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Abstract. Current systems engineering languages, standards, and tools
are restricted in certain aspects of their expressiveness and do not pro-
vide formal semantics. While there is a long history of attempts to use
formal methods for engineering, up to now the formalisms have generally
proved too hard to use, and the tools do not scale for large complex sys-
tem development. A semantic integration framework that can integrate
representations from multiple system engineering languages and tools
could, however, have a significant impact on cost, schedule, and product
integrity. We are exploring the potential for OWL 1.1 to provide such
a semantic integration for the air system engineering domain. To deter-
mine the potential to use OWL 1.1 in this setting we are developing
a prototypical air system ontology in OWL 1.1 and evaluating the use
of the language for developing and reasoning about systems engineering
concepts such as requirements and product structure.

1 Introduction

Current systems engineering languages, standards,1 and tools are restricted in
certain aspects of their expressiveness and do not provide formal semantics.
While there is a long history of attempts to use formal methods for engineer-
ing, up to now the formalisms have generally proved too hard to use, and the
tools do not scale for large complex system development. A semantic integration
framework that can integrate representations from multiple system engineering
languages and tools could, however, have a significant impact on cost, schedule,
and product integrity. We are exploring the potential for OWL 1.12 to provide
such a semantic integration for the air system engineering domain [1]. The idea
is that a product development ontology can capture the meaning of concepts
in a form independent of interpretation by subject matter experts, something
that is not possible with current engineering languages and tools. Automated

1 See, e.g., http://www.sysml.org/
2 See http://www.w3.org/2007/OWL/
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reasoning could then be used to check design properties such as consistency and
conformance with specification, and the ontology could also be used to integrate
information from the large number of systems used in the design of an air vehicle.

To determine the potential to use OWL 1.1 in this setting we are developing
a prototypical air system ontology in OWL 1.1 and evaluating the use of the
language for developing and reasoning about systems engineering concepts such
as requirements and product structure. The ontology has been developed within
Protégé 4.0 using the Fact++ reasoner [2]. We have verified that a simplified
air vehicle design specification satisfies requirements verification criteria under
specific assumptions. Preliminary analysis indicates that OWL 1.1 has the po-
tential to have a significant impact on systems engineering tools and processes.
We have, however, also discovered some shortcomings of OWL 1.1, at least with
respect to this application.

2 The use of knowledge representation and reasoning in
product development

Systems engineering is a sufficiently complex domain that its vocabulary needs
formal definition. The meaning of concepts in engineering depends on consensus
of interpretation by domain experts. Sufficient precision regarding the meaning of
concepts is notoriously difficult to obtain. The multiplicity of languages and data
formats makes information integration a difficult and labour intensive task. This
is a common problem associated with other domains such as life sciences. Large
and complex ontologies are being developed and maintained in these domains.
Explicit representation of concepts in an ontology and reasoning based on the
ontology has been shown to provide essential support for the development of
ontologies and for their application in semantic integration. We believe that the
potential for reasoning within systems engineering includes, but goes beyond
information integration.

Many systems engineering tasks directly involve reasoning. For example, re-
quirements for a product to be developed need to be checked for consistency: it is
not unheard of that requirements developed by multiple individuals and groups
are inconsistent. Further, at any given stage of a complex concurrent develop-
ment process, design artifacts are being produced using other design artifacts as
input. Even with rigid controls, immature or superseded inputs may be used to
produce some new design artifact, leading to inconsistency. Design artifacts can
easily be inconsistent with each other at a given time. Automated consistency
checking is therefore of great importance.

The real test of reasoning in product development comes, however, when a
product which implements a design has been produced. The challenge is then to
verify that the product satisfies its requirements. Of course, this verification task
involves going outside any reasoning framework to perform analysis and make
measurements. However, reasoning is still needed to check that the accumulated
test results support the conclusion that the product which was tested actually
satisfies the requirements. Since these requirements are pervasive in engineering,
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the potential payoff for using ontologies and reasoning in terms of saved cost
and schedule and elimination of rework is very high.

