Exploiting Agents and Ontologies for Type- and
Meaning-Safe Adaptation of Java Programs

Davide Ancona and Viviana Mascardi
DISI, University of Genova,
Via Dodecaneso 35, 16146, Genova, Italy
{davide,mascardi}@disi.unige.it

Abstract—This paper discusses an application of intelligent
software agents and ontologies to solve the problem of semi-
automatic porting of Java programs.

We have designed a system for aiding users to adapt Java
code in a type- and meaning-safe way, when an application has
to migrate to new libraries which are not fully compatible with
the legacy ones.

To achieve this, we propose an approach based on an inte-
gration of the two type-theoretic notions of subtyping and type
isomorphism with ontology matching. While the former notions
are needed to ensure flexible adaptation in the presence of type-
safety, the latter supports the user to preserve the meaning of
names that appear in the program to be adapted.

Intelligent agents control the different components of the
system and interact with other agents in order to provide the final
user with the semi-automatic porting service he/she required.

I. INTRODUCTION

Migrating a Java program p that uses library [into a
corresponding program p’ that uses library !’ in a semi-
automatic way is an open problem for which no satisfying
solution has been found yet.

One aspect that must be considered while facing this prob-
lem, and that makes it hard to solve, is that migration must
be type-safe. Replacing method m defined by [and used in
program p by m’ defined in /', thus leading to a new program
p’, is a legitimate operation only if no type inconsistencies are
raised by this replacement. If the functionality of m and m’
is the same no type problems will arise. But what should it
happen in case of a difference in the type returned by m and
m/, or in the type of some of their parameters, or in their
number and order? The most conservative approach would
be to give up, and to consider the migration possible only
if elements of [used by p have corresponding elements in [’
whose type is identical or isomorphic.

However, this is a very restrictive choice with little motiva-
tion: type identity or isomorphism between elements of [and
the corresponding elements of I’ may be relaxed by requiring
that the type 7/ of €’ in I’ is a subtype of the type 7 of e in [, for
a suitable definition of the subtype relation. This requirement
allows a type-safe replacement of e in p with €’ in p'.

For example, R. Di Cosmo, F. Pottier and D. Rémy propose
an efficient decision algorithm for subtyping recursive types
modulo associative commutative products that demonstrates
the feasibility of using subtyping instead of type isomorphism,
when translating a program into another [1].

The limitation of their work, that we want to overcome
by exploiting intelligent agents and ontologies in our system,
is that they abstract from the names of classes, methods
and attributes and just consider safe matching between types.
Since there may be a large number of type correspondences
< 7, 7' > that preserve type-safety, re-introducing names
of classes, methods and attributes into the algorithm that
matches libraries’ elements may help in removing those cor-
respondences that, even if type safe, are not “meaning-safe”.
Correspondences between names of methods and attributes
are also needed during the translation process where type
correspondences are not enough.

Assume that we would like to port p from [to I’. For
simplicity, the problem can be reduced to the following
example scenario: p is the program

Attributelist atts;
String name = atts.getName (0);

and [is defined as follows:

class AttributelList extends Object {
String getName (int 1i){...}
}

where Object and String are the usual predefined classes
defined in the standard package java.lang.

The library !’ to which p has to be ported contains the
following class declarations:

class Attributes extends Object {

int getLength () {...}

String getLocalName (int index){...}
String getAttributeType (int index) {...}
}

The approach discussed in [1] would tell us that the
structural types of AttributeList and Attributes are
compliant because of a combination of isomorphism and
subtyping. Or, in other words, would tell us that the cor-
respondence <Attributelist, Attributes> is type
safe. This is a useful information, but it does not help us in
automatically translating p into p’ in order to use ’.

What we would like to have, instead, is the set of correspon-
dences {<AttributeList, Attributes>, <getName,
getLocalName>}. This set cannot be obtained by just
checking the type compliance of String getName (int)

with int getLength (), String getLocalName (int),
and String getAttributeType (int).

In fact, while getLength is not type compliant
with getName, both getLocalName and
getAttributeType are. However, we expect that

the right correspondence is that between getName and
getLocalName, due to the intended meaning of their
names.

It is here that ontologies come into play: assuming that
an “ontology matching algorithm” can devise the corre-
spondences between ontology elements (classes, properties,
relationships, individuals) that better respect their intended
meaning, and assuming that from a Java library, an ontology
carrying the intended meaning of the library elements can be
extracted, we propose to extract ontologies o and o’ from [
and !’, and to run a matching algorithm on them.

And it is here that agents come into play: the system that
we have designed consists of complex components that must
provide different kinds of services (type and ontology extrac-
tion, type and ontology matching, filtering of the matching
results, assisted extraction of the translation function, actual
translation) either to the final user or to other system’s com-
ponents. In order to make our system as flexible as possible,
we associate an intelligent agent with each component. The
agent controls the component and interacts both with other
agents and with the user.

