

results show that even in the presence of disturbance attacks, the plants remain
stable in tracking the reference velocity. This demonstrates the advantage of the
passivity approach we use in designing networked control systems which guar-
antees the stability of the NCS in the presence of uncertainties due to network
effects.

Fig. 9. Velocity response and time delays with disturbance attack (Data rate=0.1s)

Table 2. Simulation Parameters Summary.

Sample Periods

0.01s 0.05s 0.1s

Plant1,M 10 50 100

Plant2,M 10 50 100

Disturbance Ts = 0.01 Packetsize = 110, 000bits

7 Conclusion and Future Work

Our model-based approach simplifies the process of designing passive networked
control systems. We presented PaNeCS, a prototype modeling language for that
purpose. We have presented an analysis tool that is used to test system com-
ponents for passivity. We have also described model interpreters that generate
code for simulation in MATLAB/Simulink using the TrueTime platform model-
ing toolbox. A case study involving the control of multiple discrete plants over
a wireless network was used to demonstrate the details of models generated us-
ing the modeling language as well as the resulting simulation of the generated
networked control system. The results showed that a networked control system
could be designed using our approach which is robust and insensitive to un-
certainties due to a few particular network effects. Our future work focuses on
two major directions: (i) extending the language to include nonlinear and more
complex systems,(ii) generating executables for deployment on actual systems.

References

1. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (Jan. 2003)

2. Porter, J., Karsai, G., Volgyesi, P., Nine, H., Humke, P., Hemingway, G., Thi-
bodeaux, R., Sztipanovits, J.: Towards model-based integration of tools and tech-
niques for embedded control system design, verification, and implementation. In:
Workshops and Symposia at MoDELS 2008, Springer LNCS 5421, Toulouse, France

3. AS-2 Embedded Computing Systems Committee: Architecture analysis and de-
sign language (aadl). Technical Report AS5506, Society of Automotive Engineers
(November 2004)

4. Hudak J. and Feiler P.: Developing aadl models for control systems: A practitioner’s
guide. Technical Report CMU/SEI-2007-TR-014, CMU SEI (2007)

5. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Paserone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Computer 36(4) (April 2003)

6. Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital
control of multiple discrete passive plants over networks. Intl. Journal of Systems,
Control and Communications, Special Issue on Progress in Networked Control
Systems (2009)

7. The MathWorks, Inc.: Simulink/Stateflow Tools. http://www.mathworks.com
8. Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 Reference Man-

ual. Dept. of Automatic Control, Lund University, Sweden. (January 2007)
http://www.control.lth.se/truetime/.

9. Kottenstette, N., Antsaklis, P.J.: Stable digital control networks for continuous
passive plants subject to delays and data dropouts. In: Proceedings of the 46th
IEEE Conference on Decision and Control. (2007) 4433 – 4440

10. Fettweis, A.: Wave digital filters: theory and practice. Proceedings of the IEEE
74(2) (1986) 270 – 327

11. Secchi, C., Stramigioli, S., Fantuzzi, C.: Digital passive geometric telemanipulation.
In: IEEE Intl. Conference on Robotics and Automation. (2003) 3290 – 3295

12. Berestesky, P., Chopra, N., Spong, M.W.: Discrete time passivity in bilateral
teleoperation over the internet. In: IEEE International Conference on Robotics
and Automation. (2004) 4557 – 4564

13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., IV, C.T., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. Workshop on
Intelligent Signal Processing (May 2001)

14. Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming.
http://stanford.edu/ boyd/cvx (February 2009)

15. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs.
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer
Lecture Notes in Control and Information Sciences (2008) 95–110

16. Kottenstette, N., Antsaklis, P.J.: Time domain and frequency domain conditions
for passivity. Technical Report ISIS-2008-002, Institute for Software Integrated
Systems, Vanderbilt University and University of Notre Dame (November 2008)

17. Kottenstette, N., Koutsoukos, X., Hall, J., Antsaklis, P.J., Sztipanovits, J.:
Passivity-based design of wireless networked control systems for robustness to time-
varying delays. RTSS (December 2008) 15–24

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 41

Formal Design Models for Distributed Embedded

Control Systems

Christo Angelov, Krzysztof Sierszecki, Yu Guo

Mads Clausen Institute for Product Innovation

University of Southern Denmark

Alsion 2, 6400 Soenderborg, Denmark

{angelov, ksi, guo}@mci.sdu.dk

Abstract. The paper presents a formal specification of the software design

models used in COMDES-II – a component-based framework for distributed

control systems, featuring open architecture and predictable operation under

hard real-time constraints. In this framework, an application is modelled as a

network of distributed embedded actors that communicate transparently by

exchanging labeled messages (signals), independent of their allocation on

network nodes. Actors are configured from prefabricated executable

components such as modal function blocks controlled by a master state

machine, whereby actor structure is specified by a data flow model (function

block network). Accordingly, actor behaviour is specified by composite

functions representing signal transformations - from input to output signals, and

system behaviour - by actor-level composite functions representing the overall

sequence of computation – from system input to system output signals. Input

and output signals are exchanged with the controlled plant at precisely specified

time instants in accordance with the concept of Distributed Timed Multitasking,

resulting in the elimination of transaction I/O jitter. System operation is

ultimately described by a clocked synchronous model of computation featuring

communicating actors, atomic (zero-time) execution of input and output actions

and constant, non-zero execution time of system reactions.

Keywords: distributed control systems, component-based design of embedded

software, domain-specific frameworks, correct-by-construction systems

1 Introduction

Nowadays, embedded software development is still dominated by conventional design

methods and manual coding techniques. However, these are not able to cope with

continuously growing demands for high quality of service, reduced development and

operational costs, reduced time to market, as well as ever growing demands for

software safety and dependability. In particular, software safety is severely affected by

design errors that are typical for informal design methods, as well as implementation

errors that are introduced during the process of manual coding.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 43

This situation has stimulated the development of new software design methods

based on formal design models (frameworks) specifying system structure and

behaviour, which can be verified and validated before the generation of the program

code [1, 2]. Furthermore, model-driven development can be combined with

component-based design, whereby design models are implemented by means of

reusable and reconfigurable components. Thus, embedded applications can be

configured using repositories of prefabricated and validated components (rather than

programmed), whereby the configuration specification is stored in data structures

containing relevant information such as component parameters, input/output

connections, execution sequences, etc. Hence, it is possible to reconfigure applications

by updating data structures rather than reprogramming and reloading the entire

application.