When decisions which are based on complex technical information have sig-
nificant financial and legal implications, the correctness of conclusions and credi-
bility of argument has high significance. The accepted norm for correct reasoning
is to use a well understood logical framework consisting of a language and an
inference procedure, for example First Order Logic and resolution. From state-
ments in the language which are assumed to be true (axioms), conclusions are
derived using the inference procedure. The application of logic is often referred to
as formal methods [3]. The potential for use of logic in engineering goes beyond
providing a foundation for correctness of argument. The concept of proof in logic
is, again, the norm for representing the evidence for conclusions. A proof pro-
vides an explanation for a logically derived consequence, which could be highly
relevant in engineering. For example, argument may be required to demonstrate
that satisfying a specific collection of test conditions is logically equivalent to
satisfying a requirement.

For at least 30 years [4] formal methods have been put forward as the best
means to develop safe, reliable products that perform as expected. The reality
is that formal methods are in regular use in only a limited number of specialized
areas such as safety of flight control software [5] and hardware design [6]. One
reason for this state of affairs is that tools with wide usage must satisfy a range of
basic requirements for consideration in large scale complex product engineering
efforts. Other reasons have to do with finding a good logical framework and
engineering the framework to produce usable tools. A good logical framework
balances questions of expressiveness with the complexity of reasoning procedures.

3 Languages and tools for product development

General requirements apply to all computer based languages and tools used
in large scale product development engineering. Application languages must be
somewhat intuitive to individuals with domain expertise, must be standards-
based and must have good tool support. Tools must sufficiently simple to be used
by systems engineering practitioners with only basic training, and must scale for
large efforts. They must also have well defined interfaces for data exchange with
other tools. Most commercial tools used for system engineering satisfy these
requirements, or they do not receive much use.

Current systems engineering languages and tools, however, lack a formal
semantics. This lack impedes the ability to integrate information from multiple
languages and tools. Further, there are no logical mechanisms to check if classes
are consistent, if one class is contained in another class, or if an individual is an
instance of a class.

3.1 Why use OWL and why OWL 1.1?

Advances in the development of knowledge representation languages and method-
ologies for engineering knowledge bases, the provision of these languages with
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a formal semantics, the development of efficient reasoning algorithms, and the
adoption of OWL as a World Wide Web Consortium language standard, all con-
tribute the potential to realize the promise of formal methods within engineering.
In particular:

– OWL represents the culmination of more than 20 years of research aimed at
developing formal languages for conceptual modeling. As a result of this re-
search, the formal properties of the language are extremely well understood.

– OWL is a logical system with a formal semantics, and it is a fragment of
First Order Logics. In particular, the language has been designed so as to
be decidable (arbitrary queries can be answered) and to allow for sound
and complete implementations (implementations where positive and negative
answers can be given equal weight).

– OWL is a W3C standard language for Web ontologies, and has rapidly be-
come a de facto standard for ontology engineering in fields as diverse as
biology [7], medicine [8], geography [9], astronomy [10], agriculture [11], and
defence [12].

– The standardization of OWL, along with the number and size of OWL
applications, has fuelled the development of OWL tools and infrastruc-
ture, both academic and commercial, including editors such as Protégé 4.0
(http://protege.stanford.edu/) and Swoop [13], reasoners such as Pellet [14],
FaCT++ [2], RACER [15], CEL [16], and KAON2 [17], APIs such as the
OWL API [18] and foundational ontologies such as DOLCE [19]. These are
now sufficiently robust and scalable to be used in large-scale applications.

– We can draw on extensive experience of using OWL in the above-mentioned
applications, and in particular on experience using OWL and other Descrip-
tion Logic based ontology languages to model complex physically structured
systems such as human anatomy, automobiles (Ford and Daimler Chrysler
[20]) and even aircraft systems (Boeing [21]).