The output of the type and ontology matching algorithms,
controlled by a Type Matching Agent and by an Ontology
Matching Agent respectively, will be combined by a Filtering
Agent in order to produce a type- and meaning- safe matching
relation. A human user assisted by a Function Extraction
Assistant Agent will disambiguate multiple possible matchings
in order to identify a match function which will finally be
used by a Translation Agent to translate p into p'.

Continuing the example above, p’ would be

Attributes atts;
String name = atts.getLocalName (0);

where Attributes = match (AttributeList) and
getLocalName = match (getName). Thanks to the
match function, the translation from p to p’ can be fully
automatized.

The aim of this paper is to discuss a multiagent system
that exploits type and ontology matching techniques to make
automatic migration of Java programs possible. The paper
is organized in the following way: Section II describes the
architecture of our multiagent system and Sections III and
IV describe the Ontology Extraction and Ontology Matching
agents in detail. Section V concludes and highlights future
directions of work.

II. ARCHITECTURE

The purpose of our multiagent system, depicted in Figure
1, is to provide the service of computing a match function
between the elements of two Java libraries I, I’ given in input
either by a human user or by any other software application, by
exploiting interactions among the different agents belonging

to it!. If the user (agent, software application) wants the
additional service of performing the translation of a Java
program p that uses library [into a Java program p’ that uses
I', the match function can in turn be given in input to the
Translation Agent which computes a translation p’ of p driven
by match.

The match function is obtained in the following way:
ontologies o and o' are extracted from libraries | and [’
respectively. In a similar way, collections of types ¢ and ¢’
are extracted from [and /.

The Ontology Matching Agent interacts with a set of Simple
Ontology Matching agents (SOM; in Figure 1), each in charge
of running one specific ontology matching algorithm chosen
from a pool of existing ones (see Section IV, last paragraphs).
The Ontology Matching Agent may decide to demand the
ontology matching service to the SOM agent that has the
lowest workload, to the one that seems more suitable to
correctly match ontologies o and o’ according to quality of
service criteria or efficiency needs, or to any other SOM
agent according to some policy including running all the
available ontology matching algorithms and either merging
the obtained results or selecting one of them based on ex-post
analysis®. At the end, the Ontology Matching Agent obtains
from one or more SOMs the alignments (namely, the sets of
correspondences) ai, as, ..., a, between o and o’ and merges
them or selects the most preferred alignment among them if
it is the case. The Type Matching Agents behaves in the same
way, controlling a set of Simple Type Matching agents (STM;
in Figure 1) each in charge of running a specific type matching
algorithm on ¢ and ¢’ to get tm. The type match ¢m is used for
selecting only those correspondences in a that are type safe.
We name this activity “filtering”.

Filtering, whose responsibility is given to the Filtering
Agent, still does not ensure that we obtain a set of correspon-
dences that is a function: it might still be a relation, because
more than one correspondence involving e € [is both type-
and meaning-safe.

The user is involved in the loop for making the relation
output by the Filtering Agent turn out into a match func-
tion: if many correspondences are possible for an element
e € [, the user will be asked to make his/her choice among
them. Another information must be integrated into the match
function, namely, for any method m € [, which injection
must be applied on its parameters p1, ..., p, in order to obtain

ICurrently, some agents belonging to the MAS such as type matching
and filtering agents have little decisional power and autonomy, so they could
be collected into a single sequential process, simplifying the system design.
However, we expect that these agents may be equipped with a higher degree
of intelligence in a future version of the system. Hence, we model them as
agents even if, in the current version, they are just service providers.

2Alignments can be compared according to their precision and recall.
Unfortunately, computing precision and recall of an alignment between o
and o’ is only possible if a reference alignment for o and o’ has already
been developed by hand. In fact, precision is defined as the number of
correctly found correspondences with respect to a reference alignment divided
by the total number of found correspondences and recall is defined as the
number of correctly found correspondences divided by the total number of
expected correspondences. The higher the precision and recall, the better. If
no reference alignment exists, only quantitative features of the alignment such
as dimension, number of correspondences with the same first element, etc, can
be considered to decide whether one alignment is “better” than another one.

IN

Type
Extraction
Agent

! *Agent

IN
I

e

Ontology
Extraction

Agent

Agent

Fig. 1. The architecture of our multiagent system.

the tuple py,...,pr, & < n whose ordered elements can be
used as parameters for m’ € I’, where m’ = match(m).
Also in this case, the user may be required to make a
choice if more injections are possible. For example method
ml (cl, int, String) in [might be type- and meaning-
safely replaced by m2 (int, String, cl) in [, but a per-
mutation of its parameters is required when actually translating
p that uses m into p’ that uses m/'.

