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Abstract—Time and uncertainty of the environment are very
important aspects in the development of real world applications.
Another important issue for the real world agents is, the balance
between deliberation and reactivity. But most of the agent
oriented programming languages ignore some or all of these
important aspects. In this paper we try to fill this gap by present-
ing an extension to the architecture of CLAIM agent oriented
programming language to endow the agents with the planning
capability. We remove the assumption that agents’ actions are
instantaneous. We are interested in the temporal planning of on
the fly goals. A coherrent framework is proposed in which agents
are able to generate, monitor and repair their temporal plans.
Our proposed framework creates a balance between reactivity
and deliberation. This work could be considered as a first step
towards a complete temporal planning solution for an AOP
language.

I. INTRODUCTION

Most of the agent oriented programming languages in the
current literature use a PRS like approach to achieve the goals
of agent. Some examples of these programming languages
are Jason[1], 3APL[2], 2APL[3] and JACK][4]. But these
languages lack the ability to incorporate planning. Sometimes
the execution of the actions without planning results in the
unability to achieve the goals. There has been some work to
incorporate planning within such programming languages [5],
[6], [7] but these systems do not take into account the duration
of agent actions, neither do they consider the uncertainty of the
environment. These systems assume that the agents’ actions
are instantaneous and that the effects produced on the environ-
ment are only those which are produced by the agent’s actions.
But these assumptions are unrealistic for the development of
real world applications. There are some systems like ZENOI[8],
TGP[9], SAPA[10] which give the ability to plan with durative
tasks and even there are systems which give this ability in
the dynamic environments like IxTeT[11]. But these systems
are separate planning solutions. They are not programming
languages, so they lack the flexibility and control that a
programming language offers to its programmers. Moreover,
these systems are built on a proactive approach but in the
real world applications it is necessary to create a balance
between proactivity and reactivity because it is a dynamic
world and the goals of agents are not necessarily given to
him at the start, new goals arrive and some old goals are
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dropped during the life cycle of the agent and some goals
require immediate achievement. In this work, we try to fill
these gaps by incorporating a temporal planner, an executor,
an execution monitor and a plan repairing component to a
CLAIM agent[12]. We call this extension of the language
as P-CLAIM. The main problems dealt with in this work
are 1) Modifications and extensions to the CLAIM agent’s
architecture to include a temporal planning component. 2)
Execution monitoring and plan repairing. 3) Creating a balance
between deliberation and reactivity.

In our proposed framework, we have made use of Hier-
archical Task Network (HTN) planning technique. The main
algorithm used to generate plan for a goal is JSHOP2[13],
which is very efficient HTN planning system and plans for
tasks in the same order that they will later be executed. The
main motivation behind using the HTN planning technique
is the similarities among the BDI model of agency and
the HTN planning technique[14]. Due to these similarities
HTN planning is more suitable and natural candidate for
incorporating planning in a BDI like system.

The remainder of this paper is organized as follows. Section
2 puts some light on the current architecture of CLAIM
language and JSHOP2 planner. In section 3, some important
representations are presented which are helpful in under-
standing the agent architecture in P-CLAIM. Our proposed
architecture of P-CLAIM agent with planning, execution and
plan repairing components is presented in section 4. In section
5, we give an example to describe the working of system.
Section 6 discussed some of the related work. Section 7
concludes the paper and some future directions are discussed.

II. BACKGROUND

In this section, we briefly discuss the architecture of CLAIM
language and JSHOP2 algorithm to generate a plan. A multi-
agent system in CLAIM is a set of distributed hierarchies
of agents deployed on computers connected via a network.
All the computers have a global clock. With respect to the
hierarchical representation, an agent is a node in a hierarchy.
It is an autonomous, intelligent and mobile entity. It has a
parent and contains (optional) sub-agents, running processes
and cognitive elements (e.g. knowledge, goals, capabilities).
An agent can dynamically create another agent, and the newly



created agent becomes the sub-agent of the creator agent.
In addition, an agent has three mobility primitives, in (enter
another agent), out (leave another agent) and move (move from
one hierarchy to another).

In CLAIM language, an agent can be defined as follows:

defineAgent agentName {
parent=null | agentName ;
knowledge=null | { (knowledge;)*}
goals=null | { (goal;)*}
messages=null | { (message;)*}
capabilities=null | { (capability;)*}
processes=null | { (process | )*}
agents=null | { (agentName,)*}
}
For a more detailed description of CLAIM language, we refer
to [12].

