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Abstract. General purpose query interfaces to relational databases can expose 
vast amounts of content to the Semantic Web. In this paper, we discuss 
Automapper, a tool that automatically generates data source and mapping 
ontologies using OWL and SWRL. We also describe the use of these 
ontologies in our Semantic Distributed Query architecture, an implementation 
for mapping RDF queries to disparate data sources, including SQL-compliant 
databases, using SPARQL as the query language. This paper covers 
Automapper functionality that exploits some of the expressiveness of OWL to 
produce more accurate translations. A comparison with related work on 
Semantic Web access to relational databases is also provided as well as an 
investigation into the use of OWL 1.1. 
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1 Introduction 

A wealth of information resides in relational databases, which are highly 
engineered for scalability, transaction management, security and access by 
existing applications [1].  Access to this information significantly increases the 
utility of the Semantic Web.  Dynamic access is preferred, to accommodate high 
data volumes and change rates.  Custom servlets or other programs can export 
high-quality semantic representations, but the development cost is often 
prohibitive and can limit reusability.  This motivates the development of 
application-independent tools that can generate a basic ontology from a database 
schema and dynamically produce instance data using that ontology.  This method 
quickly exposes the data to the Semantic Web, where a variety of tools and 
applications are available to support translation, integration, reasoning, and 
visualization [2]. 

The paper presents one such tool, Automapper, and is organized as follows: 
Sections 2 and 3 describe both Automapper and the overall architecture in which 
Automapper operates.  Section 4 discusses the current use of OWL and Section 5 
details the current use of SWRL.  Section 6 provides a simple application of 
Automapper and the Semantic Distributed Query architecture. Section 7 covers 
related work.  Section 8 explores how the new features in OWL 1.1 can be used to 
enhance Automapper.  Finally, Section 9 concludes with future directions. 

2 Architecture 

To understand Automapper's utility, a description of its subsuming architecture is 
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provided.  While that is not the focus of this paper, a general understanding is 
necessary to appreciate Automapper's role in the system as a whole.  As shown in 
Figure 1, Automapper is part of a larger system for decomposing a SPARQL 
query, expressed using a domain ontology, over multiple data sources and 
merging the corresponding data into a single result set [3].  Specifically, 
Automapper uses the database schema to create an OWL data source ontology 
and mapping instance data (the mapping ontology is discussed in Section 3) to 
support two layers of processing:  the higher-level Semantic Query 
Decomposition component (SQD) and the lower level SPARQL-to-SQL 
translation component, also known as a Semantic Bridge for Relational Databases 
(SBRD).  Each RDBMS has its own Semantic Bridge instantiation that can be 
either collocated or hosted remotely.  SQD relies on a set of SWRL data source-

to-domain mapping rules and optional domain-to-domain mapping rules to 
properly translate inbound queries into data source queries and vice-versa.  The 
use of a domain ontology allows queries to be independent of any particular data 
source.  In addition, different communities can each adopt their own domain 
ontology while reusing the same data sources.  Mapping rules need only cover the 
data of interest thereby minimizing integration costs. 

SBRD uses both Automapper artifacts to correctly map a SPARQL query 
expressed using the data source ontology into SQL SELECT statements. Database 
query result sets are mapped back into the data source ontology and returned to 
SQD.  As a final step, SQD recombines the various result sets, maps the data into 
the domain ontology and returns this data to the user.  Automapper was developed 
in Java and needs to be run only once against a given relational database to 
automatically generate both the data source ontology and the mapping data. Using 
the method java.sql.Connection.getMetaData(), we are able to mine the necessary 
table definitions such as column names, primary keys, foreign keys, remarks and 
type declarations to generate the data source ontology.  Automapper constructs 
these artifacts based on a configuration file, which contains instance data based 

Fig. 1. Overview of the Semantic Distributed Query Architecture 
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on a simple configuration ontology.  This ontology permits additional primary 
and foreign key information, the option to include or exclude comments in the 
mapping instance data, the capacity to limit the visibility of specific tables and the 
ability to override a declared column datatype with another XML Schema 
datatype [4]. 

3 Utilizing Automapper Mapping Data 

While SQD relies on SWRL rules for mapping, SBRD depends on Automapper's 
generated mapping data.  SBRD employs these mappings for transforming 
SPARQL data source queries into SQL queries for data retrieval.  Our mapping 
ontology, based on the mapping ontology used by D2RQ [5], defines a ClassMap 
OWL class whose instances represent each table in a given schema.  A table has a 
corresponding OWL class in the data source ontology, an owning schema, a 
name, a uriPattern and one or more datatype property bridges and object property 
bridges.  The uriPattern is an OWL datatype property used to identify each row 
in a table (instance) with a unique URI by concatenating its table name with the 
value of each primary key column in the table.  The datatype and object property 
bridges correspond to columns containing literal values and foreign keys, 
respectively. 