The match function (which is indeed a family of functions
working either on elements of [, or on tuples of elements of
l) is needed by the Translation Agent.

Of course, it might also happen that the Filtering Agent
cannot achieve its goal because there are some elements in [
for which no corresponding element in I’ has been found and
thus no match function from [to I’ can be computed. The
user will be involved in this case too: the Filtering Agent will
inform him/her that no type and meaning-safe matching was
possible for some elements, and the result of the filtering stage
will be shown to him/her. Even if no automatic translation of p
will be possible due to the impossibility to generate a match
function, the user might find the result of the Filtering Agent
useful for driving his/her hand-made translation.

If, thanks to the human intervention, a match function has
been defined, the automatic translation of p into p’ can be
performed by the Translation Agent, leading to the desired
output, namely program p’.

In the sequel of this section, each agent is shortly presented.
Agents that deal with ontologies are discussed in more detail
in the next sections.

Ontology Extraction Agent

The Ontology Extraction Agent takes one Java library as
input and returns an ontology that models the structure of the
library in term of its classes, their subclass relationships, their
methods and attributes. This agent, described in Section III,
must operate on both [and !’ in order to obtain o and o
respectively.

Matching

Ontology
Matching

3
Function
Extraction
| Assistant

match

Type Extraction Agent

The Type Extraction Agent takes one Java library as input
and returns a collection of types following S. Jha, J. Palsberg
and T. Zhao’s proposal [2], [3]. Since Java classes belonging
to a library may mutually refer to one another, types in the
collection may be mutually recursive. In our system, the Type
Extraction Agent must operate on both [and !’ in order
to extract the corresponding collections of types, ¢ and ¢
respectively.

Ontology Matching Agent

The service offered by the Ontology Matching Agents is
returning an alignment of the two ontologies taken in input.
This agent is responsible for the “meaning-safety” of the
matching between elements of [and elements of [’; it will take
the ontologies o and o' extracted from [and I’ respectively
as input and will return an ontology alignment a between
them. As we will discuss in Section IV, many ontology
matching algorithms and tools exists: we will integrate the
most relevant ones into our system by implementing, for each
of them, a SOM agent that provides an interface towards the
algorithm/tool. The Ontology Matching Agent will coordinate
the activity of SOM agents

Type Matching Agent

Once the collections of types induced by [and I’ have
been extracted, a type-safe matching between them must be
computed. The algorithm we will use for this activity is
inspired by that proposed by R. Di Cosmo, F. Pottier and
D. Rémy in [1] and is briefly described in [4]. It ensures the
type-safety of the matching.

Filtering Agent

In order to find a matching between the elements of / and
those of I’ that is both type-safe and that takes the meaning

of names of methods, attributes and classes into account, as
well as their structural relationships, we need to filter elements
of a by taking the type-safe correspondences contained in tm
into account. A Filtering Agent that implements the algorithms
described in [4] has been designed to this aim.

Function Extraction Assistant Agent

In the general case the output of the Filtering Agent, tsa
(for type safe alignment), will not be deterministic enough
to be used for translating a program p that uses [into
the corresponding program p’ that uses !’. There might be
elements of [that can be matched to more than one element
in I’ taking both types and meaning into account, and no
algorithm could automatically determine the right choice.
Once most of the work has been done and the subset tsa of
elements(l) x elements(l’) has been generated, the Function
Extraction Assistant Agent comes into play and interacts with
the user in order to complete the definition of the match
function that will drive the translation from p to p’. The
task of the user mainly consists in making choices among
a set of possibilities provided by the Filtering Agent, in order
to constrain a relation to become a function. The user is
also asked to define the right operations to be performed
on parameters of m € elements(l) in order to obtain a
tuple of parameters suitable for the corresponding method
m' € elements(l').

Of course there might be elements of | for which no type
safe matching into a corresponding element of [’ exist, and
this would mean that ¢sa could never become a function, and
that the system has nothing left to do. The user can benefit
from knowing tsa, but he/she has to perform the translation
from p to p’ by hand.

Translation Agent

In case a the match function has successfully been ex-
tracted, the Translator Agent can provide its translation service
by taking a function match and a program p and returning a
program p’ following the rules defined in Section 7 of [4]. The
program p to migrate is given in input only to the Translation
Agent. The matching function match only depends on [and I’:
it can be reused for any p developed for using ! which must be
updated for using !’. The alternative of considering p from the
earliest phases of the process has been taken into consideration
because of some advantages it would give. In fact, knowing p
since the beginning would allow the multiagent system to limit
the extraction and matching activities only to those elements
of the library that are actually used by p, as well as those that
have some dependency relation with them. This would restrict
the search space, but would also cause a loss of generality of
the function match, which should become a match,, function
depending on p and might be used only for translating p and
programs that use less elements of [than p. A program p2
that uses only one more element from [w.r.t p would require
the generation of a new match,o function.