The main problem that has to be addressed with this method is to develop a

comprehensive, yet intuitive and open framework for embedded systems. There are a

considerable number of frameworks developed in the traditional Software Engineering

domain that employ components with operational interfaces as well as various types of

port-based objects, e.g. actor frameworks [4-8]. However, it can be argued that the

architecture of the framework (i.e. models used to specify component functionality,

interfacing and interaction) should be derived from areas such as Control Engineering

and System Science, taking into account that modern embedded systems are

predominantly control and monitoring systems. This approach has been used for some

time with industrial control systems, whose software is built from component objects

(function blocks) that implement standard application functions and interact by

exchanging signals. Accordingly, function blocks are „softwired‟ into function block

networks that are mapped onto real-time control tasks, e.g. standards IEC 61131-3 [10]

and IEC 61499 [11].

Unfortunately, this is a relatively low-level approach, which is inadequate for

modern embedded applications. These vary from simple controllers to highly complex,

time-critical and distributed systems featuring autonomous subsystems with

concurrently running activities (tasks) that have to interact with one another within

various types of distributed transactions. The above standards do not provide modeling

techniques and component definitions at this level and do not define concurrency,

whereby the mapping of function block networks on real-time tasks, as well as task

scheduling and interaction are considered implementation details that are not a part of

the standard.

In order to overcome the above problems, the Control Engineering models must be

augmented with concepts and techniques developed in the Computer Science domain

(concurrency, scheduling, communication, state machines, etc.), as advocated by

leading experts in the area of Embedded Software Design, e.g. [2], [3]. The resulting

framework must support compositionality and scalability through a well-defined

hierarchy of reusable and reconfigurable components, including both actors and

function blocks. On the other hand, it has to adequately specify system behaviour for a

broad range of sequential, continuous and hybrid control applications.

These guidelines have been instrumental in developing the framework COMDES-II

[13]. This is a domain-specific framework for time-critical distributed control

applications, featuring a hierarchical component model as well as transparent signal-

based communication at all levels of specification. In COMDES-II, an embedded

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 44

application is composed from actors, which are configured from prefabricated function

blocks. This is an intuitive and simple model that is easy to use and understand by

application experts, i.e. control engineers.

An informal description of the above component models is given elsewhere [13].

This paper presents a formal specification of COMDES-II design models focusing on

two interrelated aspects, i.e. system structure and behaviour. It is organized as follows:

Section 2 presents a top-down specification of system structure in terms of data flow

models describing actors and actor interactions, as well the internal structure of actors,

which are composed of prefabricated function blocks. Section 3 presents a bottom-up

specification of system behaviour starting with function block behaviour, followed by

actor behaviour and finally - system behaviour. These are defined as composite

functions specifying signal transformations - from input to output signals - of function

blocks, actors and the system itself, respectively. Section 4 presents related research.

The concluding section summarizes the main features of the framework and their

implications for a software development process aimed at designing systems that are

correct by construction.

2 Specification of System Structure

2.1 COMDES-II Design Models - an Introduction

In COMDES-II, an embedded system is conceived as a composition of active objects

(actors) that communicate via labelled state messages (signals) encapsulating process

variables, such as speed, pressure, temperature, etc. Communication is transparent, i.e.

independent of the allocation of actors on network nodes. Accordingly, the system can

be modelled by an actor network specifying constituent actors and the signals

exchanged between them (see e.g. Fig. 1).

Command Entry

Sensor Controller ActuatorPulses Voltage

Sensor
Speed

Controller
Voltage

O
St

at
io

nM
od

e

O
St

at
io

nM
an

ua
lV

ol
ta

ge

O
St

at
io

nS
pe

ed

O
St

at
io

nP
ar

am
et

er
s

Visualization Unit

Fig. 1. COMDES-II actor network – an example: the DC Motor Control System

An actor is modelled as an integrated circuit consisting of a signal-processing block,

which is mapped onto a non-blocking (basic) task, as well as input and output signal

drivers that are used to exchange signals with other actors and the outside world (see

Fig. 2). Actor tasks are configured from function blocks (FBs) and are modelled by

function block networks. A function block is a reusable executable component that

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 45

may have multiple instances within a given configuration. There are four kinds of

function block: basic, composite, state machine and modal function blocks that can be

used to implement a broad range of sequential, continuous and hybrid applications.

OStationManualVoltage

Digital
control ControllerVoltage

OStationMode

OStationParameters

SensorSpeed

OStationSpeed

voltage1 1

PIDParam1 5

setRPM1 4

realRPM1 3

manual
voltage1 2

mode1 1

Output signal driversSignal processing block (task)Input signal drivers

Local signals

Fig. 2. COMDES-II Controller actor

Basic function blocks have simple stateless behaviour, which is specified by

functions defining signal transformations - from input signals to output signals (e.g. a

PID controller function block). Complex stateful behaviour is implemented with modal

function blocks (MFBs). These may be viewed as a generalization of stateless function

blocks: a MFB has a number of operational modes where each mode encapsulates one

or more FB instances used to execute a control action associated with that mode. A

modal function block receives indication of current mode from a supervisory state

machine (SSM), whereby it executes the corresponding control action, in the context of

a continuous or sequential control actor, e.g. manual/automatic control of DC motor

rotation speed (see Fig. 3). A function block network may be encapsulated into a

composite function block, which can be subsequently reused as an integral component.

MFB

SSM
1

1
mode

2

3

5

setRPM4

3

manual voltage2

mode1

realRPM

voltage

1

2
3

5
4

1 1

PIDParam

Fig. 3. The Digital control task composed of state machine and modal function blocks

Signal drivers are a special class of component - these are wrappers providing an

interface to the system operational environment by executing kernel- or hardware-

dependent functions. Specifically, signal drivers can invoke kernel primitives to

transparently broadcast and receive signals, independent of the allocation of sender and

receiver actors on network nodes [14].

A detailed informal description of the above component models is given elsewhere

[13]. The following discussion presents a formal specification of COMDES-II

components and component configurations. The latter takes into account the two levels

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 46

of the framework, i.e. system and actor levels, which are treated in a top-down fashion.

At the top level, the system is described as an actor network - a data flow model

involving system actors and the global signals exchanged between them, as well as a

definition of the signals in terms of identifiers and constituent signal variables. At the

next level, each system actor is described by a function block network, i.e. a data flow

model involving constituent function blocks and the local signals exchanged.