4 Use of OWL 

The following class descriptions, axioms and restrictions are currently 
generated by Automapper: 

1. maxCardinality is set to 1 for all nullable columns 
2. cardinality is set to 1 for all non-nullable columns 
3. All datatype and object properties that represent columns are marked as 

FunctionalProperties.  To ensure global uniqueness and class 
specificity, these properties are given URIs based on concatenating the 
table and column names 

4. allValuesFrom restrictions reflect the datatype or class associated with 
each column 

5 Use of SWRL 

Automapper generates SWRL rules to identify identical individuals based on their 
primary key values.  These rules use swrl:SameIndividualAtom 
statements to express class-specific inverse functional relationships, including 
those involving multiple properties (primary key columns), neither of which is 
directly supported by OWL [6]. The inclusion of these rules can reduce the 
number of SPARQL variables and statements used by both SQD during the query 
decomposition process and Semantic Bridges during translation. The resulting 
SQL queries are more concise and, in certain cases, execute in a shorter period of 
time. 
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6 Example 

Assume a simple OWL domain ontology of personnel information used by a 
human resources department. This ontology defines classes Person and Dept and 
datatype properties gender, name, code and projectName1. It also defines an 
object property, department, used to associate a Person with a Dept.  A Dept is 
uniquely identified by its code. Below is a fragment represented in Turtle: 
 
:Person a owl:Class; 
   rdfs:subClassOf 
      [ a owl:Restriction ; 
        owl:onProperty :name ; 
        owl:maxCardinality 
         "1"^^xsd:nonNegativeInteger ], 
      [ a owl:Restriction ; 
        owl:onProperty :name ; 
        owl:allValuesFrom xsd:string ], 
      [ a owl:Restriction ; 
        owl:onProperty :department ; 
        owl:maxCardinality 
        "1"^^xsd:nonNegativeInteger ], 
      [ a owl:Restriction ; 
        owl:onProperty :department ; 
        owl:allValuesFrom :Dept ] . 

 
:Dept a owl:Class; 
   rdfs:subClassOf 
      [ a owl:Restriction ; 
        owl:onProperty :code ; 
        owl:maxCardinality 
        "1"^^xsd:nonNegativeInteger ], 
      [ a owl:Restriction ; 
        owl:onProperty :code ; 
        owl:allValuesFrom xsd:int ] . 
 
A domain model will often incorporate data from multiple databases but not all 
terms defined in a data source ontology will map to the domain ontology.  For the 
sake of brevity, we limit our example to a single database (hresources) that holds 
staffing information; Tables 1 and 2 list the contents of the Staffing and 
Departments tables, respectively. Note that the Department ID column is only 
partially dependent on the primary key (an employee belongs to one department, 
independent of a project) and therefore the table is not in second normal form [7].  
Unfortunately, such usage is not uncommon in practice and is included here as a 
real-world example. 

                                                           
1 The association between Person and a Project could also be appropriately modeled using an 

object property. 
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From this schema, Automapper creates the data source ontology and class-
specific inverse functional rules, of which fragments are listed below: 

 

dsont:Hresources.Departments a owl:Class ; 
   rdfs:subClassOf 
      [ a owl:Restriction ; 
        owl:onProperty 
        dsont:hresources.departments.id ; 
        owl:allValuesFrom xsd:decimal ], 
      [ a owl:Restriction ; 
        owl:onProperty  
        dsont:hresources.departments.id ; 
        owl:cardinality 
        "1"^^xsd:nonNegativeInteger ] . 

 
dsont:Hresources.Staffing a owl:Class ; 
   rdfs:subClassOf 
      [ a owl:Restriction ; 
        owl:onProperty  
        dsont:hresources.staffing.name ; 
        owl:cardinality  
        "1"^^xsd:nonNegativeInteger ], 
      [ a owl:Restriction ; 
        owl:onProperty  
        dsont:hresources.staffing.name ; 
        owl:allValuesFrom xsd:string ], 
      [ a owl:Restriction ; 
        owl:onProperty  
        dsont:hresources.staffing.deptid.Object ; 
        owl:cardinality  
        "1"^^xsd:nonNegativeInteger ] . 
 
dsont:Hresources.DeptsSame a ruleml:Imp ; 
   ruleml:body 
      ( [ a swrl:ClassAtom ; 

Table 2. Department Table. ID is a primary key. 

