
Finding Plagiarism by Evaluating Document Similarities

Jan Kasprzak, Michal Brandejs, and Miroslav Křipač
Faculty of Informatics, Masaryk University

Botanická 68a, 602 00 Brno, Czech Republic
kas@fi.muni.cz, brandejs@fi.muni.cz, kripac@fi.muni.cz

Abstract: In this paper we discuss the approach we have used for finding pla-
giarized passages of text during the PAN’09 plagiarism detection competition. We
describe the existing anti-plagiarism system we use in the Czech National Archive
of Graduate Theses. We then discuss the modifications to this system which have
been necessary in order to fit the results to the competition rules. We also present
a performance data of the described system, and the possible improvement for our
production systems, which result from the code written for the PAN’09 competition.
Keywords: Plagiarism, Similar Documents, Document Overlap, Distributed Com-
puting, Parallelism

1 Background

At Masaryk University, the study adminis-
tration is being supported by the Masaryk
University Information System (IS MU,
1999–2009). The integral part of this system
is the distributed document storage, used
by various subsystems, including e-learning
agendas, archive of graduate theses, etc.
The document storage is a feature-rich sub-
system with some properties similar to the
common file systems (hierarchical directory-
based storage, object as a stream of bytes,
etc.).

Some features are quite unique to this doc-
ument storage: the storage supports multi-
ple versions of the same document (e. g.DOC,
PDF, and plain text) as a single entity, au-
tomatic conversion between the file formats
(including OCR of the scanned PDF files,
generating thumbnail images for the picture
files such as JPEG, etc.), distributed replica-
tion with strong checksums, wide set of access
rights, etc.

Since August 2006, the storage subsys-
tem supports also finding similarities between
documents, in order to assist with discover-
ing plagiarism. The first version of the sys-
tem has been a prototype coded in Perl with
the DBI interface, using Oracle database as
a metadata back-end.

In early 2008, the system has been re-
placed by the custom distributed solution,

outlined in our earlier work (Kasprzak et al.,
2008), distributed aspects of which we further
discuss in (Kasprzak, Brandejs, and Bran-
dejsová, 2009). The same underlying sys-
tem is currently in use also in the Czech
National Archive of Graduate Theses (The-
ses.CZ, 2008–2009). This distributed system
has been used as a basis for solving the ex-
ternal plagiarism task in the PAN’09 compe-
tition (PAN’09, 2009).

2 General Approach

There are several possible approaches for
finding similarities in a given base of docu-
ments, some of them are discussed and com-
pared in (Monostori et al., 2002). The IS MU
and Theses.CZ anti-plagiarism system cur-
rently uses the approach similar to the one
described by (Finkel et al., 2002).

2.1 Tokenization

We use words as the base units which we han-
dle. In order to overtake the need of stem-
ming (which would bring the dependence on
the particular language to the system) and
also to handle some means of obfuscation of
the Czech language we translate the words
to the US-ASCII by stripping off diacritics1,
and ignoring short words, which in the Czech
language are mostly prepositions. We do not
use stop words of any kind.

1For example: tučňák → tucnak

Stein, Rosso, Stamatatos, Koppel, Agirre (Eds.): PAN'09, pp. 24-28, 2009.

2.2 Creating the Index

The tokens (words) are then joined into
chunks. We use overlapping sequences of sev-
eral words, and we have generally had bet-
ter results with shorter chunks of about 4 to
6 words than the larger chunks as used by
(Broder, 1997) or (Finkel et al., 2002). The
chunks are then hashed by a hash function
(for our purposes, the value range of 28 to
32 bits seems to be sufficient, even though
the probability of hash function collisions is
higher with smaller number of bits). There
are no special requirements to the hash func-
tion itself—we have used the hinghest n bits
of the MD5 hash (Rivest, R., 1992).

The mapping of document ID to the se-
quence (or a set) of hash values is then con-
structed, and an inverted index mapping the
hash value to the sequence of document IDs
is computed from it.

2.3 Computing the Similarities

This inverted index is then used for finding
similarities in a given document base. For
now, the system computes only a single nu-
meric value for each pair of documents in a
given set. This value represents the number
of chunks which these two documents have in
common (not taking the possible hash func-
tion collisions into the account).