JSHOP?2 is an HTN planning algorithm, and it deals with
the procedural goals. Domain description required by JSHOP2
consists of methods and operators. A method indicates how to
decompose a compound task into partially ordered subtasks. A
method has three parts. The task for which the method is to be
used, the condition which must be true in the current state to
apply the method, and subtasks that need to be accomplished
in order to accomplish that task. An operator is similar to the
operators in classical planning and it tells how to perform a
primitive task. It has a condition, a list of add effects and a list
of delete effects. Planning proceeds by using the methods to
decompose tasks recursively into smaller and smaller subtasks,
until the planner reaches primitive tasks that can be performed
directly using the planning operators.

The rationale behind choosing JSHOP2 for our work is
threefold. Firstly, it is an HTN planner and the domain
information from CLAIM can be easily transformed into the
domain information needed by the planner due to the similar-
ities among BDI like systems and HTN planning systems as
discussed in [14]. Secondly, JSHOP2 plans for the actions in
the same order that they will later be executed. So it knows
the current state at every planning step. This property of
the planner can be exploited for interleaving planning with
execution and at every step planner can plan using the current
state of the world. Thirdly, it can call external user defined
functions to check the precondition of a method or an operator
and this property is important for a planning component for
CLAIM agents because in CLAIM language there could be
calls to user defined functions to check the precondition of
capabilities.

III. SOME IMPORTANT REPRESENTATIONS

In this section some important representations are presented
which are helpful in understanding the architecture of an agent
in P-CLAIM.

A. Domain Representation in P-CLAIM

We have modified the domain representation in CLAIM
[12], in order to facilitate the translation to the representation
needed by a planner. Agent’s capabilities have now been

divided into actions and activities. Actions are the primitive
actions that an agent can perform. Some of the actions are
programmer defined while the others are already defined in
the language like mobility primitives in, out, move. Program-
mer can also override the already defined actions to define
his requirements more accurately. An action consists of a
condition, a triggering message, the effects and a duration.
Trigger Message(Act) returns the triggering message of an
action Act. Each effect of an action has an offset associated
with it. This offset is the time taken by the action to produce
the effect after the start of the action and it could be zero if
this effect is achieved as soon as the action is started or it
could be greater than zero. Of fset(E f f) denotes the offset
associated with an effect E f f. Activities are the short plans
(recipes) in the plan library of the agent to achieve different
composite goals.

B. Goal Representation in P-CLAIM

Goals in P-CLAIM are procedural goals. It means the goals
of an agent are the tasks that agent wants to achieve. Some
goals are initially given to the agent, when the multi-agent
system is launched and some goals are given to the agent
during the life of the agent using message passing by other
agents or by user interaction. Goals have priorities associated
with them. The priority of a goal could be Preemptive High,
High or Normal. A goal having Preemptive High priority
means that this goal should be immediately achieved by the
agent, we also call this goal a reactive goal. High priority
means that goal should be achieved before all the Normal
priority goals currently present. Normal priority goals are the
lowest priority goals. Goals with Preemptive High priority are
stored in Global Reactive Goals (GRG) list and all other goals
of agent are stored in a priority queue called Global Proactive
Goals (GPG) list.

C. Messages Format

A message received by an agent in P-CLAIM has five parts.
First part is the identity. Each message is assigned a unique
number as identity. Second part is the sender, which represents
the sender of the message. Thirdly, a message has a priority
associated with it. This field has a value among Preemptive
High, High and Normal. Fourthly, a message has a proposition
which is the actual contents of the message. This proposition
could be a new goal to achieve or it could be an information
given to the agent which was demanded by the agent in an
earlier message. Finally, a message has a ResponseTo field
which is either blank or it contains a number pointing to
the identity of an earlier message to which this message is
responding.