Table 1. Staffing Table.  Name and Project together 
form a primary key and Department ID is a foreign key. 
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           swrl:argument1 :A ; 
           swrl:classPredicate  
           dsont:Hresources.Departments ] 
        [ a swrl:ClassAtom ; 
           swrl:argument1 :B ; 
           swrl:classPredicate  
           dsont:Hresources.Departments ] 
        [ a swrl:DatavaluedPropertyAtom ; 
           swrl:argument1 :A ; 
           swrl:argument2 :Var0 ; 
           swrl:propertyPredicate  
           dsont:hresources.departments.id ] 
        [ a swrl:DatavaluedPropertyAtom ; 
           swrl:argument1 :B ; 
           swrl:argument2 :Var0 ; 
           swrl:propertyPredicate  
           dsont:hresources.departments.id ] ) ; 
   ruleml:head 
      ( [ a swrl:SameIndividualAtom ; 
           swrl:argument1 :A ; 
           swrl:argument2 :B ] ) . 

 
The corresponding mapping data is also generated.  Below are two datatype 

property bridges, an object property bridge (representing a foreign key) and a 
class map all relating to the Departments table: 

 
:HRESOURCES.DEPARTMENTS.ID a 
map:DatatypePropertyBridge; 
   map:column "ID"; 
   map:datatype xsd:decimal; 
   map:language "en"; 
   map:property  
      dsont:hresources.departments.id . 

 
:HRESOURCES.STAFFING.DEPTID.OBJ a 
map:ObjectPropertyBridge; 
   map:constraint 
      [ a map:KeyConstraint; 
        map:objectColumnOperand "ID"; 
        map:operator :EqualsOperator; 
        map:subjectColumnOperand "DEPTID" ]; 
   map:objectClassMap     
      dsont:Hresources.Departments; 
   map:property  
      dsont:hresources.staffing.deptid.Object . 

 
:Hresources.Departments a map:ClassMap; 
   map:datatypePropertyBridge  
      :HRESOURCES.DEPARTMENTS.ID, 
      :HRESOURCES.DEPARTMENTS.NAME; 
   map:table "DEPARTMENTS"; 
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   map:type dsont:Hresources.Departments; 
   map:uriPattern  
      "http://example.org/2007/08/ds-ont# 
      Hresources.Departments@@ID@@" . 

 
In the final step, we create SWRL rules to map between the data source and 

domain ontologies to enable SPARQL query decomposition and reconstitution.  
Below are sample rules used for mapping the data source Departments class to 
the domain ontology Dept class including the department ID: 
 
:RuleDeptClass a ruleml:Imp ; 
   ruleml:body 
      ( [ a swrl:ClassAtom ; 
          swrl:classPredicate  
             dsont:Hresources.Departments ; 
          swrl:argument1 :d ] ) ; 
   ruleml:head 
      ( [ a swrl:ClassAtom ; 
           swrl:classPredicate domont:Dept ; 
           swrl:argument1 :d ] ) . 
 
:RuleDepartmentCode 
   ruleml:body 
      ( [ a swrl:ClassAtom; 
          swrl:classPredicate  
             dsont:Hresources.Departments ; 
          swrl:argument1 :d ] 
        [ a swrl:DataValuedPropertyAtom ; 
          swrl:propertyPredicate  
             dsont:hresources.departments.id ; 
          swrl:argument1 :d ; 
          swrl:argument2 :c ] ) ; 
   ruleml:head 
      ( [ a swrl:DataValuedPropertyAtom ; 
           swrl:propertyPredicate domont:code ; 
           swrl:argument1 :d; 
           swrl:argument2 :c ] ) . 

 
Running the following query for the names of all people in department 1 and 

their associated project names: 
 

PREFIX : <http://example.org/2007/08/domain-ont#> 
SELECT ?pName ?name 
WHERE { 
   [ a :Person ; 
     :projectName ?pName ; 
     :name ?name ; 
     :department ?d ] . 
    ?d :code 1 } 

 
yields: Alpha MattF, Alpha DaveK, Beta MattG, Beta DaveK. 
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7 Related Work 

Various tools have been developed to provide Semantic Web interfaces to 
relational databases, including D2RQ, Gnowsis [8], ISENS [9], Relational.OWL 
[10] and OntoGrate [11]. 

We initially used D2RQ and incorporated several modifications which we 
submitted to the D2RQ development team2.  The changes involved query 
optimizations such as eliminating duplicate table prefixing, increased selectivity 
of property bridges (to limit the desired number of tables in a query), and SQL 
SELECT query partitioning for smaller queries.  As SQD became more 
sophisticated, we determined that SBRD and other Semantic Bridges did not 
require the full power of D2RQ. 