2.2 Distributed Control System Specification

A distributed embedded control system (ECS) is modelled as an actor network:

ECS = < A, S, C > , (1)

where A is the set of system actors, S is the set of system signals and C is the set of

channels used to exchange signals between actors. The set of system actors A consists

of environment actors Aenv modelling the plant, and control actors Acon operating in a

distributed system environment:

A = Aenv Acon . (2)

The set of system signals S can be represented as:

S = Sin Scom Sout , (3)

where Sin is the subset of physical input signals, Scom is the subset of signals (messages)

exchanged over the communication network, and Sout is the set of output physical

signals. Furthermore, si S: si = < Idi, Vi >, where Idi is a signal identifier and Vi is a

set of signal variables defined in terms of variable names and the corresponding data

types:

Vi = { < s
i
1: type

i
1>, < s

i
2: type

i
2>, … , <s

i
ki: type

i
ki > } , (4)

e.g. signal OStationParameters consisting of PID parameters, such as proportional,

integral and derivative gain values (see Fig. 2).

The communication relationship between actors is specified in terms of channels

that are defined by a source - signal - destination relation:

C A S 2
A

, (5)

e.g. one of the channels depicted in Fig. 1, which is specified by the tuple < Sensor,

Sensor_Speed, {Controller, Vizualization_Unit} > .

In an actual implementation, control actors will be allocated to network nodes, and

channels – to the network communication channel and physical I/O channels. The

subsequent discussion assumes a real-time network with predictable message latency,

such as CAN, which has been used for the experimental validation of COMDES-II.

A system control actor can be defined as:

acon = < X , Lin, NFB, Lout, Y > , (6)

where: X is the set of input signals received by the actor, X S, Lin is an input signal

latch, NFB is a signal-processing network of function blocks, Lout is an output signal

latch and Y is a set of output signals generated by the actor, Y S.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 47

The input latch is used to receive input signals and decompose them into input

signal variables constituting the set V, which may be viewed as local signals that are

processed by the function block network. The latter computes output variables

constituting the set W, which are used to compose the output signals generated by the

output latch (see e.g. Figs. 2 and 3).

The I/O latches are composed of communication objects called signal drivers,

denoted as D
in
 and D

out
. In particular:

Lin = { D
in

i }; D
in

i : s
in

i Vi , Vi V ,

Lout = { D
out

i }; D
out

i : Wi s
out

i , Wi W ,
(7)

where Vi and Wi denote the constituent variables of the corresponding I/O signals s
in

i

and s
out

i , respectively.

The I/O latches are activated at the release and deadline instants of the actor task.

This is a basic (non-blocking) task, whose internal structure is specified as a function

block network performing the transformation of input signal variables into output

signal variables: V W.

The FB network is modelled by an acyclic data flow graph (see e.g. Fig. 3), which

can be defined as follows:

NFB = < B, Z, Con > , (8)

where B is a set of function blocks (FBs), Z is a set of FB network variables and Con is

the set of FB network connections.

A function block performs the signal transformation X Y, where X is the set of

FB input variables, X Z, and Y is the set of FB output variables, Y Z.

Specifically, a function block can be defined as:

FB = < X, Y, P, F > , (9)

where X, Y and P denote input, output and persistent variables, respectively and F is a

set of functions.

Input variables X are generated by input drivers or other function blocks, X Z.

These are used together with persistent variables to compute output variables Y,

Y Z. Persistent variables P represent the internal state of the function block, which

is retained from one execution to the next, e.g. various types of controllers, filters, etc.

[10]. Simple function blocks may not have internal state, e.g. arithmetic function

blocks, comparators. Output variables are computed by functions f F that are

defined as y = f(x, p), where y Y, x X and p P.

The variables constituting the set Z may be viewed as local signals associated with

the function block network:

Z = V I W , (10)

where the input signal variables V are generated by input drivers and processed by

function blocks; internal variables I are generated and processed by function blocks;

output signal variables W are generated by function blocks and used by output drivers

to compose output signals (see e.g. Fig. 3).

FB network connections are used to wire function blocks with input and output

signal drivers, and with each other. The corresponding set can be specified as a union

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 48

of subsets denoting input, internal and output connections: Con = Conin Conint

Conout . These are defined as source - local signal - destination relations as follows:

Conin Lin V B ,

Conint B I B ,

Conout B W Lout ,

(11)

e.g. the connection represented by the tuple < SSM, mode, MFB > shown in Fig. 3.

3 Specification of System Behaviour

3.1 COMDES-II Model of Computation – an Introduction

System operation is specified in terms of distributed transactions executed in

accordance with a model of computation known as Distributed Timed Multitasking

[12, 13], which is presently supported by the distributed real-time kernel HARTEXμ

[14]. The distributed transaction involves a number of actors that execute transaction

phases by invoking sequences of function blocks within the corresponding actor tasks.

Actors interact with each other by exchanging labelled state messages (signals) using

dedicated communication objects (signal drivers) that provide for transparent one-to-

many communication between the actors involved.

Distributed Timed Multitasking (DTM) combines the concepts of Timed

Multitasking [5] and transparent signal-based communication. With this model, it is

assumed that signal drivers are short pieces of code that are executed atomically in

logically zero time at precisely specified time instants, which is typical for control

applications. Specifically, input signal drivers are executed when the actor task is

released, and output drivers - when the task deadline arrives or when the task comes to

an end, if it has no deadline (see Fig. 4). Consequently, task I/O jitter is effectively

eliminated as long as the task comes to an end before its deadline.

Fig. 4. Actor execution under Distributed Timed Multitasking

Jitter-free operation can be extended to distributed systems, e.g. a phased-aligned

transaction involving the actors Sensor (S), Controller (C) and Actuator (A) from

Fig. 1, which are triggered by a periodic timing event, such as a synchronization (sync)

message denoting the initial instant of the transaction period (T), with deadline D ≤ T

Actor task release event

Input drivers

Input signals

task

preemption
Output drivers

Output signals

jitter

Deadline

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 49

(see Fig. 5). In this case, input and output signals are generated at transaction start and

deadline instants, resulting in the elimination of transaction I/O jitter.

ti
k to

k to
k+1ti

k+1

I/O

actuator

c → a

controller

s → c

sensor

OStationSync

deadline event

message arrival event

T

D (D ≤ T)

Fig. 5. Jitter-free execution of distributed transactions

The following discussion presents a formal specification of system operation, taking

into account the adopted model of computation and the model of system structure

developed in the preceding section.