The use of OWL 1.1 is not intended to replace system engineering languages
such as UML and SysM, or the use of 3D geometry languages, but to aug-
ment these languages and serve as an integration framework. A Knowledge Base
(equivalently an OWL 1.1 ontology) can be used to represent product design and
requirements specifications as well as facts regarding product implementation,
testing, verification, and deployment.

3.2 Why use a foundational ontology and why use DOLCE?

In the development of our air system ontology a lot of effort has been saved
through the use of a foundational ontology. The entities of interest in the sys-
tem engineering domain are very diverse. Air system engineering entities include
physical objects and their qualities, as well as events, plans, descriptions, and
test results. An engineering ontology requires the representation of structural
aspects and properties of products. In addition, the ontology will need to rep-
resent artifacts such as specifications for products and tests to be performed
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on products. The usefulness of a foundational ontology is also documented in
application areas such as life sciences [7, 8].

In our case we are making extensive use of the DOLCE Ultra Lite (DUL)
foundational ontology. Our air system ontology is constructed by specializing
classes and roles in DUL. The structure of and constraints on DUL classes and
roles have been carefully worked out, and DUL can be readily loaded in Protégé
4.0. For example, we use and build on partOf and hasPart properties for specify-
ing product structure. We use Quality to represent attributes and characteristics
of product components. There are some specific concepts in other foundational
ontologies that would be worth adopting and we plan to make use of these as
we proceed. DOLCE entities not only include objects, both physical and so-
cial, events, but also descriptions of objects and events. These classes such as
Description and Situation are useful to classify descriptions of test setups and
occurrences of test processes with their observed/measured results.

4 Benefits and Shortcomings of OWL 1.1

Using OWL and DUL classes works well for representation of product structure
and (static) properties. Class constructors allowed us to define classes of physical
objects with structural properties (using partOf relations) and specify properties
(using Quality with measured or computed values in Region).

For requirements that consist of structural properties and characteristics,
we have been able to define classes and verify that the (requirements) class is
consistent. We have been able to define classes characterized by generic instances
(e.g., a design class) and construct a generic instance (in the ABox). We can then
go outside the logic and measure, analyze and simulate in order to conclude (and
then assert in the ABox) some additional properties of the instance. Finally, we
can use the reasoner to check if the extended generic instance is consistent with
the requirements and/or provably satisfies them.

Some of the new features of OWL 1.1 were useful or even crucial in our
application. In representing the physical structure of an air vehicle, for example,
we encounter many of the same problems that arise in medicine when describing
anatomy. In this part of the model various kinds of part-whole properties play
an important role, and the complex role inclusions of OWL 1.1 are of crucial
importance in allowing us to transfer properties and constraints from parts to
wholes and vice versa.

The extended support for datatypes in OWL 1.1 is critical in engineering ap-
plications. Numerous design constraints relate to concrete values such as weight,
speed, temperature, distance etc. Some also relate to more complex datatypes,
for example datatypes representing shapes or complex performance measures.
N-ary datatype predicates might be useful for comparing values, but more pow-
erful mechanisms, such as aggregation, would be needed in general. For example,
the weight of a physical object can be calculated in multiple ways. Weight can
be estimated, measured (using a scale) or calculated from the sum of the weights
of components. A rule stating that the weight of a product is the sum of the
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weights of its components is not easily expressed in OWL 1.1, although DL-safe
rules might be used if their restricted applicability (i.e., to ABox individuals)
proved to be acceptable [22]. Verification that a product satisfies some weight
requirement, using the weight rule, must therefore be done externally to OWL.

When huge amounts of money, and even lives, may depend on the behaviour
of an information system, tracking the provenance of both explicit and implicit
information is of great importance. The improved annotations capabilities of
OWL 1.1 are therefore of great importance—one needs to know where informa-
tion came from and when. Explanations and/or proofs that show how implicit
information has been derived will also be important, perhaps even essential.

