of language learning (inferring grammars from
sentences) and scientific inquiry (drawing general con-
clusions from partial experiments). We can think of this
general process as a game between two players: Learner
and Teacher. The game starts with a class of possible
worlds from which Teacher chooses the actual one, and
Learner has to find out which one it is. Teacher provides
information about the world in an inductive manner,
and whenever Learner receives a piece of information,
he picks a conjecture from the initial class, indicating
which one he thinks is the case. Several conditions can
be defined for the success of the learning process: we can
require that Learner arrives at a correct hypothesis (finite
identification), or that the sequence of Learner’s conjec-
tures converges to a correct hypothesis (identification in
the limit) [3].

We give a high-level analysis of the described process.
First, we treat learning as a procedure of singling out one
correct hypothesis from a range of possibilities. Second,
we see this procedure not as a one-move choice; instead,
we allow many steps of update before the conclusion is

reached. These two properties make our notion of learn-
ing different from the concept of learning formalized as
epistemic update in Dynamic Epistemic Logic (see e.g. [2]),
where the word “learning” is often used as a synonym of
“getting to know” and is usually represented as a one-
step epistemic update. Moreover, in our approach we
pay attention to the strategies for teaching, highlighting
the fact that restricted power and knowledge of the
learner can be compensated by additional insights and
intentions of the teacher.

The paper is structured as follows. Section II intro-
duces the framework of learning as Sabotage Games,
shows how sabotage modal logic can express the exis-
tence of winning strategies in three different versions of
Sabotage Learning Games and gives complexity results
for them. Section III analyzes Sabotage Learning Games
in which the players do not need to move in alterna-
tion. Section IV presents a refined interactive view on
teaching based on existing learning algorithms. Section
V concludes.

II. L   S G

Our work is motivated by the learning from queries and
counterexamples model [1]. In that paradigm, the goal of
Learner is to recognize an initially unknown language L.
In order to do this, he is allowed to ask Teacher two types
of questions: about the membership of a certain string
to L, and about the equivalence of his conjecture (an-
other language) to L. When answering those questions,
Teacher does not have any freedom — her responses
are restricted by L. However, a negative answer to the
second question is accompanied by a counterexample,
which plays the role of a hint for Learner. This is the only
point of the procedure in which Teacher has a relative
freedom of choice, and in fact, the informativeness of
the string given as a counterexample influences the
effectiveness of the learning process. We want to focus
on this aspect of learning and show that the “profile” of
Teacher is relevant for the learning process. We consider
several possible scenarios — we describe games in which
Teacher is either helpful or unhelpful, and Learner is
either eager or unwilling to learn.

Let us consider a very simple “classroom” situation
with one teacher and one learner. From our high-level



TABLE I
C  LM

Learning Model Sabotage Games

hypotheses states

correct hypothesis goal state

possibility of a mind change from
hypothesis a to hypothesis b

edge from state a to b

a mind change from hypothesis a
to hypothesis b

transition from state a to b

giving a counterexample that
eliminates the possibility of a
mind change from a to b

removing a transition between
a and b

perspective, learning is a step-by-step process through
which Learner changes his information state, and the
process is successful if he eventually reaches a state
representing the goal. The information Teacher provides
can be seen as feedback about Learner’s current con-
jecture, allowing him to rule out possible changes of
mind. We can represent the situation as a graph whose
vertices represent Learner’s possible information states
and edges stand for transitions between them. During
the learning process, Learner can change his information
state by moving along the edges and Teacher can cut off
edges, thereby preventing Learner from making certain
transitions. One state is associated with the learning goal:
if Learner reaches it, we say that the learning process
has been successful. The correspondence between the
learning model from formal learning theory and our
proposal is described in Table I.

Observe that in learning from queries and counterex-
amples, a counterexample results in the absolute removal
of some initially possible hypothesis. Our setting gen-
eralizes this idea: the removal of a transition need not
make the target vertex unreachable.

A. Sabotage Games

Our perspective on learning leads naturally to the
framework of Sabotage Games [6], [11]. A sabotage game
is played in a directed multi-graph, with two players,
Runner and Blocker, moving in alternation with Runner
being the first. Runner moves by making a single transi-
tion from the current vertex; Blocker moves by deleting
a single edge from any part of the graph. We begin by
defining the structure in which a Sabotage Game takes
place.

Definition 2.1 ([6]): A directed multi-graph is a tuple G =
(V,E) where V is a set of vertices and E : V × V → N is
a function indicating the number of edges between any
two vertices.

The Sabotage Game is defined as follows.
Definition 2.2 ([6]): A Sabotage Game SG = 〈V,E, v, vg〉 is

given by a directed multi-graph (V,E) and two vertices
v, vg ∈ V. Vertex v represents the position of Runner and
vg represents the goal state.