3.2 Specification of Function Block Behaviour

Function block operation is specified with simple and/or composite functions from FB

input variables x(k) to FB output variables y(k), x X, y Y, assuming periodic

execution of system actors and constituent function blocks, which are invoked at time

instants kT, k = 1, 2, …... , where T is the execution period of the host actor.

Basic function blocks implement standard signal-processing functions, such as:

y(k) = f(x(k)) - with simple FBs implementing various kinds of

mathematical operations, comparators, etc.

(12)

y(k) = f(x(k), p(k-1), p(k-2), … p(k-l)) - with FBs having persistent state, (13)

where the state is defined in terms of one or more persistent variables p(k-1), p(k-2),

…., p(k-l), retained from previous periods 1, 2 …, l and updated during each period (as

specified by the concrete FB algorithm, e.g. the discrete-time versions of filters,

various control algorithms, etc. [10]).

A composite function block (CFB) encapsulates a FB network whose behaviour is

described with one or more functions such as y(k) = f(x(k)) , where f is a composite

function specifying the transformation of signals from CFB inputs to CFB outputs,

which is defined in terms of the functions executed by the constituent function blocks.

Assuming that the CFB encapsulates a sequence of r function blocks, this function can

be represented as:

f = fr ◦ fr-1 ◦ ◦ f1 , or using another notation: y(k) = fr (fr-1 (... (f1(x(k)))...)) (14)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 50

In the general case, this function will have a different expression for each particular
configuration of the FB network, which has to be always modelled by an acyclic data
flow diagram. However, cycles are allowed at actor level but these are effectively
broken by one-period delays due to the adopted clocked synchronous model of
computation (see below).

The supervisory state machine (SSM) implements the reactive aspect of actor

behaviour, in separation from the transformational (signal processing) aspect, which

is delegated to the modal function block. The SSM generates two output signals - m

and u, meaning mode and mode-updated, which are specified by the corresponding

functions:

m(k) = f (m(k-1), e(k), pr(e(k)) - a mode transition function, and

u(k) - a Boolean function, which is defined as follows:

u(k) = true when m(k) ≠ m(k-1), i.e. when a mode transition has taken place,

u(k) = false when m(k) = m(k-1), and no transition has taken place.

(15)

In the above expression e(k) denotes a transition trigger, i.e. an event specified as a

Boolean expression involving binary input signals that are present at time kT, T is the

period of the host actor, and pr(k) is the priority of the event triggering the transition

from m(k-1) to m(k).

The modal function block (MFB) implements the signal processing aspect of actor

behaviour by executing constituent function blocks within the corresponding modes of

operation. These compute control signals yi, i = 1, 2, …, r, by invoking signal

transformation functions f1, f2, …., fr – from input to output signals. Subsets of these

functions are selected for execution, depending on the mode and mode-updated input

signals indicated by the state machine function block, such that:

yi Ap , yi(k) = fi(x(k)) , and yi Aq, q p, yi(k) = yi(k-1) - when m(k) = p

and u(k) = true;

yi , yi(k) = yi(k-1) - when u(k) = false ,

(16)

where Ap denotes the control action, i.e. the subset of control signals generated in mode

p, and fi is the function executed by the corresponding function block(s) in order to

generate the signal yi, yi Ap. For instance, the control signal voltage of Fig.3 will be

generated by a PID function block if mode has been updated to automatic.

The composition of supervisory state machine and modal function block operates as

a periodically executed event-driven state machine whose operational semantics and

implementation are presented in [15]. This state machine is invoked within a

periodically executing host actor but a state transition takes place only when the

corresponding transition trigger is present, much in the same way as event-driven state

machines triggered by external interrupts.

3.3 Specification of Actor Behaviour

Actors generate reactions to execution triggering events in the form:

e Ye , (17)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 51

where Ye Y, Ye being the set of output signals generated by the actor in response to

the execution trigger e. The latter may be a local timing event ↑(kT), a global timing

event ↑sync(kT) generated by a periodic synchronization message or an external event

↑xtrigger , where xtrigger is one of the actor input signals (e.g. a message arrival event)1.

Actor output signals y Y are specified by functions of input signals x X that are

latched by input drivers at the time of input tin. With periodic actors triggered by local

or global timing events tin = kT, k = 0, 1, 2, …

Output signals are composed of output signal variables generated by the actor FB

network, which has a zero logical execution time (LET). Hence, the output signal

variables are logically related to the input time instant kT:

w(k) = φ(v(k)) , (18)

where φ is a composite function – from input signal variables v V to output signal

variables w W that constitute actor input signals x and output signals y, respectively.

With actors having purely transformational behaviour, φ can be defined like a CFB

function, e.g.:

φ = fr ◦ fr-1 ◦ ….. ◦ f1 , (19)

where fi are basic and/or composite signal-transformation functions executed by

constituent function blocks, i = 1, 2, …, r.

With complex actors built from supervisory state machines coupled to modal

function blocks, each mode generates certain control signals specified by the

corresponding functions, for example:

w1(k) = φ
1
 (v(k)) - generated in mode 1

w2(k) = φ
2
 (v(k)) - generated in mode 2

.............................

ws(k) = φ
s
 (v(k)) - generated in mode s

(20)

In this case, for each φ
i
, φ

i
 = fi ◦ m , where m is the mode transition function of the

SSM function block and fi(v(k)) is the signal transformation function executed by the

modal function block when the supervisory state machine has indicated that m(k) = i.

In the general case:

φ
i

 = fi ◦ m ◦ g ,
(21)

where g denotes a pre-processing function. The latter is executed by a pre-processing

(basic or composite) function block, generating a transition-trigger signal for the

supervisory state machine (e.g. various types of arithmetic, comparators, counters, etc.)

The output variables generated by the actor task are used to compose output signals,

which are latched into the output drivers at the time of output:

y(tout) = φ(x(tin)) , tout = tin+ D = kT + D, k = 0, 1, 2, … ; 0 ≤ D ≤ T , (22)

Hence:

y(kT + D) = φ(x(kT)) , (23)

1 Bold symbols denote actor-level events and input/output signals.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 52

and the actor as a whole has a clocked synchronous semantics [19], chracterized by a

non-zero logical execution time (LET).

In the special case of actor without deadline, it is assumed that D = 0, and tin = tout =

kT. Hence: y(k) = φ(x(k)), and the actor has a perfect synchronous semantics (zero

LET). This is the case with intermediate actors of phase-aligned transactions, where

the deadline is usually associated with the last actor, which has to generate the control

signal at the transaction deadline instant (see next section).