D. Translation of Domain Description

The information needed by JSHOP2 algorithm to generate
the plan includes the initial state information, goals informa-
tion and domain description (methods and operators). In our
formalism, this information is automatically extracted from the
agent. Initial state information is taken from the knowledge of



the agent and from the hierarchical representation of MAS.
Goal for the Planner is a one to one mapping from agent’s goal
to Planner’s goal. In our framework, only one goal is passed to
the JSHOP2 algorithm at a time. Agent’s actions are mapped
to the operators in JSHOP2. P-CLAIM agent’s activities are
converted into JSHOP2 methods. For each activity of the
agent, an equivalent method is generated with the same name
as that of activity. Activity’s condition is mapped to the
method’s precondition. In JSHOP2, methods have subtasks.
Subtasks may be primitive tasks or other composite tasks.
Equivalently in P-CLAIM, the body of an activity consists
of different processes. So we need to convert these processes
into JSHOP2 methods and operators. To read in detail about
this conversion, we refer to our earlier article[15].

E. Policy File

Each agent maintains a policy file in which it stores the
importance of all other agents in the MAS for him. Importance
of an agent depends on its position in the hierarchy relative
to the position of the agent who is maintaining the policy.
Importance also depends on the services provided by the agent
during the life cycle of the agent. After receiving the message,
the agent analyzes the policy file. Importance of the agent
could be Normal or High.
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Fig. 1. A Running P-CLAIM Agent

IV. AGENT ARCHITECTURE

There are concurrently four threads running inside the agent
all the time. In the following subsections, we explain these
threads in detail. Figure 1 is showing the architecture of an
agent.

A. Messages Handler

This thread is always waiting for the messages from other
agents or from the user. It puts the messages into Planner
Messages Queue(PMQ). These messages are either a request
to achieve some goal or they are responses to some earlier sent
message. After putting in the PMQ, these messages are fetched
and analyzed. If the message contains some information de-
manded in an earlier message then this information is added
to the knowledge of the agent along with an acknowledgement
having the identity of the message in which this information
was demanded. Agent’s treatment of a message, which is
a request to achieve some goal, depends on the priority
associated with message and the importance of sender.

The Messages Handler fetches the goal attached with a
message and assigns a priority to the goal based on the priority
associated with message and the importance of sender. A goal
fetched from a message of priority Preemptive High or High
which is assigned by an agent having Normal importance in
the policy file is assigned a High priority. It means that agent
does not preempt his own goals for the goals assigned by an
agent of Normal importance. A goal fetched from a message,
sent by an agent having High importance in the policy file is
assigned the same priority as of the message. After assigning a
priority to the goal, the goal is added to one of the two global
goals lists. A goal of priority Preemptive High is added to
GRG list and a goal of priority High or Normal is added to
GPG list.

There is another messages queue maintained inside the
agent, called Executor Messages Queue(EMQ). Messages
which are sent by the Planner for the execution of actions
are put in the EMQ. These are the triggering messages for the
actions in the plan generated by the Planner. Number of mes-
sages in EMQ are denoted by length(EMQ) and EM Qi
denotes the i*" message in EMQ. Each triggering message in
EMQ has a time stamp associated with it. TimeStamp(M sg)
denotes the time stamp associated with a triggering message
Msg.

B. Planner

Planner starts when the multi-agent system is launched.
Once started, the Planner procedure runs throughout the life
cycle of the agent. When there are no goals in either of the
goals lists then it sits idle and waits for new goals to arrive
and as soon as a new goal arrives, it starts planning. Before
starting the Planner, the agent goes through an initialization
phase, in which it sets the values of certain global variables.

Three states of the world are maintained in the system,
SP(Act) which denotes the state of the world anticipated by
planner just before the execution of the action Act, secondly
SW is the current actual state of the world and FinalSP



Algorithm 1 Main_Algorithm

1: loop

2: repeat

3: Call Treat_Reactive_Goal

4: until GRG = ¢

5: if GPG # ¢ then

6: Fetch first goal g € GPG

7: PPlan «+— Compute_Plan(FinalSP, g, D)

8: if PPlan # Fail then

9: for i =1 To length(PPlan) do
10: TimeStamp(ExzeMessages[i]) —

TimeStamp(P Plan[i])

11: ExzeMessagesli] < Trigger Message(P Plan|i])
12: end for
13: Send ExzeMessages to EMQ
14: end if
15: end if
16: end loop

Algorithm 2 Treat_Reactive_Goal

1: Fetch first goal g € GRG

2: Suspension_Signal «— ON

3: Wait until { Ezecution_Signal = OFF}
4: Start_Time < Current system time

5: RPlan «— Compute_Plan(SW, g, D)

6

7

8

9

. if RPlan # Fail then
. for i =1 To length(RPlan) do
TimeStamp(EzeMessages[i]) < TimeStamp(RPlan[i])