Each match is played as follows: the initial position
〈E0, v0〉 is given by 〈E, v〉. Round k + 1 from position
〈Ek, vk〉 consists of Runner moving to some vk+1 such
that E(vk, vk+1) > 0, and then Blocker removing an
edge (v, v′) such that Ek(v, v′) > 0. The new position is
〈Ek+1, vk+1〉, where Ek+1(v, v′) := Ek(v, v′)−1 and, for every
(u,u′) , (v, v′), Ek+1(u,u′) := Ek(u,u′). The match ends if
a player cannot make a move or if Learner reaches the
goal state, which is the only case in which he wins.

Remark 1: It is easy to see that Sabotage Games have
the history-free determinacy property: if one of the players
has a winning strategy then she has a winning strategy
that depends only on the current position. Then, each
round can be viewed as a transition from a Sabotage
Game SG = 〈V,Ek, vk, vg〉 to another Sabotage Game
SG′ = 〈V,Ek+1, vk+1, vg〉, since previous moves become
irrelevant. We will use this fact through the whole paper.
Also, by edges and vertices of SG = 〈V,E, v, vg〉, we will
mean edges and vertices of its underlying directed multi-
graph (V,E).

In this definition of the Sabotage Game, Blocker re-
moves an edge between two states v, v′ by decreasing
the value of E(v, v′) by 1. As we will see later, this
definition of the game based on the above definition
of multi-graphs can lead to some technical problems
when transforming such a graph into a Sabotage Model.
Therefore, we will now present an alternative definition,
which we later show (Theorem 1) to be equivalent with
respect to the existence of a winning strategy.

Definition 2.3: Let Σ = {a1, . . . an} be a finite set of labels.
A directed labelled multi-graph is a tuple GΣ = (V,E) where
V is a set of vertices and E = (Ea1 , . . . ,Ean ), where Eai ⊆

V × V for each ai ∈ Σ.
In this definition, labels from Σ are used to represent
multiple edges between two vertices; E is simply an
ordered collection of binary relations on V with labels
from Σ. Then, the definition of the game is as follows.

Definition 2.4: A Labelled Sabotage Game SGΣ =
〈V,E, v, vg〉 is given by a directed labelled multi-graph
(V,E) and two vertices v, vg ∈ V. Vertex v represents the
position of Runner and vg represents the goal state.

Each match is played as follows: the initial position
〈E

0, v0〉 is given by 〈E, v〉. Round k + 1 from position
〈E

k, vk〉 with Ek = (Ek
a1
, . . . ,Ek

an
), consists of Runner mov-

ing to some vk+1 such that (vk, vk+1) ∈ Ek
ai

for some
ai ∈ Σ, and then Blocker removing an edge ((v, v′), a j),
where (v, v′) ∈ Ek

a j
for some a j ∈ Σ. The new position

is 〈Ek+1, vk+1〉, where Ek+1
a j

= Ek
a j
\ {(v, v′)} and Ek+1

ai
= Ek

ai

for all i , j. The match ends if a player cannot make
a move or if Runner reaches the goal state, with him
winning only in the last case.
What is said in Remark 1 also holds for Labelled Sabo-
tage Games.

In this definition of the game, it is easy to see that
when Blocker removes an edge from v to v′, it is irrele-
vant what is the label of the removed edge; what matters



for the existence of a winning strategy is the number of
edges from v to v′ that are left.

Observation 1: Let SGΣ = 〈V,E, v0, vg〉 and SG′Σ =
〈V,E′, v0, vg〉 be two Labelled Sabotage Games that differ
only in the labels of their edges, that is,

∀(v, v′) ∈ V × V : |{Eai | (v, v
′) ∈ Eai }| = |{E

′

ai
| (v, v′) ∈ E′a}|,

where | · | stands for cardinality. Then Runner has a
winning strategy in SGΣ iff he has a winning strategy
in SG′Σ.

We will now show that the problems of deciding
whether Runner has a winning strategy in each of the
Sabotage Games SG and SGΣ are polynomially equiva-
lent. We start by formalizing the problems.

Definition 2.5: The decision problem SABOTAGE is
defined as follows.
• INPUT: A Sabotage Game SG = 〈V,E, v0, vg〉.
• QUESTION: Does Runner have a winning strategy

in SG?
Definition 2.6: The decision problem Σ-SABOTAGE is

defined as follows.
• INPUT: A Sabotage Game on a labelled multi-graph

SGΣ = 〈V,E, v0, vg〉.
• QUESTION: Does Runner have a winning strategy

in SGΣ?
Theorem 1: SABOTAGE and Σ-SABOTAGE are poly-

nomially equivalent.
Proof: We show that the problems can be polynomi-

ally reduced to each other.
First we show that SABOTAGE can be reduced to Σ-

SABOTAGE. Given a Sabotage Game SG = 〈V,E, v0, vg〉,
let m := max{E(u,u′) | (u,u′) ∈ (V × V)}. Define the
Labelled Sabotage Game f (SG) := 〈V,E, v0, vg〉 where
E := (E1, . . . ,Em) and each Ei is given by Ei := {(u,u′) ∈
V × V | E(u,u′) ≥ i}.