3.4 Specification of System Behaviour

System operation is specified in terms of distributed transactions, such as the

transaction shown in Fig. 5, assuming: 1) Periodic phase-aligned transactions involving

non-blocking basic tasks, such as the one shown in Fig. 5, which are typical for

distributed control applications [18]; 2) Non-blocking signal-based communication;

3) Distributed Timed Multitasking, which is an extension of Timed Multitasking for

distributed transactions.

Under these assumptions, a periodic phase-aligned transaction with a period Ttrans

can be represented as a sequence of transaction phases, involving a number of actors,

which are executed in response to a global timing event ↑sync(kTtrans) represented by

the arrival of a synchronisation (sync) message generated by a sync master node:

↑sync(kTtrans) y1 ; y1 = φ1 (x1) ,

↑x2 y2 ; y2 = φ2 (x2) ,

.....................

↑xn yn ; yn = φn (xn) ,

(24)

where: x1 = xin , x2 = y1, x3 = y2 ,…, xn = yn-1, yn = yout .

Hence, transaction execution can be modelled with a composite function:

Φ = φn ◦ φn-1 ◦ ….. ◦ φ1 , (25)

where φi is the function implemented by the i-th actor, i = 1, 2, …., n.

Taking into account Distributed Timed Multitasking, transaction execution can be

represented as a transformation from input signals xin(tin) to output signals yout(tout),

where tin and tout are determined by the transaction period Ttrans and deadline Dtrans :

↑sync(kTtrans) yout ,

yout (kTtrans + Dtrans) = Φ(xin (kTtrans)); Dtrans ≤ Ttrans .
(26)

For the particular example illustrated by Figures 1 and 5, the behaviour of the

control system can be represented in the form:

Voltage(kTtrans + Dtrans) = Φ(pulses(kTtrans)), Φ = φactuator ◦ φcontroller ◦ φsensor .

In the general case, the distributed system may consist of multiple subsystems

executing distributed transactions with different rates of activation (multi-rate system),

e.g. a multi-loop distributed control system. Accordingly, subsystem actors are

allocated onto network nodes, and subsystem channels – onto the physical

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 53

communication channel(s). This raises the issue of concurrent execution of transaction

tasks/communications within the corresponding operational domains.

Following the adopted model of computation (Fig. 4), actor tasks are executed in a

dynamic priority-driven scheduling environment provided by node-resident kernels,

which are instances of the HARTEXμ timed multitasking kernel [14]. Communication

takes place in a real-time network supporting predictable interactions, such as CAN.

Transparent signal-based communication is supported by a dedicated protocol

provided by the HARTEXμ kernel. With this protocol, signal drivers are executed

atomically at precisely specified time instants that are fixed on the time axis. This

makes it possible to eliminate the undesirable effects of task preemption and network

communication, i.e. transaction I/O jitter, as long as transaction (end-to-end) response

times are less than the corresponding end-to-end deadlines. This requirement can be

checked using response time analysis developed for distributed real-time systems, e.g.

the analysis method and tool presented in [18].

4 Related research

COMDES-II is a follow-on version of COMDES-I [12]. It employs an actor-based

system model, whereby actors are conceived as units of concurrency as well as

functionality (e.g., sensor, controller, actuator, etc.), whereas in the previous version a

system is composed from function units encapsulating multiple threads of control. It

also incorporates a different, i.e. composite state machine model emphasizing the

separation of reactive and transformational (signal-processing) behaviour.

In COMDES-II, system operation is described by the Distributed Timed

Multitasking (DTM) model of computation, which has been inspired by the original

Timed Multitasking model [5] and is similar to the LET model adopted in the xGiotto

language [6]. However, both of these models use port-based communication between

actors, whereas DTM employs broadcast communication with labeled state messages

(signals). This solution rules out artifacts such as ports, message queues, mailboxes,

operational interfaces, etc., and provides for transparent interactions that are

independent of the allocation of the actors on network nodes. Furthermore, the above

frameworks use flat actor models with actors programmed in a conventional fashion,

whereas COMDES-II actors are configured from prefabricated executable components

– function blocks.

The adopted communication mechanism is characterized by complete separation of

computation and communication, as recommended in [9], since signal drivers are

executed in separation from actor tasks and from each other. That is not the case with

port-based objects, where ports are usually defined as communication objects whose

methods are invoked within task I/O drivers in a conventional call-return manner, see

e.g. [5]. Consequently, the communication pattern is „hardwired‟ in the code of I/O

drivers and cannot be reconfigured without reprogramming.

The presented model of computation bears certain similarities with the models used

in synchronous languages [20], and in particular: atomic execution of input and output

actions; clocked operation similar to the execution pattern used in LUSTRE and

SIGNAL; compositional data flow models inspired by the Control Engineering domain.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 54

At the same time, there are substantial differences that have to be highlighted in

order clearly differentiate the two models:

─ Synthetic, component-based approach using prefabricated executable components

vs. a conventional language-based approach used in synchronous languages

─ True actor-level concurrency vs. conceptual concurrency, which is „compiled

away‟ during program compilation

─ Constant non-zero reaction time vs. instantaneous (zero-time) reaction assumed by

perfectly synchronous systems.

The last feature facilitates the engineering of distributed systems and eliminates

problems related to fixpoints, instantaneous loops, etc., which have been major issues

with synchronous systems. Furthermore, the synchronous model does not address the

problem of task and transaction jitter because of the very nature of the synchrony

hypothesis, whereas it is practically eliminated with the COMDES model of distributed

computation.

5 Conclusion

The paper presents the formal specification of COMDES-II - a domain-specific

framework for distributed embedded control systems, which combines open

architecture and predictable behaviour under hard real-time constraints. The

framework employs a hierarchical system model combining the concepts of both actor

and function block: an embedded system is composed from autonomous system agents

(actors), which are configured from prefabricated executable components – function

blocks. Actors interact by exchanging signals, i.e. labeled messages with state message

semantics, rather than using I/O ports or operational interfaces. This feature facilitates

system reconfiguration and provides for transparent communication between actors,

resulting in flexible and truly open distributed systems. Signal-based communication is

also used for internal interactions involving constituent function blocks. That is why

system configuration is specified by data flow models at all levels of specification.

Consequently, actor behaviour is represented as a composition of component functions,

and system behaviour – as a composition of actor functions. A synchronous model of

computation is applied at the component level. A clocked synchronous model of

execution is applied at the actor and system levels, i.e. Distributed Timed Multitasking.