: ExeMessages[i] — TriggerMessage(RPlan[i])

10: end for

11: End_Time <« Current system time

12: Duration «— End_Time - Start_Time

13:  for i =1 To length(EMQ) do

14: TimeStamp(EMQ|i]) —  TimeStamp(EMQ]) +
Duration

15: end for

16: Send ExzeMessages to EMQ

17: end if

18: Suspension_Signal «— OFF

denotes the state of the world to which the Planner has
planned till now. More precisely, it is the state of the world
anticipated by planner after the very last action that the Planner
has planned for. In the initialization phase FinalSP is set
equal to the SW. Suspension_Signal is set to OFF and
Execution_Signal is set to ON.

The Main_Algorithm (Algorithm 1) runs in an infinite
loop and ensures that reactive goals are immediately planned
for and achieved. First it looks at the GRG list and if it is
not empty, (Lines 2-4) the control moves to the procedure
Treat_Reactive_Goal (Algorithm 2). Some of the notations
used inside the Treat_Reactive_Goal procedure are as fol-
lows. length(RPlan) denotes the number of actions in the
plan RPlan. ExeMessages is an array of triggering mes-
sages for the actions in the plan. TimeStamp(Act) denotes
the time stamp assigned to an action Act for its execution.
Treat_Reactive_Goal fetches the first reactive goal g and
sets the Suspension_Signal to ON to ask the Executor to
suspend the execution and waits for the Fxecution_Signal
to go OF'F which indicates that the Executor has suspended
the execution (Lines 1-3) then it calls the Compute_Plan
procedure to plan for the reactive goal (Line 5). The current

Algorithm 3 Compute_Plan(S,G, D)

1: P < The Empty Plan
20 IS
3: LG —G
4: LGy < {g € LG : no goal is constrained to precede g}
5: loop
6: if LG = ¢ then
7: Plan « Call Temporal_Converter(I, P, D)
8: Return Plan
9: end if
10: Non deterministically choose any g € LG
11: if g = Some Primitive Action then
12: if g = Information Gathering Task then
13: Generate and send message with identity x, for information
retrieval to other agent
14: Put all tasks depending on g in Pending Tasks list and assign
them an identity x
15: Remove g from LG
16: else
17: A — {(a,©) : ais a ground instance of an operator in D, ©
is a substitution that unifies {head(a), g}, and S satisfies a’s
preconditions}
18: if A = ¢ then
19: Return Fail
20: else
21: Non deterministically choose a pair (a,©) € A
22: S «— S+ Add(a) — Del(a)
23: Append a to P
24: Modify LG by removing g and applying ©
25: end if
26: end if
27: LGo «+ {g € LG : no other goal is constrained to precede g}
28: else
29: M «— {(m,©) : m is an instance of a method in D, © unifies
{head(m), g}, pre(m) is True in S, and m and © are as general
as possible}
30: if M = ¢ then
31: Return Fail
32: end if
33: Non deterministically choose pair (m, ©) € M
34: Modify LG by removing g, adding sub(m), constraining each
goal in sub(m) to precede the goals that g preceded, and applying
©
35: if sub(m) # ¢ then
36: LGqo < {g € sub(m) : no goal in LG precedes g}
37: else
38: LGo < {g € LG : no goal in LG precedes g}
39: end if
40: end if
41: if New acknowledgement in knowledge then
42: id < identity of the message whose acknowledgement has arrived
43: Fetch all goals associated with message id from Pending Tasks
list and put in the LG
44: end if
45: if G is a proactive goal then
46: repeat
47: Call Treat_Reactive_Goal
48: until GRG = ¢
49: end if
50: end loop

state of the world SW, the reactive goal just fetched g
and domain description D are passed to Compute_Plan
procedure. This procedure call returns a temporal plan RPlan
for the reactive goal. Because every action in P-CLAIM is ex-
ecuted using a triggering message, so an array ExeMessages
is generated containing the triggering messages for all the
actions in the temporal plan RPlan with a TimeStamp
associated with every message (Lines 7-10) and this array of



Algorithm 4 Temporal_Converter(I, P, D)
1: for j =1 TO no_of _literals(I) do

2: Production_Time(Literal(I[j])) < 0

3: end for

4: for i =1 TO length(P) do

5:  TimeStamp(P[i]) «— Max {Production_Time(Pre(Pli][j]))
:j =1 To no_of_pre(P[i])}