The most common use case is to discover
which documents are similar to the given doc-
ument (e. g. a newly imported thesis). We
postpone the computation of the actual sim-
ilar passages of the text to the time when the
user wants to see them.

2.4 Hardware Configuration

The IS MU and Theses.CZ systems use a
common document base of about 1,300,000
documents. The anti-plagiarism software
runs on a cluster of 45 non-dedicated PCs
with various dual-core CPUs (AMD and
Intel), and a dedicated server with Ora-
cle database for storing the computed re-
sults. Recomputing the similarities across
the whole document base takes about three
hours, most of which is spent by importing
the results to the database. The incremen-
tal run (after adding some more documents
to the system) then takes 12 to 25 minutes
depending on the overall system load (the
servers in the cluster have other tasks to do
besides computing the similarities).

3 The PAN’09 Competition

The requirements for the PAN’09 competi-
tion were quite different to what we currently
do in IS MU and Theses.CZ systems. The
main difference was that we should not only
find the similarity between the documents,
but also to show exactly where the similari-
ties are. Another important rule to consider
was the granularity measure, which had been
very strong, especially in the earlier version
of the rules.

The first approach we wanted to try was
simply to import both the suspicious docu-
ments and the source documents to the IS
MU system, and let it find the similarities.
This would have been a very straightforward
solution, requiring no programming except
post-processing the results on our side. Fur-
ther examination of the data led us to the
opinion that we can do better by modifying
our software to match the requirements of the
competition.

We have taken the core modules of our
system and modified them to run on a single
multi-core computer. Both the source cor-
pus and the set of the suspicious documents
were quite small (relative to what we have
to handle in our production systems), so the
relevant data could fit to the RAM of a single
mid-range server.

3.1 Rich Tokenization

We have modified the tokenization process to
get not only a list of words of a given docu-
ment but also for each word to include the po-
sition of the word in the document expressed
as two distinct numbers: firstly as the offset
of the first character in the word from the
beginning of the document, and secondly the
count of the (non-ignored) words discovered
so far in this document.

Using this additional data, we can con-
struct the document chunks with the extra
attributes: the offset of the first and last
character of the chunk2, and the sequence
number of that chunk3.

The tokenization process has been further
modified to include all the Unicode alphanu-
meric characters as word characters. In our
production systems, we do not count digits

2The offset of the last character in a chunk is com-
puted from the offset of the last word of that chunk
and the length of that word.

3The sequence number of that chunk is equal to
the sequence number of the first word of that chunk.

Finding Plagiarism by Evaluating Document Similarities 25

as word characters, because a common case
of plagiarism of student seminar works e. g.
in biology is to take the work of the other
student, and simply change the numbers in
measurements.

3.2 Computing the Inverted Index

The computation of the inverted index
(i. e. mapping the chunk hash value to the list
of document IDs) has been modified to con-
tain the additional data (the chunk sequence
number, and range of characters which the
chunk covers). In order to allow the case
when a single plagiarized passage has more
than one possible source passage in the same
source document, we have also allowed the
repeated occurences of the same chunk hash
value within the same source document.

3.3 Finding the Similar Document
Pairs

Using this enhanced inverted index, we can
now tokenize and evaluate the suspicious doc-
uments in order to find similarities. For
each suspicious document, we split it to the
chunks, and look up their hash values in the
index. This gives us the list of the docu-
ments, and positions of the chunks in them4.
We can now use a cut-off value, and further
handle the document pairs with at least this
value of common chunks.

For the competition itself, we have used
the cut-off value of 20 chunks, which together
with 5-word chunks gives us a minimum of 24
common words that we consider a similarity
between documents.

4 Discovering Similar Passages

In order to fulfill the requirements of the com-
petition, we have not only to compute the
similarity of the document pairs, but also to
show exactly which passages are similar. The
computation against an inverted index gives
for each suspicious document the list of pos-
sible source documents, and for each source
document a list of common chunks. With
each common chunk we have its sequence
number and characters range from the sus-
picious document, and (possibly more than
one) sequence number and character range
from the source document.

4Remember that a chunk from the suspicious doc-
ument can be identical to several chunks in one source
document.

Using this data, we can further narrow the
scope, and keep only the larger similar pas-
sages. How to compute the similar continu-
ous passages from the data is not clear. Our
approach is to consider only “dense enough”
intervals of the suspicious document, which
also map to the “dense enough” intervals of
the source document.