The presented software architecture has important implications for software safety

and predictability, as well as the entire software development process. In this case,

applications are configured from prefabricated and validated (trusted) components,

following strict composition rules that are derived from the syntax and static semantics

of the framework. The behaviour of software components and applications is

rigorously specified via a hierarchy of formal models that constitute the behavioural

semantics of the framework. On the other hand, the use of timed multitasking makes it

possible to engineer highly predictable systems operating in a flexible, dynamic

scheduling environment.

This has been demonstrated in a number of experiments used to validate the

framework, e.g. distributed computer control systems involving physical and computer

models of plants, such as electric DC motor, production cell, steam-boiler, turntable

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 55

machine, etc. It has also been applied in an industrial case study - a medical ventilator

control system [17]. In all cases, the use of the framework helped reduce development

time and increase software quality. This was quite obvious with some of the systems

mentioned above, e.g. the production cell control system, which was developed in a

relatively short time and became operational without extensive testing and debugging.

However, in order to guarantee that an application is correct by construction, it has

to be proven correct with respect to the required functional and timing behaviour. That

is only possible if a precise and unambiguous system model is developed, whose

particular features would desirably facilitate the process of analysis. In COMDES-II

that is accomplished through formal design models emphasizing the principle of

separation of concerns, i.e. separate treatment of computation and communication,

functional and timing behaviour, reactive and transformational behaviour, etc. Thus,

different aspects of system behaviour can be verified in separation using appropriate

techniques and tools. Functional behaviour can be analyzed using tools such as

Simulink (with continuous systems) and Uppaal (with discontinuous systems),

following semantics-preserving transformation of system design models into the

corresponding analysis models, whereas timing behaviour can be verified through

numerical response-time analysis.

In particular, Simulink can be used to analyse system behaviour via simulation. That

is facilitated by the similarity between COMDES-II design models and Simulink

analysis models representing the controller part of the system, both of which are

discrete-time data flow models. Consequently, it is possible to export a COMDES-II

design model to the Simulink environment, by wrapping COMDES-II components into

S-functions and wiring them together, following the interconnection pattern of the

original design model. This analysis method has been successfully experimented with

the medical ventilator case study, whereby the COMDES-II design of the control

system has been exported to Simulink and subsequently validated via numerical

simulation.

The envisioned development process will make it possible to engineer embedded

applications that are correct by construction. This will hopefully eliminate design

errors, which are difficult and costly to repair. On the other hand, implementation

errors will be eliminated through an automated configuration process supported by an

integrated toolchain [16], which is based on meta-models that have been derived from

the formal design models presented in this paper. Ultimately, the elimination of both

design and implementation errors will considerably enhance software safety, which is

of paramount importance for the overall safety of embedded applications.

6 References

1. B. Bouyssounouse and J. Sifakis (Eds.), “Embedded Systems Design. The ARTIST

Roadmap for Research and Development”, LNCS 3436 (2005)

2. T.A. Henzinger and J. Sifakis, “The Embedded Systems Design Challenge”, Proc. of the

14th International Symposium on Formal Methods FM 2006, LNCS 4085 (2006), pp. 1-15

3. P. Caspi, “Some Issues In Model-Based Development for Embedded Control Systems”,

Invited Lecture, DIPES‟2006, Braga, Portugal, Oct. 2006

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 56

4. D.B. Stewart, R.A. Volpe and P.K. Khosla, “Design of Dynamically Reconfigurable Real-

Time Software Using Port-Based Objects”, IEEE Transactions on Software Engineering,

vol. 23, No 12, 1997, pp. 759-776

5. J. Liu and E.A. Lee, “Timed Multitasking for Real-Time Embedded Software”, IEEE

Control Systems Magazine: Advances in Software Enabled Control, Feb. 2003, pp. 65-75

6. A. Ghosal, T.A. Henzinger, C.M. Kirsch and M.A. Sanvido, “Event-Driven Programming

with Logical Execution Times”, Proc. of HSCC 2004, LNCS 2993 (2004), pp. 357-371

7. D. Isovic and C. Norström, “Components in Real-Time Systems”, Proc. of the 8th

International Conference on Real-Time Computing Systems and Applications

RTCSA‟2002, Tokyo, Japan, March 2002

8. H. Hansson, M. Åkerholm, I. Crnkovic and M. Törngren, “SaveCCM – A Component

Model for Safety-Critical Real-Time Systems”, Proc. of the 30th EUROMICRO

Conference on Software Engineering and Advanced Applications SEAA 2004, pp. 627-635

9. A.L. Sangiovanni-Vincentelli and G. Martin, “Platform-Based Design and Software Design

Methodology for Embedded Systems”, IEEE Design and Test of Computers, vol. 18

(2001), pp. 23-33

10. K.H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems,

Springer, 2001

11. R. Lewis, Modeling Control Systems Using IEC 61499, Institution of Electrical Engineers

(2001)

12. C. Angelov, K. Sierszecki, N. Marian and J. Ma, “A Formal Component Framework for

Distributed Embedded Systems”, in I. Gorton et al. (Eds.): Proc. of CBSE 2006,

LNCS 4063 (2006), pp. 206-221

13. C. Angelov, X. Ke and K. Sierszecki, “A Component-Based Framework for Distributed

Control Systems”, Proc. of the 32nd EUROMICRO Conference on Software Engineering

and Advanced Applications SEAA 2006, Cavtat, Dubrovnik, Croatia, Aug.-Sept. 2006, pp.

20-27

14. K. Sierszecki, C. Angelov and X. Ke, “A Run-Time Environment Supporting Real-Time

Execution of Embedded Control Applications”, Proc. of the 14th International IEEE

Conference on Embedded and Real-Time Computing Systems and Applications RTCSA

2008, Kaohsiung, Taiwan, Aug. 2008

15. C. Angelov, X. Ke, Y. Guo and K. Sierszecki, “Reconfigurable State Machine Components

for Embedded Applications”, Proc. of the 34th EUROMICRO Conference on Software

Engineering and Advanced Applications SEAA 2008, Parma, Italy, Sept. 2008, pp. 51-58

16. Y. Guo, K. Sierszecki and C. Angelov, “COMDES Development Toolset”, Proc. of the 5th

International Workshop on Formal Aspects of Component Software FACS 2008, Malaga,

Spain, Sept. 2008, pp. 233-238

17. F. Zhou, W. Guan, K. Sierszecki and C. Angelov, “Component-Based Design of Software

for Embedded Control Systems: the Medical Ventilator Case Study”, Proc. of the

International Conference on Embedded Software and Systems ICESS 2009, Hanchzhou,

China, June 2009

18. W. Henderson, D. Kendall and A. Robson, “Improving the Accuracy of Scheduling

Analysis Applied to Distributed Systems”, Real-Time Systems, vol. 20, No 1 (2001), pp. 5-

25

19. A. Jantsch, Modeling Embedded Systems and SoCs - Concurrency and Time in Models of

Computation, Morgan Kaufmann, 2003

20. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic and R. de Simone, “The

Synchronous Languages 12 Years Later”, Proc. of the IEEE, vol. 91, No 1, Jan. 2003, pp.