6:  Prereq(PJi]) < Actions which achieve the preconditions of P/[q]

7: SP(P[i]) «—World state anticipated before the execution of P[3]

8:  for j =1TO no_of_ef fects(Pli]) do

9: Production_Time(Literal(Pli][j])) < TimeStamp(Pli])

+ Of fset(Literal(P[i][5]))
10: end for
11: end for

messages is sent to EMQ (Line 17) from where the Executor
executes the actions triggered by these messages. But before
sending ExeMessages to EMQ, the TimeStamp of all the
messages currently in the EMQ is updated, because due to
the suspension of execution, those triggering messages can
not be executed at their intended time. So every message’s
TimeStamp is increased by the duration of the suspension
(Lines 13-15). Suspension_Signal is then set to OF F' (Line
18) to allow the Executor to resume execution and control is
passed back to Main_Algorithm (Algorithm 1) which looks
for another goal in GRG. The Main_Algorithm turns its
attention to the proactive goals only when it finds that there is
no reactive goal (Line 5). Algorithm fetches the first goal from
GPG (Line 6). High priority goals are always fetched before
Normal priority goals. Then Compute_Plan procedure is
called with the parameters FinalSP, g and D. A plan PPlan
is returned (Line 7 ) which is then sent to EMQ in the form
of triggering messages (Lines 9-13). Now we elaborate the
working of C'ompute_Plan procedure (Algorithm 3) (Many
lines of the algorithm are taken from [13]).

Compute_Plan procedure is an extension of JSHOP2[13]
algorithm. It takes three parameters S, G and D as input,
where S is initial state, G is a list of goals and D is the agent’s
domain description. Compute_Plan procedure has an internal
goals list called Local Goals (LG) list . Algorithm chooses a
goal g € LG which has no predecessors (Line 4). At this point
there could be two cases. The first case is if g is a primitive
task, then procedure finds an operator a that matches g and
whose preconditions are satisfied in .S. It applies the action a
to state S and adds it to his plan P (Lines 17,21-23). If no
such operator a exists then procedure returns failure (Lines
18-19). In P-CLAIM a message to other agent is also treated
as primitive action. So, g could be a message to other agent
for information retrieval. If this is the case, then a message for
the retrieval of information is generated with identity = and
is sent to other agent. And all the tasks which depend on this
information are put in the Pending Tasks list (Lines 11-15).
All these tasks are assigned same identity x as of the message
before sending them to Pending Tasks list.

The second case is where g is a compound goal, so a method
needs to be applied for the decomposition of g into its sub-
tasks. In this case the planner nondeterministically chooses a
method instance m matching g, that decomposes ¢ into sub-

goals (Line 29) and applies this method (Lines 33-34). If no
such method m exists then procedure returns failure (Lines
30-32).

At the end of each planning step, the Compute_Plan
procedure looks for any newly arrived acknowledgement for
an earlier sent message. If a new acknowledgement for a
message with identity id has been arrived then the procedure
removes all the tasks depending on id, from Pending Tasks list
and puts them in the Local Goals list to process those goals
(Lines 41-44).

While planning for a proactive goal, the Compute_Plan
procedure checks GRG for any new goals after each plan-
ning step and whenever it finds a goal in GRG, it sus-
pends planning for the proactive goal and calls the procedure
Treat_Reactive_Goal , which we have explained earlier
(Lines 45-49). When GRG becomes empty, procedure resumes
planning for the proactive goal from the same state at which
it had suspended the planning. While planning for a reactive
goal, the Compute_Plan procedure does not look at GRG,
because a new reactive goal is treated only when all the
previous reactive goals have been treated.