III. ONTOLOGY EXTRACTION AGENT

This section describes the algorithm for automatically ex-
tracting an OWL ontology from a Java library exploited by the

Ontology Extraction Agent. In case more ontology extraction
algorithms should be implemented, the Ontology Extraction
Agent might coordinate interface agents towards all or some
of them, in the same way as the Ontology Matching and Type
Matching agents do.

In order to explain how the extraction algorithm works,
we need to provide some details on the subset of OWL that
we will use for representing ontologies corresponding to Java
libraries. We have designed the extraction in order to make
this subset as small as possible. In particular, it is a proper
subset of OWL Lite.

a) Data Types: Data Types used in OWL ontologies are
those defined by the XML Schema specification, http://www.
w3.org/TR/xmlschema-2/:

e decimal represents the subset of the real numbers, which
can be represented by decimal numerals; integer is de-
rived from decimal by fixing the number of decimal
digits to 0, and disallowing the trailing decimal point.
This results in the standard mathematical concept of the
integer numbers. Neither decimal nor integer have a direct
counterpart in Java primitive data types.

e long is derived from integer by setting the maximum
value to be 9,223,372,036, 854,775,807 and the minimum
one to be -9,223,372,036,854,775,808 (both included); it
corresponds to the long Java primitive data type.

o int is derived from long by setting the maximum value
to be 2,147,483,647 and the minimum value to be -
2,147,483,648 (both included); it corresponds to the int
Java primitive data type.

e short is derived from int by setting the minimum admis-
sible value to -32,768 and the maximum admissible value
to 32,767 (both included); it corresponds to the short Java
primitive data type.

e byte is a short ranging between -128 and 127 (both
included); it corresponds to the byre Java primitive data
type.

e float is patterned after the IEEE single-precision 32-
bit floating point type; it corresponds to the floar Java
primitive data type.

o double is patterned after the IEEE double-precision 64-
bit floating point type ; it corresponds to the double Java
primitive data type.

e boolean has the value space required to support the math-
ematical concept of binary-valued logic: {true, false}; it
corresponds to the boolean Java primitive data type.

OWL primitive data types do not include char, which is the
only Java primitive data type with no direct correspondence.
However, since char is a finite-valued type type, it may be
easily represented as an OWL class with a finite number of
instances, as a set of integers with a maximum cardinality
(the owl:maxCardinality built-in OWL property may be used
to this aim), or in other straightforward ways. Instead, OWL
primitive data types include for example string, date, time
that correspond to some extent to the String, Date, Time
classes provided by java.lang and java.sqgl packages,
respectively.

Since OWL provides no data type corresponding to void, we
assume that an OWL class named Void is defined in a names-

pace that we abbreviate with myns, and that it corresponds to
the void type specifier in Java.

b) Namespace: Namespaces are inherited by OWL from
XML. XML namespaces provide a simple method for qual-
ifying element and attribute names used in XML documents
by associating them with namespaces identified by URI refer-
ences. A standard initial component of an ontology includes
a set of XML namespace declarations that provide a means to
unambiguously interpret identifiers and make the rest of the
ontology presentation much more readable.

c) Class: A class defines a group of individuals that
belong together because they share some common properties.
The OWL class element, identified by owl:Class, is a
subclass of the RDFS class element, rdfs:Class. The
rationale for having a separate OWL class construct lies in
the restrictions on OWL DL (and thus also on OWL Lite),
which imply that not all RDFS classes are legal OWL DL
classes.

d) Subclass: Class hierarchies may be created by making
one or more statements that a class is a subclass of another
class. This can be achieved by using the rdfs:subClassOf
element defined by RDFS.

e) Property: Properties have originally being defined
in RDF and can be used to state relationships between
individuals (object properties, owl:ObjectProperty)
or from individuals to data values (data type proper-
ties, owl:DatatypeProperty). Both object and data
type OWL properties are subclasses of the RDF class
rdf:Property.

A. From a Java library to an OWL ontology

The algorithm that we describe in this section has been
designed for working under the assumption that names of
methods and attributes of the classes in a class library are
all different. The absence of name clashes between classes
is given for granted, since a class library cannot include two
classes with the same name. Even under the assumption that
different classes with no inheritance relation among them
define different methods, a preprocessing stage must be per-
formed on the library in order to deal with method overriding.
In fact, we cannot prevent subclasses from overriding methods
defined in superclasses, but this leads to a violation of our
assumption on disjoint names of methods. We deal with this
situation by just removing the overridden method from all the
subclasses that override it. This gives us two advantages:

1) the assumption under which the algorithm works is

respected;

2) we avoid that a method m defined by class ¢ may be

matched to m’, and the same method m overridden by
a subclass of ¢ is matched to m/” # m/.