Automapper corresponds to D2RQ's generate-mapping3 script. It 
continues the D2RQ use of instance data for SPARQL-to-SQL mappings, entity 
concepts (e.g. ClassMap, uriPattern) and separate datatype and object property 
bridges.  Object property bridges more precisely model foreign key relationships, 
although our model is not the only possibility [12].  The d2rq:join property 
has been replaced with a Constraint class in the mapping ontology.  A 
Constraint is modeled as a binary operation with a single operator and two 
operands.  Further precision is captured in KeyConstraint, a subclass of 
Constraint, which limits the operator to equality.  Thus, KeyConstraint 
conceptually combines d2rq:refersToClassMap and d2rq:join. 
d2rq:AdditionalProperty and d2rq:additionalProperty are not 
used since the data source ontology is a straight-forward model of the RDBMS 
schema.  This simplified representation makes Automapper-generated artifacts 
easier to create and understand. 

8 OWL 1.1 

The continued progress of of the W3C OWL Working Group provides an exciting 
preview of the new features in OWL 1.1, many of which can be used to enhance 
the functionality and expressivity of Automapper.  The submission [13] divided 
the OWL extensions into four broad categories: syntactic sugar, new Description 
Logic constructs, expanded datatype expressiveness, and metamodeling 
constructs.  This section will focus on the extension categories that are relevant to 
the relational database space, detailing how each can be used to enhance 
Automapper, and then discuss the impact of the new DL-Lite sub-species [14]. 

8.1 New Description Logic Constructs 

While many of the new description logic constructs are generally useful, only one 
can be automatically derived from relational database schemas, the 
IrreflexiveObjectProperty. Reflexive relationships involve the same 
instance as both the subject and object of the relation.  Consider the example 
found above in Table 1.  Suppose a new column was added, “Manager”, that was 
a foreign key to the “Name” column.  The referential integrity constraints of a 

                                                           
2http://sf.net/mailarchive/message.php?msg_id=1143734217.12135.8.camel@localhost 
3http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/spec/#commandline 
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relational database system would guarantee that someone’s manager must already 
be defined in the same table.  Often, an additional constraint would be placed on 
this foreign key to prevent someone from being their own manager.  However, 
OWL 1.0 cannot express this concept with a simple object (or functional object) 
property.  The IrreflexiveObjectProperty in OWL 1.1 provides the 
ability to state that any given instance cannot be related to itself.  In many cases, 
the irreflexivity of a database relation can be determined in an automated fashion 
and therefore this would be a valuable enhancement to Automapper.  However, in 
cases where the irreflexivity cannot be automatically deduced, manual 
intervention can augment the generated OWL.   

It is worth noting that many of the concepts represented by the other new 
property constructs are used in relational database systems in functions and stored 
procedures.  While, these database concepts cannot be readily mapped in an 
automated fashion, an analyst using Automapper with knowledge of the existing 
database could take advantage of the new property constructs after the automated 
process has completed. 

8.2 Expanded Datatype Expressiveness 

OWL 1.1 allows the definition of user-defined datatypes.  Specifically, the 
working group’s specification document [15] outlines three new capabilities with 
two of them being relevant: dataOneOf, the ability to restrict a datatype’s 
values to an enumerated list; and datatypeRestriction, the ability to 
restrict a datatype’s values to a range or pattern.  These two new capabilities are 
very commonly used in relational database system and would be a very beneficial 
enhancement to Automapper by enforcement through the configuration settings. 

8.3 New OWL-DL Sub-Species 

While not directly affecting Automapper, as an application in the relational 
database OWL space, it is worthwhile to briefly call out DL-Lite which is 
specifically designed to provide the minimum expressivity required to meet the 
needs of modeling a relational database system.  DL-Lite provides several 
performance gains over complete OWL DL; most notably it reduces data 
complexity, the complexity measured with respect to the number of facts in the 
ontology, from an NP-Hard problem to a LOGSPACE problem.  Thus, 
Automapper should produce OWL that is restricted to DL-Lite. 

9 Future Work 

We are currently applying Automapper's approach to other Semantic Bridges.  
Specifically, we are exploring its use for both SOAP and RESTful services in our 
Semantic Bridge for Web Services (SBWS). 

Currently, URIs returned by SBRD are unique but generally not resolvable.  
We intend to address this issue in future versions by generating resolvable URIs 
and incorporating the best practices of the Linking Open Data initiative [16]. 

To the best of our knowledge, we believe that our rules and their usage are 
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consistent with the design goals of the DL Safe SWRL Rules task force4.  
Decidability is a critical aspect of our architecture and is therefore focused on 
features such as the use of Horn rules with unary and binary predicates.  We will 
continue to monitor the task force’s progress and incorporate necessary 
modifications.  The advantages of SWRL built-ins have also proven essential.  It 
is our hope that they are addressed in the DL Safe task force and will be 
comparable to the built-ins provided by SWRL. 
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