When Compute_Plan finds a plan for one goal, it converts
the total order plan into a temporal plan by calling the pro-
cedure Temporal_Converter (Algorithm 4). The procedure
takes three parameters I, P and D, where [ is the initial
state, P is the total order plan which is to be converted and
D is the domain description file which is needed to extract
the information about the durations of all the actions and
offsets of all the effects. Some notations used in the procedure
are as follows. no_of_literals(I) denotes the number of
literals in the initial state and Literal(I[j]) points to the
4" literal in initial state. Production_Time(Lit) represents
the time of achievement of a literal Lit. length(P) returns
the number of actions in the plan P. no_of_pre(Act) and
no_of_ef fects(Act) denote the number of preconditions and
number of effects of an action Act respectively while in the
same vein Pre(Pl[i|[j]) and Literal(P[i][j]) denote the j'*
precondition and ;" effect of i* action in plan P respectively.
We have used a simple and efficient technique to convert a
plan into temporal plan. The procedure starts by setting the
Production_Time of all the literals in the initial state to
0 (Lines 1-3). Then procedure loops through all the actions
starting from the first action, going towards the last one and
sets the TimeStamp of the action to the maximum of the
Production_Time of all its preconditions, because an action
can be executed at least when all of its preconditions have
been achieved (Lines 4-5). After setting the TvmeStamp of
an action, the procedure sets the Production_Time of all the
effects of the action. The production time of an effect is the
TimeStamp of the action plus the time at which the effect is
produced by the action, the O f fset of the effect (Lines 8-10).

C. Executor

The Executor is running in parallel with the Planner. It
waits for triggering messages to come in the EMQ, fetches
the messages and executes the actions associated with the



Algorithm 5 Ezecutor

1: loop
2: if Suspension_Signal = ON then
3: FExecution_Signal — OFF
4: Wait until {Suspension_Signal = OFF}
5: Ezxecution_Signal — ON
6: end if
7: if EMQ # ¢ then
8: NextActions < Fetch all next messages C' from EMQ having
the earliest T9meStamp from current system time
9: NeztTime «— TimeStamp(NextActions)
10: Wait for system time to reach NextTime
11: for i = 1 TO length(NextActions) do
12: if All the actions in Prereq(NextActions[i]) has not sent
acknowledgement for termination then
13: Wait for all the acknowledgements
14: Duration < Time spent waiting for acknowledgements
15: for i =1 To length(EMQ) do
16: TimeStamp(EMQIi]) « TimeStamp(EMQ[i]) +
Duration
17: end for
18: end if
19: if SP(NextActions[i]) = SW then
20: Execute NextActions[i] in a separate thread
21: else
22: MPlan «— Plan_Mender(SW, SP(NextActions[i]))
23: Execute M Plan
24: for i =1 To length(EMQ) do
25: TimeStamp(EMQIi]) — TimeStamp(EMQ|i]) +
TimeSpan(M Plan)
26: end for
27: Execute NextActions[i] in a separate thread
28: end if
29: end for
30: end if
31: end loop

messages at their planned time stamps. Every running ac-
tion sends an acknowledgement just before its termination
to the Executor. Algorithm 5 is a simplified version of
the Executor. The Executor fetches all the next messages
from EMQ that have the closest TimeStamp to the current
system time. Then the Executor waits for the system time
to reach the TimeStamp of these messages (Lines 10-11).
When system time approaches that time, the Executor checks
whether the prerequisite actions of the actions associated
with these messages have been terminated or not. If they
have not been terminated then it waits for their termination.
And increases the TimeStamp of all the messages in EMQ
by the duration of waiting for their termination (Lines 14-
20). Then it checks for any discrepency among the current
world state and the one anticipated by the Planner for the
execution of these actions. If there is no discrepency then
these actions are executed in a separate thread (Lines 21-22)
and the Executor fetches the next messages from EMQ. But
if there is discrepency among the two world states, then the
Executor calls the Plan Mender to generate a plan from the
current world state to the intended world state and executes
the plan thus returned to remove the discrepency (Lines 24-
25). After executing this plan the Executor is ready to execute
the actions which it had suspended due to discrepency (Line
29). But before executing these actions, it augments their
TimeStamp by the duration of the discrepency removal.

Moreover, after executing each action, the Executor checks
the Suspension_Signal. When Suspension_Signal is set
to ON, it turns Execution_Signl to OF F, suspends the ex-
ecution, and waits for Suspension_Signal to go OFF. The
Executor resumes the execution once the Suspension_Signal
is turned to OF'F'. But now the triggering messages for the
plan of reactive goal are at the front of EMQ, so the Executor
first executes the plan for the reactive goal for which it had
suspended the execution and then it resumes the execution of
plan on which it was working before the suspension (Line 29).