We show that Runner has a winning strategy (w.s.) in
SG iff he has one in f (SG). The proof is by induction on
n =
∑

(v,v′)∈V×V E(v, v′), which is the number of edges of
SG. Note that by definition of f , n =

∑i=m
i=1 |Ei|, that is,

f (SG) has the same number of edges.
The base case is straightforward since in both games

Runner has a w.s. iff v0 = vg. For the inductive case,
from left to right, suppose Runner has a w.s. in the game
SG = 〈V,E, v0, vg〉 with n + 1 edges. Then, there is some
v1 ∈ V such that E(v0, v1) > 0 and Runner has a w.s.
for all games SG′ = 〈V,E′, v1, vg〉 that result from Blocker
removing any edge (u,u′) with E(u,u′) > 0. Note that
all such games SG′ have just n edges, so by induction
hypothesis Runner has a w.s. in f (SG′). But then, by
Observation 1, Runner has also a w.s. in all games f (SG)′

that result from removing an arbitrary edge from f (SG),
because for any removed edge (u,u′), the only possible
difference between f (SG′) and f (SG)′ is in the labels of
the edges between u and u′ (in f (SG′) the removed label
was the largest, in f (SG)′ the removed label is any). Now,

TABLE II
S L G

Game Winning Condition

SLGUE Learner wins iff he reaches the goal state. Teacher wins
otherwise.

SLGHU Teacher wins iff Learner reaches the goal state. Learner
wins otherwise.

SLGHE Both players win iff Learner reaches the goal state. Both
lose otherwise.

by definition of f , choosing v1 is also a legal move for
Runner in f (SG) and, since he can win every f (SG)′, he
has a w.s in f (SG).

From right to left, Runner having a w.s. in f (SG)
means that he can choose some v1 with (v0, v1) ∈ Ei
for some i ≤ m such that he has a w.s. in all games
f (SG)′ resulting from Blocker’s move. Choosing v1 is
also a legal move of Runner in SG. Suppose that Blocker
replies by choosing (v, v′). Let us call the resulting game
SG′. By assumption and Observation 1, Runner also has
a w.s. in the game f (SG′) which is the result from Blocker
choosing ((v, v′),E(v, v′)). Since f (SG)′ = f (SG′), we can
apply the inductive hypothesis.

Let us see now how SGΣ can be polynomially reduced
to SG. Given SGΣ = 〈V,E, v, vg〉 with Σ = {a1, . . . am},
define f ′(SGΣ) := 〈V,E, v, vg〉, where E(v, v′) := |{Eai |

(v, v′) ∈ Eai }|.
Showing that Runner has a w.s. in SGΣ iff he has one in

f (SGΣ) is straightforward, and can be done by induction
on n :=

∑
a∈Σ |Ea|. Both f and f ′ are polynomial.

B. Sabotage Learning Games

Based on the Sabotage Games framework, we define
Sabotage Learning Games as follows.

Definition 2.7: A Sabotage Learning Game (SLG) is a
Labelled Sabotage Game played by Learner (L, taking the
role of Runner) and Teacher (T, taking the role of Blocker).
We distinguish between three different versions, SLGUE,
SLGHU and SLGHE, differing in the winning conditions
(given in Table II).

The different winning conditions correspond to differ-
ent levels of Teacher’s helpfulness and Learner’s willing-
ness to learn. We can have an unhelpful teacher and an
eager learner (SLGUE), but there is also the possibility
of a helpful teacher and an unwilling learner (SLGHU).
The cooperative case corresponds to the version with a
helpful teacher and an eager learner (SLGHE).

We now show how Sabotage Modal Logic can be used
for reasoning about Learner’s and Teacher’s strategic
power in the learning games previously defined.

C. Sabotage Modal Logic

Sabotage Modal Logic (SML) has been introduced in
[11]. Besides the standard modalities, it also contains



“transition-deleting” modalities for reasoning about
model change that occurs when a transition is removed.
To be more precise, we have formulas of the form –̂φ,
expressing that it is possible to delete a pair from the
accessibility relation such that φ holds in the resulting
model at the current state.

Definition 2.8 (Sabotage Modal Language [11]): Let PROP
be a countable set of propositional letters and let Σ be a
finite set. Formulas of the language of Sabotage Modal
Logic are given by

φ ::= p | ¬φ | φ ∨ φ | ^aφ | –̂ aφ

with p ∈ PROP and a ∈ Σ. We write ^φ for
∨

a∈Σ^aφ and
–̂φ for

∨
a∈Σ –̂ aφ.