Since the computation has to be done both
from the point of view of the suspicious doc-
ument and the source document, for the al-
gorithm it does not matter which document
we are currently looking at. We will further
use the terms D1 and D2.

We have considered only intervals of
chunks of D1 matching the following criteria:

1. The first and the last chunk of this in-
terval are present in the D2.

2. The interval should have at least 20 (pos-
sibly overlapping) chunks, which are also
present in D2.

3. Between each two adjacent chunks from
the interval which are also present in D2,
there should be at most 49 chunks which
have no matching chunk in D2.

This interval we will hereby call a valid
interval.

For example, when the suspicious docu-
ment we have chunks numbered

50, 100, 150, ..., 950, 1000

which are all present in a particular source
document, we consider the interval 50–1000
to be a valid interval.

We further process only those valid inter-
vals, which also map to the valid interval in
some source document. We consider part
of the suspicious document covered by the
chunks from this valid interval to be a plagia-
rized passage. The plagiarized passage can
be computed using the algorithm, described
in the in the next subsection:

4.1 Algorithm: Valid Intervals

The input of the algorithm is a list of pairs
(chunks ID in D1, matching chunk ID in D2).
If one chunk in D1 maps to more than one
chunk in D2, the list has more than one entry
for this chunk.

1. Set the local variable depth to 0.

26 Jan Kasprzak, Michal Brandejs and Miroslav Křipač

2. Sort the list of pairs by the chunk ID in
D1.

3. Split the list to the largest possible valid
intervals in D1, ignore the chunk ID
pairs which are not present in any valid
interval.

4. If there is only one valid interval covering
the whole input list, increase the depth
variable by 1.

5. If the depth variable is equal to 2, return
the whole range of chunk IDs as the re-
sulting plagiarized passage.

6. For each valid interval, do the following:

(a) Create a new list of chunk ID pairs
as (chunk ID in D2, chunk ID in
D1), where the chunk ID in D1 is
from the current valid interval.

(b) Set the variable depth to 1.

(c) Rerun recursively the algorithm,
starting from the step 2.

4.2 Postprocessing

During the postprocessing phase, we remove
possible overlapping passages for each suspi-
cious document, keeping only the largest pas-
sage from the set of overlapping ones. This is
to meet the nature of the competition data.
In the real system, we would like to keep all
the possible similarities, even the overlapping
ones.

5 Practical Results

5.1 Implementation

The existing implementation of IS MU and
Theses.CZ anti-plagiarism system uses a mix-
ture of C and Perl code (C for performance-
critical code like generating an inverted in-
dex of chunks or searching this index, Perl for
feature-rich parts including the communica-
tion with the SQL database and generating
chunks from the text files). It is portable to
any 64-bit POSIX system. For the PAN’09
competition, it had to be only slightly modi-
fied, and a new valid interval evaluation and
postprocessing system has been written. We
have worked on the PAN’09 competition for
four days, and additional half a day after
the deadline has been extended. We did not
do any fine-tuning against the evaluation for-
mula, based on the development corpus.

5.2 Performance

The computation for the PAN’09 competi-
tion has been run on a single mid-range
server: dual Xeon E5472 (3.0 GHz, total of 8
cores), 64 GB RAM, and a RAID-10 array of
eight 15k RPM disks. The system runs Fe-
dora Linux with the Ext4 filesystem. Most
parts of the computation have been paral-
lelized on a document-by-document or a doc-
ument pair-by-pair basis.

Generating the inverted index from the
corpus of 7124 source documents took 34
minutes. Finding the matching chunk pairs
against the 7124 suspicious documents took
about 38 minutes. Computing the maximum
valid intervals from this data, postprocessing
and generating the XML output files took 2
minutes. Because of the relatively big RAM
available in the server, the computation was
mostly CPU-bound.

5.3 The Benefit of Valid Intervals

Computing the valid intervals instead of just
the similarity between the documents can
surprisingly enough be a win not only from
the viewpoint of getting a more meaningful
data, but also from the performance stand-
point: In our existing systems, most of the
time during the computation is spent by in-
serting the similarity data to the database.
Using the valid intervals can greatly reduce
false-positives, and thus the number of rows
(document pairs) which we need to insert to
the database:

In the development corpus we had about
576,000 document pairs, which had at least
20 chunks in common. Actually looking at
those chunks and keeping only those which
form a valid interval both in the suspicious
document and in the source document re-
duced this number to about 18,000 document
pairs with 47,000 similar passages.