Algorithm 6 Plan_Mender(I, Q)

1: Generate a plan P using SATPLAN from [ to G ignoring the duration
of actions

2: TP « Call Temporal_Converter(I, P, D)

3: Return TP

D. Plan Mender

This procedure is responsible for repairing the plan. It takes
as input the current actual world state I and the anticipated
world state G. The Plan Mender generates a temporal plan
for the agent to reach the anticipated world state starting
from the current world state and returns this plan to the
Executor. The Plan mender uses the classical STRIPS style
planning technique to compute its plan because now the goals
for the planner are a state to be reached (declarative goal).
So, the Plan Mender just uses operators from the domain
description file to compute the plan. In this case, the activities
are not helpful in generating the plan which were used by
the Planner component. The basic algorithm used by the Plan
Mender is shown in Algorithm 6. Plan mender computes a
plan without taking into account the durations of the actions
using the SATPLAN planner[16] and then uses the procedure
Temporal_Converter to convert the plan to a temporal plan.
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V. EXAMPLE

In this example scenario we have one mobile agent ROCO,
which is a home servant. When the MAS is launched then
ROCO has the goal Clean_Table. ROCO has activity as-
sociated with this goal Clean_Table. All the activities of
ROCO are shown in tree form in Figure 2(a) (A rectangle
is showing a goal and an associated oval is an Activity
associated with the goal, rectangles at the bottom without an



associated oval are Actions.). Main_Algorithm fetches goal
Clean_Table from GPG list. And calls Compute_Plan to
plan for this goal which generates a plan consisting of the
following actions Move(Rooml,Table), ArrangeBooks,
ArrangeCover, Dusting. A short description of the actions
in this plan is shown in Figure 3.

Move(Room1, Table){
Duration = 1 minute

Pre = At(ROCO, Rooml)
Effects = At(ROCO, Table)

ArrangeCover{

Duration = 1 minute

Pre = At(ROCO, Table)
Effects = Arranged(Cover)

ArrangeBooks{
Duration = 2 minutes

Dusting{

Duration = 1.5 minutes

Pre = At(ROCO, Table) Pre = A(ROCO, Table), Arranged(Books), Arranged(Cover)
Effects = Arranged(Books) Effect = Clean(Table)

i }

Fig. 3. Description of actions in the temporal plan for Clean_Table

The plan is converted to the temporal plan using the
procedure Temporal_Converter and the plan returned is
shown in figure 2(b). In this example, all the effects of
all the actions have an offset equal to the duration of the
action. Here we explain the conversion of totally ordered
plan to temporal plan. Procedure starts by assigning the
Production_Time of all the literals in the initial state to O.
There is only one literal At(ROCO, Rooml) in the initial
state so Production_Time(At(ROCO, Rooml)) is set to 0.
Now the procedure takes first action Move(Rooml,Table)
and sets its TimeStamp to 0, which is the maximum
Production_Time from all of its preconditions. Next,
the procedure sets the Production_Tivme of the effects
of Move(Rooml1,Table). This action has only one effect
At(ROCO, Table). Production_Time(At(ROCO, Table))
is assigned the value TimeStamp(Move(Rooml)) plus
Of fset(At(ROCO, Table)). Putting the values, we
get  Production_Time(At(ROCO,Table)) equals 1
minute, because Of fset(At(ROCO,Table)) is equal to
the duration of Move(Rooml,Table). Now procedure
moves to second goal which is Arrange_Books
and sets its TimeStamp to be the maximum of
Production_Time of all of its preconditions. It
has only one precondition At(ROCO,Table) whose
Production_Time has already been calculated to 1 minute.
So TimeStamp(Arrange_Books) is assigned 1 munite. In
this way the procedure continues and finds the plan shown in
figure 2(b). Planner sends the messages for each action of the
plan along with their TimeStamp to the EMQ for execution
and Executor starts executing the plan. When the Executor
has executed Move(Rooml,Table), ArrangeBooks
and ArrangeCover, it checks that Suspension_Signal
is set to ON, because the Planner has just fetched a
reactive goal Bring_Water from the GRG. The Executor
suspends the execution, sets the FExecution_Signal
to OFF and waits for the Suspension_Signal to
go to OFF again. It receives the following plan
in the EMQ, Move(Table, Kitchen), TakeGlass,
FillGlassWithW ater, Move(Kitchen, Owner Room),
Give(Glass, Owner). Now the Executor executes this plan.