Definition 2.9 ([7]): Given a countable set of proposi-
tional letters PROP and a finite set Σ = {a1, . . . , an}, a
Sabotage Model is a tuple M = 〈W, (Rai )ai∈Σ,Val〉 where
W is a non-empty set of worlds, each Rai ⊆ W × W is
an accessibility relation and Val : PROP → P(W) is a
propositional valuation function. The pair (M,w) with
w ∈W is called a Pointed Sabotage Model.

For the semantics of SML, we first define the model
that results from removing an edge.

Definition 2.10: Let M = 〈W,Ra1 , . . .Ran ,Val〉 be a Sabo-
tage Model. The model Mai

(v,v′) that results from removing
the edge (v, v′) ∈ Rai is defined as

Mai
(v,v′) := 〈W,Ra1 , . . .Rai−1 ,Rai \ {(v, v

′)},Rai+1 , . . .Ran ,Val〉.

Definition 2.11: Given a Sabotage Model
M = 〈W, (Ra)a∈Σ,Val〉 and a world w ∈ W, atomic
propositions, negations, disjunctions and standard
modal formulas are interpreted as usual. For the case of
“transition-deleting” formulas, we have

M,w |= –̂ aφ iff ∃ v, v′ ∈W : (v, v′) ∈ Ra & Ma
(v,v′),w |= φ,

and –�aφ is defined to be equivalent to ¬ –̂ a¬φ.
Theorem 2 ([7]): Combined complexity of model

checking for SML is PSPACE-complete.
Note that “combined complexity” means that both the
formula and the model are taken as input.

D. Sabotage Learning Games in Sabotage Modal Logic

For any given Sabotage Learning Game SGΣ we
can construct a Pointed Sabotage Model M(SGΣ) in a
straightforward way.

Definition 2.12: Let SGΣ = 〈V,E, v0, vg〉 be a Sabotage
Game with E = (Ea)a∈Σ. We define the Pointed Sabotage
Model (M(SGΣ), v0) over the set of atomic propositions
PROP := {goal} with

M(SGΣ) := 〈V,E,Val〉,

where Val(goal) := {vg}.
In the light of this construction, SML becomes useful

for reasoning about players’ strategic power in SLGs.
For each winning condition in Table II, we can define

a formula of SML that characterizes the existence of a
winning strategy, that is, the formula is true in a given
Pointed Sabotage Model if and only if the corresponding
player has a winning strategy in the game represented
by the model.

First we look at the game SLGUE (the standard Sabo-
tage Game of [11]), with Learner trying to reach the goal
state and Teacher trying to prevent him from doing so.
Inductively, we define:

γUE
0 := goal, γUE

n+1 := goal ∨^–�γUE
n .

Our following result is a variation of Theorem 7 of
[7], rephrased for Labelled Sabotage Games. We provide
a detailed proof to show how our “labelled” definition
avoids a technical issue present in the original proof.

Theorem 3: Learner has a winning strategy in the
SLGUE game SGΣ = 〈V,E0, v0, vg〉 iff M(SGΣ), v0 |= γUE

n ,
for n :=

∑
a∈Σ |E

0
a | (the number of edges in (V,E0)).

Proof: The proof is by induction on n.
Base case
(⇒) L having a w.s. in SGΣ implies that v0 = vg. Thus,

M(SGΣ), v0 |= goal and hence, M(SGΣ), v0 |= γUE
0 .

(⇐) M(SGΣ), v0 |= γUE
0 means that M(SGΣ), v0 |= goal.

Thus v0 = vg. Hence, L wins SGΣ immediately.
Inductive case
(⇒) Suppose that SGΣ has n+1 edges, and assume that

L has a w.s. There are two possibilities. (1) v0 is the goal
state; then M(SGΣ), v0 |= goal and hence M(SGΣ), v0 |=
γUE

n+1. (2) v0 is not the goal state. Since L has a w.s.,
there is some v1 ∈ V such that (v0, v1) ∈ E0

ai
for some

ai ∈ Σ and no matter which pair ((u,u′), a j) ∈ (V ×V)×Σ
with (u,u′) ∈ E0

a j
T chooses, L has a w.s. in the resulting

game SG′Σ = 〈V,E1, v1, vg〉, with E1 = (E0
a1
, . . .E0

a j−1
,E0

a j
\

{u,u′},E0
a j+1
, . . .E0

a|Σ| ). Now, SG′Σ has n edges and thus by
inductive hypothesis, M(SG′Σ), v1 |= γUE

n . This implies
M(SGΣ), v0 |= ^–�γUE

n and thus M(SGΣ), v0 |= γUE
n+1. (⇐)

M(SGΣ), v0 |= goal ∨ ^–�γUE
n implies that v0 is the goal

state (so L wins immediately) or else there is v1 ac-
cessible from v0 such that M(SGΣ), v1 |= –�γUE

n , that is,
M(SGΣ)ai

(v,v′), v1 |= –�γUE
n for any ((v, v′), ai) ∈ (V × V) × Σ.