64-83

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 57

Improving Timing Analysis

for Matlab Simulink/Stateflow

Lili Tan, Björn Wachter, Philipp Lucas, Reinhard Wilhelm⋆

Universität des Saarlandes, Saarbrücken, Germany
{lili,bwachter,phlucas,wilhelm}@cs.uni-sb.de

1 Introduction

Control software in embedded hard real-time systems is subject to stringent
timing constraints. To compute the required safe upper bounds on its worst-case
execution-time (WCET), static timing analysis is used in industry [1].

Today control software is predominantly developed with model-based design
tools such as Matlab Simulink/Stateflow. However, current timing tools lose
precision as they consider infeasible executions, e.g., changes between operat-
ing modes not admissible in the model. These tools analyze compiled executa-
bles where information about the feasibility of executions is hard to derive. We
propose systematic methods that make model information available to timing
analysis and present promising results with Simulink/Stateflow models.

Static Timing Analysis. Static timing analysis [2] uses abstract interpretation [3]
to derive program properties that hold for all executions. A classical static anal-
ysis is interval analysis, which determines, for each variable, a range of values for
each program point which contains all the values of the variable in any program
execution. The ranges are guaranteed to be safe, i.e., they can be used to exclude
division by zero and array-out-of-bounds accesses at compile time. More gener-
ally, static analysis computes provably safe approximations of program states.

Static timing analysis determines execution time bounds for programs. These
bounds must be safe, i.e., they must not underestimate the execution time. They
should also be tight to avoid unnecessary safety margins.

The established methodology splits the problem into different phases. The
input to the analysis is a compiled executable of the program. The first phase
reconstructs from the executable a control-flow graph (CFG) over basic blocks.
In the next phase, a variation of interval analysis, called value analysis, deter-
mines the contents of registers and memory locations. Then a micro-architectural
analysis computes execution-time bounds for basic blocks. It accounts for the
tremendous hardware-induced execution-time variability: depending on whether
a memory access causes a cache hit or a cache miss, the execution time of an
instruction may differ by two orders of magnitude. Therefore complex, processor-
specific architectural features like cache and pipeline effects are considered [4]. In
the final phase, path analysis determines a safe estimate of the WCET. First an

⋆ Supported by ITEA 2 project 06042, EU-FP7 Grant 216008 and SFB/TR 14.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 59

ILP generator models the control flow the program as an integer linear program.
Each ILP variable corresponds to the traversal count of a basic block. The value
of the objective function in the solution is the predicted execution time bound.

The CFG also describes infeasible program executions if conditions are not
interpreted. Consider the C code if(a>0) x=1; else x=2; if(a==0) a=x;.
Conditions a>0 and a==0 are clearly correlated, more specifically, they mutu-
ally exclude each other. Although the control-flow graph contains the path from
x=1 to a=x, this is not a feasible program execution. In general, we call a control-
flow path an infeasible path if it does not correspond to any program execution
(this notion is distinct from dead code).

To make path analysis more precise, so-called flow constraints can be added
to the ILP that eliminate infeasible paths. A salient point of our work is that
such constraints can be systematically derived from model information.

Matlab Models and Generated Code. Matlab Simulink/Stateflow is a hierarchical
modeling language for control software with a sequential, imperative semantics.
The underlying methodology is to design control computation within Simulink
and control logic within Stateflow. Simulink offers building blocks for propor-
tional, integral and differential (PID) control computations and estimations,
e.g., filters, look-up tables, and arithmetic operators. Stateflow is an automata
specification language that can be used to express transitions between different
operating modes of the system. Blocks communicate with each other via signals
and receive external inputs from the environment.

For deployment, code generators synthesize production C code, in which the
internal states of Stateflow and Simulink blocks are encoded by state variables.
Signals and internal inputs also map to C variables. The implementation of
blocks can be traced in the source code. However this mapping depends on
characteristics of different code generators.

2 Model-aware Timing Analysis

In real-time systems, the different tasks run periodically and are triggered by a
scheduler. These tasks are commonly implemented with model-based tools like
Matlab. A periodic run corresponds to one execution of the Matlab model where
inputs are received, the internal state is updated, and outputs are produced.
Timing analysis has to determine an execution time bound that is safe for each

run. It is impossible in practice to know the worst-case inputs or the worst-case
internal state, hence the analysis has to cover all possibilities for each run.

To ensure safety, the analysis must not assume that the value of an external
input variable remains constant between definition and use, i.e., the variable is
‘volatile’ in C terminology. For the internal state, timing analysis has to assume
all possibilities at task entry, i.e., for a state variable, assume all potential states.
Thus, both input and state must be treated specially to obtain a safe execution
time bound. In Matlab-generated code, input and state variables can be identified
syntactically. This enables an automatic solution that guarantees safe bounds.
In the remainder of the section, our goal is to make these bounds tighter.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 60

We investigate where precision is lost due to infeasible paths. To this end,
we focus on typical patterns at the level of the model that lead to infeasible
paths. As a running example, we consider the fuel-rate controller which is a
Matlab demo model that contains typical features of embedded controllers. The
controller estimates airflow rate, and calculates the fuel injection rate based on
PID control principle.

We analyzed the controller with aiT WCET Analyzer, the static timing anal-
ysis tool [2] of AbsInt [5]. aiT produces a worst-case path to explain the execution
time bound it has computed. Without providing flow constraints, the execution
time is over-approximated and the computed worst-case path is infeasible, since
static timing analysis is not aware of certain dependencies in the model.

For example, like any control software, the fuel-rate controller has operat-
ing modes and signals that conditionally exclude each other. Depending on the
current mode, signals, and their logical combinations, different look-up tables
or computations are triggered. As discussed in the introduction, the timing an-
alyzer generally does not interpret conditions. Hence it has to take the longer
branch of a conditional, even if execution history of the path does not admit so.
As a result, the worst-case path spuriously ‘switches’ between operating modes.