As it can be seen from the previous sub-
section, the cost of this step is relatively in-
significant when compared to the other steps,
even though we have implemented this step
purely in Perl.

6 Conclusion

We have implemented the system which can
find similar documents relatively fast, given
a multi-core machine. The same approach
can even be used on a cluster of computers,
which can provide a significant benefit of a
distributed memory for large document sets.

Finding Plagiarism by Evaluating Document Similarities 27

This system can detect even moderately
obfuscated similar passages in a given docu-
ment base. In the development corpus, we
have found a big number of similar passages,
which have not been annotated in the devel-
opment data as plagiarized5.

In the competition itself, we had the
highest recall ratio6 amongst all the teams
(69.67 %, the second highest was 65.85 %).
Given our relatively poor precision ratio (we
were 7th in this parameter with the precision
of 55.73 %, the highest precision reached was
74.73 %), we may even have found the biggest
number of all the similar passages, including
those not generated by the machine plagia-
rist.

Our system currently cannot handle trans-
lations (although the work is in progress to
handle a plagiarism between Czech and Slo-
vak languages, which are quite similar in
structure and vocabulary). We also cannot
handle highly obfuscated text, which to us
non-native English speakers does not even
look similar to the source text7.

We have seen that evaluating the particu-
lar similar passages instead of just the over-
all document similarity can be a significant
improvement, so this result from the compe-
tition is an enhancement to incorporate back
to our production systems.

Acknowledgements

We would like to thank the organizers of
the PAN’09 competition. Taking part in the
competition has been a very enlightening ex-
perience for us.

References

Broder, A.Z. 1997. On the resemblance and
containment of documents. In Compres-
sion and Complexity of Sequences 1997.
Proceedings, pages 21–29, Jun.

Finkel, Raphael A., Arkady Zaslavsky,
Krisztián Monostori, and Heinz Schmidt.
5As an example, the suspicious document 02010,

characters 198,025 to 200,472 correspond to the
source document 06059, characters 429,098 to 431,429
almost exactly. The development corpus can be
downloaded from the competition web site.

6Refer to the competition web site for the exact
description of the evaluation criteria, including the
terms recall and precision.

7An example from the development corpus is the
suspicious document 00002, characters 618,098 to
618,798, which are annotated to be similar to the
source document 02400, characters 33,963 to 34,664.

2002. Signature extraction for over-
lap detection in documents. In ACSC
’02: Proceedings of the twenty-fifth Aus-
tralasian conference on Computer sci-
ence, pages 59–64, Darlinghurst, Aus-
tralia. Australian Computer Society, Inc.

IS MU. 1999–2009. Masaryk University In-
formation System. http://is.muni.cz/.

Kasprzak, J., M. Brandejs, and J. Brande-
jsová. 2009. Distributed aspects of the
system for discovering similar documents.
In ITA 09: Proceedings of the Third In-
ternational Conference on Internet Tech-
nology and Applications.

Kasprzak, J., M. Brandejs, M. Křipač, and
P. Šmerk. 2008. Distributed system for
discovering similar documents. In ICEIS
2008: Proceedings of the Tenth Interna-
tional Conference on Enterprise Informa-
tion Systems, Vol. DISI – Databases and
Informations Systems Integration, pages
437–440. INSTICC (Institute for Systems
and Technologies of Information, Control
and Communication), Setúbal, Portugal.

Monostori, Krisztián, Raphael A. Finkel,
Arkady B. Zaslavsky, Gábor Hodász, and
Máté Pataki. 2002. Comparison of
overlap detection techniques. In ICCS
’02: Proceedings of the International Con-
ference on Computational Science-Part
I, pages 51–60, London, UK. Springer-
Verlag.

PAN’09. 2009. 1st International Com-
petition on Plagiarism Detection.
http://www.webis.de/pan-09.

Rivest, R. 1992. RFC1321: The
MD5 Message-Digest Algorithm.
http://www.rfc-editor.org/rfc/
/rfc1321.txt.

Theses.CZ. 2008–2009. Czech na-
tional archive of graduate theses.
http://theses.cz/.

28 Jan Kasprzak, Michal Brandejs and Miroslav Křipač