By inductive hypothesis, this gives L a w.s. at v1 in a
game that results from removing any edge from SGΣ,
and hence a w.s. at v0 in the game SGΣ.
They key observation for the left-to-right direction of
this proof is that the model that results from removing
an edge from M(SGΣ) is always a model that results
from transforming a Labelled Sabotage Game into a
model. With the original definition of a Sabotage Game,
this is not the case: after removing an edge between v
and v′ with label k, the resulting model does not need
to be the image of a multi-graph because the label of
the removed edge does not need to be the biggest of
them. Another way to look at it is the following: the
multiple edges of the original multi-graph can be seen



as implicitly labelled by numbers, and the existence of
an edge labelled with k implies the existence of edges
labelled with 1, . . . , k − 1. This property is not preserved
when Teacher removes an edge with an arbitrary label
from the model M(SG).

Consider now the game SLGHU, with Teacher trying
to force Learner to reach the goal state. Inductively,
define

γHU
0 := goal, γHU

n+1 := goal ∨ (^> ∧ � –̂γHU
n ).

Now, we can show that this formula corresponds to the
existence of a winning strategy for Teacher. Note that in
order to win, Teacher has to make sure that Learner does
not get stuck before he has reached the goal state. This
is why we need the conjunct ^> in the formula.

Theorem 4: Teacher has a winning strategy in the
SLGUE game SGΣ = 〈V,E0, v0, vg〉 iff M(SGΣ), v0 |= γHU

n ,
for n :=

∑
a∈Σ |E

0
a |.

Proof: Similar to the proof of Theorem 3.
Finally, consider SLGHE, with Teacher and Learner

winning iff Learner reaches the goal state. The corre-
sponding formula is defined as follows

γHE
0 := goal, γHE

n+1 := goal ∨^ –̂γHE
n .

Theorem 5: Teacher and Learner have a joint winning
strategy in the SLGHE game SGΣ = 〈V,E0, v0, vg〉 iff
M(SGΣ), v0 |= γHE

n , for n :=
∑

a∈Σ |E
0
a |.

Proof: Note that L and T have a joint w.s. iff there is
a path from v0 to vg. From left to right this is obvious.
From right to left, if there is such path, then there is also
one without cycles; then, there is a joint w.s. that follows
the path and at each step removes the edge that has just
been used. The Theorem follows by observing that γHE

n
expresses the existence of such path.

The previous results are summarized in Table III.

TABLE III
W C  SLG  SML

Game Winning Condition in SML Winner

SLGUE γUE
0 := goal, γUE

n+1 := goal ∨^–�γUE
n Learner

SLGHU γHU
0 := goal, γHU

n+1 := goal ∨ (^> ∧ (� –̂γHU
n )) Teacher

SLGHE γHE
0 := goal, γHE

n+1 := goal ∨^ –̂γHE
n Both

E. Complexity of Sabotage Learning Games
Intuitively, some versions of the Sabotage Learning

Game are simpler than others. With a helpful teacher
and an eager learner, the learning process should be
easier than with an unhelpful teacher or a unwilling
learner. This is indeed reflected in the computational
complexity of deciding in a given game whether the
winning condition is satisfied.

We have shown that our three winning conditions
(Table III) can be expressed in SML, and Theorem 2

(proved in [7]) tells us that model checking of SML is
PSPACE-complete. This gives us PSPACE upper bounds
for the complexity of the problems of deciding whether
each winning condition is satisfied in a given game. For
two of the winning conditions (SLGUE and SLGHE), we
can also give tight lower bounds.

For SLGUE – the standard Sabotage Game – PSPACE-
hardness is shown by reduction from QBF [7].

Theorem 6 ([7]): SLGUE is PSPACE-complete.
As mentioned above, for SLGHU we obtain a PSPACE

upper bound.
Theorem 7: SLGHU is in PSPACE.

Proof: Follows from Theorem 2 and Theorem 4.
It remains to be shown whether SLGHU is also

PSPACE-hard. Whereas at first sight, SLGHU and SLGUE
might seem to be duals of each other, the relationship
between them is more complex due to the different
nature of the players’ moves (Learner moves locally
by choosing an accessible state, whereas Teacher moves
globally, manipulating the structure in which Learner
moves).hus, a reduction from SLGUE to SLGHU is not
straightforward. Let us now look at SLGHE. This game
is of a different nature than the two previous ones. It is
cooperative, and a winning strategy is a joint strategy
for both players. Such a strategy does not need to take
into account all possible moves of the opponent. This
suggests that this version should be less complex than
SLGUE and SLGHU.