The basic ideas underlying the extraction algorithm are:

o The Java library [corresponds to a single OWL ontol-
ogy lo named after the library name and defined in a
namespace [ns.

« Java classes belonging to [correspond to OWL classes
belonging to [o; the identifier of the OWL class coincides
with the name of the Java class it corresponds to.

o If the Java class sc extends ¢, then the OWL class corre-
sponding to ¢ (that we name owl(c) for our convenience)
is defined as a subclass of the OWL class corresponding
to sc.

o Since properties of an OWL class are inherited by its
subclasses, the Java methods and attributes of class c are
translated into OWL properties with identifier identical
to their name and domain owl(c). This allows them to
be inherited by owl(c)” subclasses for free. The range of
a property corresponding to a Java attribute is defined
as the attribute’s type; that of a property correspond-
ing to a method is a pre-defined OWL class named
myns:MethodF.

Our assumption of absence of clash names is very strong,
but it allows us to describe the basic ideas underlying the
algorithm in a clear and understandable way, discarding the
technical details raised by name clashes. The reason for this
assumption is that we translate all the elements (classes,
attributes, methods) of the class library into corresponding
elements of a unique OWL ontology. Unfortunately, an OWL
ontology cannot include properties with the same name, even
if their domain and range are different as it should happen
with methods, parameters and attributes with the same name
but different functionality.

In the real case, where name clashes between methods,
parameters, and attributes may occur, two solutions have been
devised.

1) Instead of translating the entire Java library into an

OWL ontology, each Java class ¢ should be translated
into an OWL ontology o defined within a namespace
ns created starting from c in a way that ensures its
uniqueness. Methods and attributes of class ¢, as well
as the methods’ parameters, should be translated into
properties of the ontology o within the namespace ns.
The usage of different ontologies defined in different
namespaces should allow us to identify each element
of a Java class in a unique way, and thus to overcome
the problem of name clashes (using the same identifier
in different namespaces is, of course, admitted). The
ontology corresponding to the Java class ¢ should import
all the ontologies corresponding to translations of Java
classes referenced in ¢, and thus a pre-processing phase
should be added to the extraction algorithm. The Java
library [should be translated into an ontology that just
imports all the ontologies corresponding to the Java
classes belonging to [.
The main drawback of this approach, besides a much
more complex extraction algorithm, is that few imple-
mented matching algorithms that the Simple Ontology
Matching Agents, SOMs, should interface take names-
paces correctly into account.

2) The Java library should still be translated into a single
OWL ontology, but clashing names should be modified
during their translation in order to obtain an ontology
“clash-free”.

Here, the drawback is that the modification of names
would result into poorer performances of the ontology

matching algorithms. If, for example, method m in the
library [has been translated into m14 in ontology o
because of a name clash, and method m in library I’ has
been translated into m37 in ontology o', again because
of a name clash, the confidence in the correspondence
< m € om € o > would turn out to be lower
than the confidence in the correspondence < ml4 €
0,m37 € o’ > for most matching algorithms, because
of the syntactic difference between the two names.

The following paragraphs describe the extraction of the
OWL elements starting from the Java library elements and
provide examples.

OWL elements corresponding to Java classes

A Java class c that extends no class corresponds to an OWL
class ¢ (Table I).

A Java class sc that extends a class c different from Object
corresponds to an OWL class sc defined as a subclass of ¢
(Table II).

OWL elements corresponding to attributes of Java classes

An attribute a of class ¢ whose type is a basic type ¢ with
a corresponding data type in XML corresponds to an OWL
datatype property whose ID is a, whose domain is ¢, and
whose range is the XML data type that corresponds to ¢ (Table
).

An attribute a of class ¢ whose type is the class ¢’ defined in
the Java library corresponds to an OWL object property whose
ID is a, whose domain is ¢, and whose range is ¢’ (Table IV).

OWL elements corresponding to methods of Java classes

Since we are not interested in representing the functionality
of a method m in the ontology, we treat methods in the same
way as attributes with the only difference that their range is
always an OWL class defined in our namespace, and named
"myns:MethodF". The domain of a method is the OWL
class representing the Java class it belongs to (Table V).

IV. ONTOLOGY MATCHING AGENT

The Ontology Matching Agent will coordinate Simple
Ontology Matching Agents, each interfacing towards some
existing algorithm and/or tool (for example those mentioned
at the end of this section, but others might be considered).

In the recent past, the second author of this paper together
with other colleagues from the University of Genova designed,
implemented and tested a FIPA compliant Ontology Agent for
JADE [5] that provides Ontology Matching services to a MAS
[6]. We plan to extend such an agent by adding intelligence
to it in the choice of the right matching algorithm (among
existing ones) to use, based either on work-balance issues or
on quality of service provided, or on both. The experiments
described in [7] demonstrate that better results are achieved
by more time-consuming algorithms. According to the user’s
needs, a faster algorithm might be preferred to a slower one,
even if this might cause a degradation of the results’ quality.