After the execution of this plan ROCO is in OwnerRoom.
Now the Executor resumes its suspended plan but before
resuming the suspended plan, it increases the TimeStamp
of all the actions in the suspended plan by the T'imeSpan
of the plan for goal Bring_Water, then it checks whether
the preconditions of the suspended plan hold in the
current state. The preconditions of its suspended plan are
At(ROCO, Table) N Arranged(Books) A Arranged(Cover)
and the current state is  Arranged(Books) A
Arranged(Cover) A At(ROCO,OwnerRoom).  The
Executor calls Plan Mender to generate a plan from current
state of the world to the intended state of the world.
Plan Mender returns a plan consisting of only one action
Move(Owner Room, T'able). Executor executes this plan, so
ROCO moves to Table. Now again the Executor checks for
any discrepency among the current state and the anticipated
state but now both states are same so the Executor executes
the suspended plan i.e. it executes the Dusting action.

VI. RELATED WORK

In this section, we briefly review some work from the
existing literature which is related to our work. Some of
the research related to ours is CYPRESS[17], RETSINA[18],
DECAF[19] and the systems proposed in [5] and [6].

In our opinion, the system closest to our research is CY-
PRESS system, which also integrates a planning system SIPE-
2[20] with an execution system PRS[21]. It has the ability
to react to the unanticipated changes in the environment by
replanning and also deals with probabilistic planning. Our
approach has the added advantage of handling temporal knowl-
edge. Another aspect differentiating P-CLAIM to CYPRESS
is the mobility of the agents. In P-CLAIM, the agents are
mobile so the context of an agent changes while moving from
one machine to another. The planner component must be able
to deal with the changing context because the planning is
interleaved with execution. An advantage of CYPRESS system
over our proposed system is in the way CYPRESS performs
replanning. We suspend the execution while computing a plan
to remove any discrepencies. While CYPRESS system uses
asynchronous replanning in which the system continues to
execute the unaffected portion of the plan while a planning
module computes a new plan.

Our system has many similarities with RETSINA. Like our
system, RETSINA also interleaves planning with execution
and supports planning for dynamic and real environments.
But one main difference of RETSINA system with our system
is that RESTINA system plans by only reduction of the top
level task and it does not plan among the top level tasks, but
our system uses a HTN planner which also plans among the
top level tasks. So the plan generated is more optimal in our
system than in RETSINA system. Another main difference is
that RETSINA system does not use the existing information
from the BDI system whereas our system proposes a method
to use the existing agent’s and world’s information.

Another framework DECAF[19] which can be seen as an in-
spiration of RETSINA, relates to our system. But, in DECAF,



the planner only estimates preconditions, select task templates
and instantiates them. It lacks the ability to anticipate future
actions.

Like our system, [5] also provides a way to translate the
information from a JACK[4] agent to the information needed
by JSHOP[22] planner. Main differences of this approach with
our approach are that in [5] it is the responsibility of the
programmer to specify the points where the planner should
be called while our system plans for each goal. Our system
has the ability to deal with the unanticipated changes in the
environment, while [5] has no such ability.

Another framework incorporating planning in a BDI lan-
guage is presented in [6]. It incorporates classical planning
into BDI framework. More precisely it extends the X-BDI[23]
model to use the propositional planning algorithms for per-
formaing means-end reasoning. Our hypothesis is that our
proposed system has the advantage of being more efficient
as the HTN planning technique can find plans more rapidly
with the help of additional domain knowledge provided by
the programmer. Another important aspect is the loss of the
domain knowledge provided by the programmer in [6]. The
advantage of using the HTN planning is that the plans can
be synthesized according to the intentions of the programmer
without loosing the domain knowledge.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an extension to the CLAIM
language to endow the agents with the capability to plan ahead.
This modified and extended language is called P-CLAIM.
Agents are able to create temporal plans. Execution monitoring
and plan repairing components are added. A balance between
deliberation and reactivity has been established and the agents
are able to turn their attention while planning to the newly
arrived reactive goals. This work can be considered as a first
step towards a comprehensive temporal planning solution for
an Agent Oriented Programming language.

After creating the temporal plan for an agent but before its
execution, the plan of an agent should be coordinated with
the plans of those agents with which the plan could be in
conflict or whose plans could be helpful for this agent. Our
next task is to propose a coordination mechanism to coordinate
the temporal plans of different agents. Coordinating the plan
of agent with every other agent in the MAS is very costly, so
another important task to do is to intelligently calculate the
set of those agents whose plan could be in conflict or whose
plans could be helpful for the agent and then the plan should
be coordinated with only those agents.
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