The following result shows that at least for the com-
parison of SLGUE and SLGHE, this is indeed the case:
for an eager learner, learning with a helpful teacher
is easier than learning with an unhelpful one. This
follows from the fact that the winning condition of
SLGHE is satisfied iff the goal vertex is reachable from
the initial vertex (note that Learner moves first). Thus,
determining whether Teacher and Learner can win
SLGHE is equivalent to solving the REACHABILITY
(st-CONNECTIVITY) problem, which is known to be
nondeterministic logarithmic space (NL)-complete [9].

Theorem 8: SLGHE is NL-complete.
Proof: Polynomial equivalence of SLGHE and

REACHABILITY follows from the argument given in the
proof of Theorem 5.

Table IV summarizes the complexity results for the
different versions of SLG.

TABLE IV
C R  S L G

Game Winning Condition Complexity

SLGUE Learner wins iff he reaches the goal
state, Teacher wins otherwise

PSPACE-
complete.

SLGHU Teacher wins iff Learner reaches the
goal state, Learner wins otherwise.

PSPACE

SLGHE Both players win iff Learner reaches the
goal state. Both loose otherwise.

NL-
complete



In the case of an eager Learner, the complexity results
agree with our intuitions when comparing the cooper-
ative version of the Sabotage Game (SLGHE) with the
non-cooperative one (SLGUE). The easiest way to learn
for an eager Learner is when the Teacher is helpful.

III. R  

As mentioned above, Learner’s moves in the graph
are interpreted as changes of information states. Then,
when Teacher removes an edge, she actually informs
Learner which changes of information state should not
be performed. In this perspective, Learner’s moves can
be seen as internal ones while Teacher’s moves can
be interpreted externally. Due to this asymmetry, each
Learner’s move does not in principle need to be followed
by a teacher’s move.

Definition 3.1: A Sabotage Learning Game without strict
alternation (for Teacher) is a tuple SLG∗ = 〈V,E, v0, vg〉.
Moves of Learner are as in the Sabotage Learning Game
and, once he has chosen a vertex v1, Teacher has a
choice between removing an edge, in which case the next
game is given as in SLG, and doing nothing, in which
case the next game is 〈V,E, v1, vg〉. We again distinguish
between three versions, SLG∗UE, SLG∗HU and SLG∗HE,
with winning conditions given as before.

Though we provide Teacher with an additional pos-
sible move, this does not change her winning abilities.
In the rest of this section we show that, for the three
variations of a Sabotage Learning Game, a player has a
w.s. in SLG∗ iff she has a w.s. in SLG.

Consider the case of an unhelpful teacher and an eager
learner SLG∗UE. Before we go into the details, note that
if Learner can win the game, he can do so in a finite
number of rounds.

Theorem 9: Consider the SLG 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v, vg vertices in it.
If Learner has a winning strategy in the corresponding
SLGUE, then he has a winning strategy in the corre-
sponding SLG∗UE.

Proof: This can be shown by induction on the num-
ber of rounds. The idea is that in each round L “pre-
tends” that T has removed some edge and then makes
the move given by his strategy for SLGUE.
If L can win a SLG∗UE, then it is easy to see that he
can also win the corresponding SLGUE by using his w.s.
from SLG∗UE.

Corollary 1: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v, vg vertices in it.
Learner has a winning strategy in the corresponding
SLG∗UE iff he has a winning strategy in the correspond-
ing SLGUE.

The case of a helpful teacher and an unwilling learner
is more interesting. One might expect that the additional
possibility of an empty move gives more power to
Teacher since it allows her to skip a move in cases

when removing an edge would have made the goal
unreachable from the current vertex. However, we can
show that this is not the case. First, we state the following
lemmas.

Lemma 1: For any SLG∗HU 〈V,E, v0, vg〉, if there is a
path from v0 to vg and there is no path from v0 to a state
from where vg is not reachable, then T has a winning
strategy.

Proof: By assumption, all states reachable from v0
are on paths to vg. Therefore, even if T will refrain from
removing any edge, L will always be on some path to
the goal. There are two possibilities: either the path to
the goal does not include a loop or it does. If it does not
then T can simply wait until L will arrive to the goal.
If it does, in order to win T can remove the edges that
lead into the loops in such a way that vg is still reachable
from any vertex. L will eventually have to move to vg.

Lemma 2: Consider the SLG∗HU game 〈V,E, v0, vg〉. If T
has a winning strategy and there is some edge (v, v′) ∈ Ea
for some a ∈ Σ such that no path from v0 to vg goes via
the edge (v, v′), then T also has a winning strategy in
〈V,E′, v0, vg〉, where E′ is the result of removing (v, v′)
from Ea.