The Ontology Matching Agent will take the user’s preferences
into account for delivering the best service to each user.

In this section, we shortly review the state of the art of
ontology matching systems and algorithms towards which
Simple Ontology Matching Agent will interface. We draw
inspiration from [8]. Following the terminology proposed
there, a correspondence between an entity e belonging to
ontology o and an entity ¢’ belonging to ontology o’ is a 5-
tuple < id,e,e’, R, conf > where:

e id is a unique identifier of the correspondence;

e ¢ and €’ are the entities (e.g. properties, classes, individ-

uals) of o and o’ respectively;

e R is a relation such as “equivalence”, “more general”,
“disjointness”, “overlapping”, holding between the enti-
ties e and €'

e conf is a confidence measure (typically in the [0,1]
range) holding for the correspondence between the en-
tities e and ¢e’;

An alignment of ontologies o and o’ is a set of correspon-
dences between entities of o and o', and a matching process
is a function f which takes two ontologies o and ¢, a set of
parameters p and a set of oracles and resources 7, and returns
an alignment A between o and o’.

Two of the dimensions according to which matching tech-
niques can be classified are the level (element vs structure) and
the way input information is interpreted (syntactic vs external
VS semantic).

Level: element vs structure

Element-level matching techniques compute alignments by
analyzing entities in isolation, ignoring their relations with
other entities. Structure-level techniques compute alignments
by analyzing how entities appear together in a structure.

Element-level techniques include, among others:

o String-based techniques, that measure the similarity of
two entities just looking at the strings (seen as mere
sequences of characters) that label them. They include
substring distance, Jaro measure [9], n-gram distance
[10], Levenshtein distance [11], SMOA measure [12].

o Language-based techniques, that consider entity names
as words in some natural language and exploit Natural
Language Processing techniques to measure their simi-
larity.

o Constraint-based techniques, that deal with the internal
constraints being applied to the definitions of entities,
such as types, cardinality of attributes, and keys.

Structure-level techniques include:

e Graph-based techniques that the input ontology as a
labeled graph.

o Taxonomy-based techniques, that are also graph algo-
rithms which consider only the specialization relation.

e Model-based techniques that handle the input based on
its semantic interpretation (e.g., model-theoretic seman-
tics). Examples are propositional satisfiability (SAT) and
description logics (DL) reasoning techniques.

public class Bike

<owl:Class rdf:ID="Bike"/>

TABLE I
JAVA CLASS ¢ THAT EXTENDS NO CLASS.

public class MountainBike
extends Bike

<owl:Class rdf:ID="MountainBike">
<rdfs:subClassOf rdf:resource="Bike"/>
</owl:Class>

TABLE I
JAVA CLASS sc THAT EXTENDS CLASS c.

Attribute cadence of the class Bike:

public int cadence;

<owl:DatatypeProperty rdf:ID="cadence">
<rdfs:domain rdf:resource="Bike"/>
<rdfs:range rdf:resource="xsd:int"/>

</owl:DatatypeProperty>

TABLE III
ATTRIBUTE WITH A BASIC TYPE.

Attribute £t of the class Bike:

public BikeFeatr ft;

<owl:0ObjectProperty rdf:ID="ft">
<rdfs:domain rdf:resource="Bike"/>
<rdfs:range rdf:resource="BikeFeatr"/>

</owl:0ObjectProperty>

TABLE IV
ATTRIBUTE WITH TYPE c.

Interpretation of input information: syntactic vs external vs
semantic

Syntactic techniques interpret the input in function of its
sole structure following some clearly stated algorithm.

External techniques exploit auxiliary (external) resources of
a domain and common knowledge in order to interpret the
input.

Semantic techniques use some formal semantics (e.g.,
model-theoretic semantics) to interpret the input and justify
their results. In case of a semantic based matching system, a
further distinction between exact algorithms (that guarantee a
discovery of all the possible correspondences) and approxi-
mate algorithms (that tend to be incomplete) may be done.

Implemented matching systems and infrastructures

Many implemented matching systems and algorithms exist.
If we just consider those listed in the “Project” section of the
Ontology Matching portal, http://www.ontologymatching.org/
projects.html, we may count about thirty of them. These sys-
tems and infrastructures are very different one from another.
Many of them have been carefully analyzed and compared in
[8], as well as in previous works by the same authors [13],
[14] and by other researchers [15].