Another observation is that representing dynamic properties of products,
such as the change in fuel level during flight operation of an air vehicle, presents
problems for OWL 1.1. Dynamic properties are properties that change with
respect to time or some operational context. DUL provides concepts needed to
represent behavior, but a more expressive language (such as FOL) seems to be
required in order to fully model behavioral requirements and test results relating
to behaviors.

With respect to OWL tools, improved interfaces to other computation sys-
tems would be very useful. For example, it would be very useful to be able to
interface to an external database containing a parts list. On the one hand, it
may be useful for the DB system to query the semantic framework about the
configuration description to determine properties of the parts in the DB. On the
other hand, where a database contains a parts list corresponding to a potential
air vehicle configuration one would like the OWL tool to create in the ontology
a product instance corresponding to the configuration; the reasoner could then
be used to verify that the instance is consistent with and/or provably satisfies
the design requirements.

5 Achievements and lessons learned

OWL 1.1 is not a replacement for Systems Engineering languages (e.g., SysML)
and tools, but OWL 1.1 is a good candidate for defining Classes and relationships
that can be used to describe products, and for semantic integration. The formal
semantics provides a precise notion of meaning. Reasoning can be used to aid
testing and verification. The serialisation of OWL 1.1 using XML schemas may
facilitate the exchange of data between systems, but issues need to be resolve
regarding interface to external systems. Given that a DL based system is unlikely
to meet all the requirements in this large and complex domain, an architecture
is needed for integration the of DL based systems with not-DL logics and other
computational systems, including, but not limited to, database systems.

In spite of the difficulties mentioned in Section 4, we have been successful
in using FaCT++ for simple reasoning experiments to show consistency or in-
consistency of product descriptions. This is very promising as current systems
engineering tools are not able to perform this kind of check. We are still ex-
perimenting with how best to divide the modeling and reasoning tasks between
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the TBox and the ABox: the former allows for gradual refinement and varying
granularity, but the latter allows for the more precise description of complex
relational structures. Recent work on representing structured objects in OWL
might be of great interest in this respect [23].

We are also investigating the use of the ontology to optimise testing. A typ-
ical issue for product verification is how to use the requirements decomposition
tree constructed as part of the design process to determine test conditions with
expected results that are used as input to the test planning process. Each test
description describes a collection of input and output parameters to some op-
erational process such as detecting and identifying objects within some area of
interest. For example, a test may be to measure the accuracy of an air vehicle
radar to detect and identify objects on the ground. The input parameters to the
detection and identifying process describe aspects of the air vehicle operating en-
vironment. A specific test supplies values for the input parameters and obtains
values for the output parameters. Representing features of tests could possibly
be used to try to minimize redundancy by recognizing when, say, a conjunction
of tests subsumes some other test.

Our ontology development effort is still in its beginning stages. However, we
can identify areas whether further language and tool development would be of
great use.

Ontology Management Development of ontologies for large complex systems
involves many subdomains and disciplines. Each domain or discipline may have
its own ontology. The overall process of product development will at any given
time be using a unification of some of these ontologies. Changes will inevitably
need to be made to individual ontologies and so mechanisms are needed to
manage multiple ontologies by including or excluding them and tracking which
ontologies were in force when specific conclusions were reached. Recent work on
modularity will clearly be of great interest in this regard [24].

Explanation and Annotation As mentioned above, improved annotations
are important as we go forward—one needs to know where information came
from and when. Also explanations and/or proofs will be important in order to
understand the provenance of implicit information. With the current methods
being used in OWL theorem provers, it might seem unlikely that a machine
constructed proof would be understandable. However, there is research which
correlates model theoretic proof results with natural deduction results. This
correspondence could perhaps be used to construct proofs to be used for evidence
purposes.

Need for modularization Another potentially relevant strand of research
for OWL application is modularization. It would be useful to check if different
components and features that are to be tested are completely independent of
each other and so can be tested completely independently. If you can show that
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tests A and B are independent, then costs can be saved by reducing the number
of different combinations of tests that need to be carried out. Elimination of test
costs is of great concern in product development.
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