Proof: If v is not reachable from v0, it is easy to see
that the claim holds. Let us consider the case that v is
reachable from v0. Since there is no path to vg visiting
v, T’s winning strategy should keep L away from it
(otherwise L would win). Hence, T can also win if the
edge (v, v′) is not there.

Theorem 10: If Teacher has a winning strategy in the
SLG∗HU 〈V,E, v0, vg〉, then she also has a winning strat-
egy in which she removes an edge in each round.

Proof: The proof proceeds by induction on the num-
ber of edges n =

∑
a∈Σ |Ea|.

The base case is straightforward. For the inductive
case, assume that T has a winning strategy in SLG∗HU
〈V,E, v0, vg〉 with

∑
a∈Σ |Ea| = n + 1.

Then if v0 = vg, we are done. Thus, assume that v0 ,
vg. Then, since T can win, there is some v1 ∈ V such that
(v0, v1) ∈ Ea for some a ∈ Σ and for all such v1 it holds
that:

1) There is a path from v1 to vg, and
2) a) T can win 〈V,E, v1, vg〉, or

b) there is some ((v, v′), a) ∈ (V×V)×Σ such that
(v, v′) ∈ Ea and T can win 〈V,E′, v1, vg〉 where
E
′ is the result from removing (v, v′) from Ea.

If 2b holds, since
∑

a∈Σ |E
′
a| = n, we are done — we can

use the inductive hypothesis and conclude that T has
a w.s. in which she removes an edge in each round (in
particular, she chooses ((v, v′), a) in the first round). This
((v, v′), a) can be chosen in one of the following ways.

If there is some (v, v′) ∈ V ×V such that (v, v′) ∈ Ea for
some a ∈ Σ and this edge is not part of any path from
v1 to vg then by Lemma 2, T can remove this edge and
2b holds and we are done.



If every edge in (V,E) belongs to some path from v1 to
vg, from 1, there are two cases: either there is only one,
or there are more than one paths from v1 to vg.

In the first case (only one path) (v0, v1) can be chosen
since it cannot be part of the unique path from v1 to vg.

Assume now that there is more than one path from v1
to vg. Let p = (v1, v2, . . . , vg) be the/a shortest path from v1
to vg. This path cannot contain any loops. Then, from this
path take vi such that i is the smallest index for which
it holds that from vi there is a path (vi, v′i+1, . . . vg) to vg
that is at least as long as the path following p from vi (i.e.
(vi, vi+1, . . . , vg)). Intuitively, when following path p from
v1 to vg, vi is the first point at which one can deviate
from p in order to take another path to vg (recall that
we consider the case where every vertex in the graph
is part of some path from v1 to vg). Now it is possible
for T to choose ((vi, v′i+1), a) such that (vi, v′i+1) ∈ Ea. Let
E
′ be the resulting set of edges after removing (vi, v′i+1)

from Ea. Then we are in the position 〈V,E′, v1, vg〉. Note
that because of the way we chose the edge that has been
removed, in the new graph it still holds that from v0
there is no path to a vertex from which vg is not reachable
(this holds because from vi the goal vg is still reachable).
Then by Lemma 1, T can win 〈V,E′, v1, vg〉, which then
implies 2b.

Hence, we conclude that 2b has to be the case and thus
using the inductive hypothesis, we conclude that T can
win the game 〈V,E, v0, vg〉 also by removing an edge in
every round.

Corollary 2: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v0, vg vertices in it.
Teacher has a winning strategy in the corresponding
SLG∗HU, iff she has a winning strategy in the corre-
sponding SLGHU.

Finally, let us move to the case of a helpful teacher
and an eager learner.

Theorem 11: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v0, vg vertices in
it. If Learner and Teacher have a winning strategy in
the corresponding SLG∗HE, then they have a winning
strategy in the corresponding SLGHE.

Proof: The proof of Theorem 5 provides the needed
strategy.

Corollary 3: Consider the tuple 〈V,E, v0, vg〉 with (V,E)
a directed labelled multi-graph and v, vg vertices in it.
Learner and Teacher have joint winning strategy in the
corresponding SLG∗HE iff they have a joint winning
strategy in the corresponding SLGHE.

In this section we have shown that in Sabotage Learn-
ing Games, allowing Teacher to skip moves, does not
change the winning abilities of the players. Using these
results, both the complexity and definability results from
the previous section also apply to the versions of the
game in which Teacher can refrain from making a move.

IV. R   :  
The perspective on learning that we have adopted is

very general. To give a more refined view, let us go back
to the queries and counterexamples paradigm (see [1]). In
that approach, Learner is an algorithm that embodies a
winning strategy in the game of learning (the learning
procedure succeeds on all possible true data). Teacher
can significantly influence the learning process by giv-
ing counterexamples, and the time needed for learning
depends on her choices. Therefore, the game of teaching
in such a setting can be formalized in extensive form as
presented in Figure 1.