Just to cite some very recent systems, HMatch [16], [17]
is an automated ontology matching system able to handle

ontologies specified in OWL. Given two concepts, HMatch
calculates a semantic affinity value as the linear combination
of a linguistic affinity value and a contextual affinity value.
For the linguistic affinity evaluation, HMatch relies on a the-
saurus of terms and terminological relationships automatically
extracted from the WordNet lexical system. The contextual
affinity function of HMatch provides a measure of similarity
by taking into account the contextual features of the ontology
concepts.

CtxMatch [18], [19] is a sequential system that translates the
ontology matching problem into the logical validity problem
and computes logical relations, such as equivalence, subsump-
tion between concepts and properties.

The Alignment API [20] is an API and implementation
for expressing and sharing ontology alignments. It operates
on ontologies implemented in OWL and uses an RDF-based
format for expressing alignments in a uniform way. The
Alignment API offers services for storing, finding, and shar-
ing alignments; piping alignment algorithms; manipulating
(thresholding and hardening); generating processing output
(transformations, axioms, rules); comparing alignments. The
last release, Version 3.5, dates back to October, 21th, 2008.

AUTOMS-F [21] is a framework implemented as a Java
API which aims to facilitate the rapid development of tools
for automatic mapping of ontologies by synthesizing several

Methods setFeatr and getFeatr of the
class Bike:

public void setFeatr
(BikeFeatr newFeatr,
String newOwnerName,
int newOwnersNum)

{

public BikeFeatr getFeatr()
{

}

<owl:ObjectProperty rdf:ID="setFeatr">
<rdfs:domain rdf:resource="Bike"/>
<rdfs:range rdf:resource="myns:MethodF"/>
</owl:0ObjectProperty>

<owl:0ObjectProperty rdf:ID="getFeatr">

} <rdfs:domain rdf:resource="Bike" />
<rdfs:range rdf:resource="myns:MethodF"/>

</owl:0ObjectProperty>

TABLE V
METHODS.

individual ontology mapping methods. Towards this goal,
AUTOMS-F provides a highly extensible and customizable
application programming interface. AUTOMS [22] is a case
study ontology mapping tool that has been implemented using
the AUTOMS-F framework.

Finally, automatic matching techniques that exploit “Upper
Ontologies”, namely general ontologies that deal with con-
cepts that are the same across different domains, have been
implemented and analyzed in [7].

V. CONCLUSION AND FUTURE WORK

In this paper we have described a multiagent system that,
once implemented, should allow a user to semi-automatically
porting a Java program p that uses library [to a program p’ that
uses !’ in a type-safe and “meaning-safe” way. To the best of
our knowledge, no previous attempts of exploiting agents and
ontologies for facing porting and migration problems exist.
We devise some similarity between our proposal and the Nat-
ural Programming Project, http://www.cs.cmu.edu/~NatProg/,
working on making programming languages and environments
easier to learn, more effective, and less error prone. The
report [23] suggests that Al tools such as agents, advice, and
reversible debuggers may help users convert their intentions
into precise programs. In this paper we do not face the
general problem of supporting the user in his/her programming
activities: we face the more specific problem of helping the
user in a migration problem with respect to the Java language.
Nevertheless, our exploitation of intelligent agents for sup-
porting the user in activities related to smart programming is
coherent with the purpose of the Natural Programming Project.

The contribution of this paper is twofold. On the one hand,
we have designed the multiagent system’s architecture; on the
other hand, we have either identified existing algorithms to in-
tegrate in the agents when possible, or designed new ones (the
ontology extraction algorithm described in this paper and the
algorithms implemented by the Filtering and the Translation
agents described in [4] are all original contributions).

The first activity we will carry out in the very near future
is the implementation of the algorithms that, at this stage,
are only designed. In parallel to the implementation of these

algorithms, the choice of the most suitable algorithms and
tools to be accessed by Simple Ontology Matching Agents
will be made.

Once all these components will be available and tests will be
performed over them, a prototype demonstrating the feasibility
of our approach will be created in JADE.

ACKNOWLEDGEMENTS

The authors acknowledge the anonymous reviewers for their
thoughtful and constructive suggestions.

This work has been partially supported by MIUR EOS DUE
- Extensible Object Systems for Dynamic and Unpredictable
Environments, and by the CINI-FINMECCANICA Iniziativa
Software project.

REFERENCES

[1] R. D. Cosmo, F. Pottier, and D. Rémy, “Subtyping recursive types
modulo associative commutative products,” in TLCA 2005, Proceedings,
ser. LNCS, P. Urzyczyn, Ed., vol. 3461. Springer, 2005, pp. 179-193.

[2] J. Palsberg and T. Zhao, “Efficient and flexible matching of recursive
types,” in LICS 2000, Proceedings. IEEE Computer Society, 2000, pp.
388-398.