C0

w1 w2 w3 w4

C1 C2 C3

w′1 w′2 w′3 w′′1 w′′2 w′′3 w′′′1 w′′′2 w′′′3

. . . . . . . . .

C5

C5 C5 C5

. . .

. . . . . . . . .

Fig. 1. The tree of the teaching game: dotted lines are Learner’s moves,
which are determined by his algorithm; solid lines are Teacher’s moves;
wi are counterexamples given by Teacher; Ci are conjectures made by
Learner; C5 is the correct hypothesis.

There are many game-theoretical issues that arise
when viewing the run of the learning algorithm as
a game. We can for example consider the epistemic
status of the players, introduce imperfect information
and analyze payoff characteristics. Concerning the pay-
off characteristics and different classes of teachers such
as (un)helpful teachers, we can define corresponding
preference relations or payoffs: the helpful teacher may
strictly prefer all shortest paths in the game tree, i.e.
the paths in which the learner learns the fastest. The
unhelpful teacher might strictly prefer all the longest
paths in the game tree, i.e. the paths in which the learner
learns slowly.

We can also provide a choice for Learner in this game.
Firstly, we can allow that at each step the learner can
choose from one or more procedures which are part
of one algorithm. Secondly, in the beginning Learner
can decide with which of the available algorithms he
is going to proceed. Moreover, we can consider also an-
other possibility that involves extending the traditional
inductive inference paradigm. Usually, learnability of a
class is interpreted as the existence of a learner that
learns every element from the class independently of the
behavior of Teacher — if we introduce the possibility of
non-learnability to the game, we can view learning algo-
rithms as winning strategies for an eager learner in the



learning game. With the possibility of non-learnability,
there are also paths in the game tree in which the learner
never makes a correct conjecture. In this framework,
a helpful teacher would also prefer all (shortest) paths
ending in a position in which the learner makes a correct
conjecture over all the other paths. An unhelpful teacher
then prefers all the paths in which the learner does not
learn over those in which he does learn.

V. C   

We have provided a game theoretical approach to
learning that allows us to analyze different levels of
cooperativeness between Learner and Teacher. We have
defined Sabotage Learning Games with three variations,
representing different didactic scenarios. Then, we have
shown how Sabotage Modal Logic can be used to reason
about these games and, in particular, we have identified
certain formulas of the language with the existence of
a winning strategy. We gave complexity results for the
decision problems associated with each version of the
game. These problems correspond to model checking
for the associated formulas and models. Our complexity
results support the intuitive claim that the cooperation
of agents facilitates learning. We investigated an exten-
sion of the Sabotage Learning Games that relaxes the
condition of the strict alternation of moves. Our results
presented in Section III show that if we allow Teacher to
skip a move, the winning abilities of the players do not
change with respect to the original versions of the games.
In the case of the helpful teacher and unwilling learner,
this is quite surprising since it says that if Teacher
can force Learner to learn in the game with nonstrict
alternation, then even if she is forced to remove edges
in each round she can do so without removing edges
that are necessary for Learner to eventually reach the
goal state.

From the perspective of Formal Learning Theory,
several relevant extensions can be done. We have de-
scribed the learning process as changes in information
states, without going further into their epistemic and/or
doxastic interpretation. A deeper analysis can give us
insights about how the learning process is related to
different notions of dynamics of information, such as
belief revision or dynamic epistemic logic.

Moreover, it can be argued that in some natural learn-
ing scenarios, e.g. language learning, the goal of the
learning process, e.g. a correct grammar, is concealed
from Learner. In our approach we assume that Learner
has at least some markers of the goal state, otherwise
we could not introduce the two possible characteristics
of Learner. The assumption of the absence of any ability
to recognize the goal by Learner, leads to a model in
which the Learner moves randomly. Some approaches
that take into account randomness in Sabotage Games
have already been introduced [8] and hopefully can be
extended to deal with the aforementioned issue. What

we can now hypothesize is that the complexity of the
scenario with a random Learner and a helpful Teacher
is bounded by the worst case scenario, in which Learner
avoids the goal as long as possible, i.e. the game SLGHU.

In the introduction we described the concepts of finite
identification and identification in the limit. Our work on
SLGs is closer to the first one, as we understand learning
as the ability to reach an appropriate information state,
without taking into account what will happen after
such a state has been reached. In particular, we are
not concerned with the stability of the resulting belief.
Identification in the limit extends finite identification by
looking beyond reachability in order to describe “ongo-
ing behaviour”. Fixed-point logics, like the propositional
µ-calculus [10], [5], can provide us with tools to express
this notion of learnability. In this case, epistemic and dox-
astic interpretations of learning would involve notions of
stable belief and a kind of operational, non-introspective
knowledge as a result of the process.
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