[3] S.Jha, J. Palsberg, and T. Zhao, “Efficient type matching,” in FOSSACS
2002, co-located with ETAPS 2002, Proceedings, ser. LNCS, M. Nielsen
and U. Engberg, Eds., vol. 2303. Springer, 2002, pp. 187-204.

[4] D. Ancona and V. Mascardi, “Ontology matching for semi-automatic and
type-safe adaptation of Java programs,” DISI - University of Genova,
Tech. Rep., 2008, ftp:/ftp.disi.unige.it/person/AnconaD/AM1208.pdf.

[5] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[6] D. Briola, A. Locoro, and V. Mascardi, “Ontology agents in FIPA-
compliant platforms: a survey and a new proposal,” in WOA’08, Pro-
ceedings, M. Baldoni, M. Cossentino, F. D. Paoli, and V. Seidita, Eds.
Seneca Edizioni, 2008.

[7]1 V.Mascardi, A. Locoro, and P. Rosso, “Automatic ontology matching via
upper ontologies: A systematic evaluation,” 2009, IEEE Trans. Knowl.
Data Eng., to appear.

[8] J. Euzenat and P. Shvaiko, Ontology Matching. Springer, 2007.

[9]1 M. Jaro, “UNIMATCH: A record linkage system: User’s manual,” U.S.

Bureau of the Census, Washington (DC US), Tech. Rep., 1976.

E. Brill, S. Dumais, and M. Banko, “An analysis of the askmsr question-

answering system,” in EMNLP 2002, Proceedings, 2002.

V. L. Levenshtein, “Binary codes capable of correcting deletions, in-

sertions, and reversals,” Doklady akademii nauk SSSR, vol. 163, no. 4,

pp. 845-848, 1965, in Russian. English Translation in Soviet Physics

Doklady 10(8), 707-710, 1966.

[10]

(1]

(12]

[13]
[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

G. Stoilos, G. B. Stamou, and S. D. Kollias, “A string metric for ontology
alignment,” in ISWC 2005, Proceedings, ser. LNCS, Y. Gil, E. Motta,
V. R. Benjamins, and M. A. Musen, Eds., vol. 3729. Springer, 2005,
pp. 624-637.

P. Shvaiko and J. Euzenat, “A survey of schema-based matching ap-
proaches,” J. Data Semantics 1V, vol. 3730, pp. 146-171, 2005.

P. Shvaiko, “Iterative schema-based semantic matching,” DIT - Univer-
sity of Trento, Tech. Rep. DIT-06-102, 2006, ph.D. Thesis.

N. Choi, I.-Y. Song, and H. Han, “A survey on ontology mapping,”
SIGMOD Record, vol. 35, no. 3, pp. 34—41, 2006.

S. Castano, A. Ferrara, and S. Montanelli, “Matching ontologies in open
networked systems: Techniques and applications,” J. Data Semantics V,
pp. 25-63, 2006.

S. Castano, A. Ferrara, and G. Messa, “ISLab HMatch Results for OAEI
2006, in OM-2006, co-located with ISWC-2006, Proceedings, 2006.
P. Bouquet, B. Magnini, L. Serafini, and S. Zanobini, “A SAT-based
algorithm for context matching,” in CONTEXT 2003, Proceedings, ser.
LNCS, P. Blackburn, C. Ghidini, R. M. Turner, and F. Giunchiglia, Eds.,
vol. 2680. Springer, 2003, pp. 66-79.

P. Bouquet, L. Serafini, S. Zanobini, and S. Sceffer, “Bootstrapping
semantics on the web: meaning elicitation from schemas,” in WWW
2006, Proceedings, L. Carr, D. D. Roure, A. Iyengar, C. A. Goble, and
M. Dahlin, Eds. ACM, 2006, pp. 505-512.

J. Euzenat and et al., “Alignment API and Alignment Server,” 2008.
[Online]. Available: http://alignapi.gforge.inria.fr/

A. Valarakos, V. Spiliopoulos, K. Kotis, and G. Vouros, “AUTOMS-F: A
java framework for synthesizing ontology mapping methods,” in KOST
'07, Proceedings, 2007.

K. Kotis, A. G. Valarakos, and G. A. Vouros, “AUTOMS: Automated
ontology mapping through synthesis of methods,” in OM-2006, co-
located with ISWC-2006, Proceedings, ser. CEUR Workshop Proceed-
ings, P. Shvaiko, J. Euzenat, N. F. Noy, H. Stuckenschmidt, V. R.
Benjamins, and M. Uschold, Eds., vol. 225. CEUR-WS.org, 2006.
H. Goodell, S. Kuhn, D. Maulsby, and C. Traynor, “End user
programming/informal programming,” SIGCHI Bull., vol. 31, no. 4, pp.
17-21, 1999. [Online]. Available: http://www.cs.uml.edu/~hgoodell/
EndUser/blend/report.html