For illustration, we consider such spurious resolutions of conditions on the
worst-case path. Some resemble the infeasible-path example in the introduction,
e.g., they involve conditions like mode==LOW and mode==RICH. Other conditions
are more involved. For example, condition O2_fail==0 && mode==LOW checks
if the oxygen sensor is valid and the system is in operating mode LOW, while
condition pressure_fail==1 checks if the pressure sensor has failed. These con-
ditions do not have shared variables, and, simply by looking at the expressions,
they seem not to be related. Yet there is a relation entailed by the model: the
conditions are, in fact, mutually exclusive. The conditions are used in a Simulink
block, while the variables mode, O2_fail, pressure_fail are set by a Stateflow
automaton. However, the Stateflow automaton would not set mode to LOW if any
sensor had sent a failure signal. Such entailed relations need to be derived by
analyzing the model semantics. In the source code or executable, dependencies
are more implicit and even harder to track than in the model. In the following,
we show how to construct flow constraints from the model to achieve a more
precise timing analysis.

Trigger Conditions. We aim at conditions that determine whether a piece of the
model is executed. These conditions on external inputs, internal signals (e.g.,
mode variables), and states guard signal transformation and control computa-
tion. Simulink/Stateflow express this by conditional blocks, similar to condition-
als in C, e.g., triggered and enabled subsystems, guarded transitions in Stateflow
and switch-blocks. We uniformly refer to the conditions as trigger conditions.

Flow Constraints from Definition-Use Dependencies. We formulate flow con-
straints that relate a definition, e.g., a mode variable, and uses of that variable.
Certain definitions always make a trigger condition false. Trivially, a program
execution cannot pass through such a condition and the branch guarded by the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 61

trigger condition. This can be expressed by flow constraints. One example for
such constraints in the fuel-rate controller are signals that indicate a failure of
a sensor. These signals are set in a Stateflow block and are used in a Simulink
block to trigger the evaluation of a lookup table.

Flow Constraints from Correlations between Trigger Conditions. Relations be-
tween trigger conditions can be formulated as flow constraints, e.g., independent,
equivalence, implication, antivalence, and exhaustion can be expressed. To be ef-
fective, entailed relations need to be considered. The analysis of entailed relations
requires information about deep semantic properties of Stateflow and Simulink
blocks. To this end, we anticipate that relational abstract domains from static
analysis may be helpful.

Other relations could be derived purely from Simulink. This includes the
common case of a choice between two implementations of an algorithm with
directly inverse trigger conditions.

Significant Branches. Eliminating infeasible paths does not per se improve pre-
cision. For example, if branches of conditionals have approximately the same
execution time, there can be little gain in precision. Therefore, we focus on
significant unbalanced branches when giving flow constraints. In our running
examples, the invocations of look-up tables and mode-dependent discrete filters
give rise to such branches.

Relative to Stateflow, the Simulink blocks typically dominate the execution
time, while Stateflow blocks themselves contribute little to the overall execution
time. This is because control logic computations consist of conditionals and
assignments, while the expensive computations are often in the Simulink part,
e.g., lookup tables and discrete filters for estimation and PID control. Thus
determination of infeasible paths pays off more in the Simulink part than in
Stateflow.

Experimental Results. We used aiT for our experiments. For the fuel-rate con-
troller, we have manually applied the described derivation method for flow con-
straints. Flow constraints from definition-use dependencies alone reduced the ex-
ecution time bound by 4%. Adding both kinds of flow constraints yields an overall
reduction by 19% and a feasible worst-case path. If we compute an execution-
time bound for each operating mode, we achieve a reduction from 20% to 48%
per operating mode.

3 Related Work

Previous work on flow constraints focused on the executable [6], or C level. In [7],
the authors consider timing analysis of code synthesized from Esterel. They iden-
tify flow constraints to eliminate feasible paths. The principal ideas concerning
the two kinds of flow constraints are related, however Esterel is significantly dif-
ferent from Matlab Simulink, e.g., Esterel does not have automata as a language
feature. Hence rules to derive flow constraints differ significantly.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 62

[8] describes early work on timing analysis for Simulink models without State-
flow. Model information like loop bounds is passed to the underlying timing
analysis tool. They modified the code generator and used their own (uncertified)
compiler. Their timing analysis tool lacks value analysis [9] and thus does not
discover loop bounds which aiT derives from the executable alone. Integrations
of aiT with ASCET and SCADE are described in [10] and [11]. They pass model
information to aiT, e.g., variable ranges and loop bounds. Unlike this paper, [8,
10, 11] mainly focus on other aspects than precision.

4 Conclusion

Initial results the benefit of model information in terms of automation and preci-
sion of WCET analysis. We propose model-based generation of flow constraints
and have evaluated our method using the industrial tool aiT. Initial results with
the fuel-rate controller are promising. While definition-use flow constraints are
relatively easy to apply, relations between trigger conditions are more difficult
to automate due to entailed relations. In future work, we will automate the
generation of flow constraints and apply our approach to industrial examples.

References

1. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An Abstract Interpretation-Based Timing Validation
of Hard Real-Time Avionics Software Systems. In: Proceedings of DSN. (2003)

2. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: EMSOFT. Volume 2211 of LNCS. (2001) 469 –485

3. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL77,
Los Angeles, California (1977) 238–252

4. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of pro-
cessor architecture on the design and the results of WCET tools. Proceedings of
the IEEE 91 (2003) 1038–1054

5. AbsInt Angewandte Informatik GmbH: http://www.absint.com/
6. Stein, I., Martin, F.: Analysis of path exclusion at the machine code level. In:

Proceedings of WCET. (2007)
7. Ju, L., Huynh, B.K., Roychoudhury, A., Chakraborty, S.: Performance debugging

of Esterel specifications. In: CODES+ISSS. (2008) 173–178
8. Kirner, R., Lang, R., Freiberger, G., Puschner, P.: Fully automatic worst-case

execution time analysis for Matlab/Simulink models. In: ECRTS. (2002) 31–40
9. Tan, L.: The worst-case execution time tool challenge 2006. International Journal

on Software Tools for Technology Transfer (STTT) 11 (2009) 133 – 152
10. Ferdinand, C., Heckmann, R., Wolff, H.J., Renz, C., Parshin, O., Wilhelm, R.:

Towards model-driven development of hard real-time systems. In: Proceedings of
ASWSD. (2006) 145–160

11. Ferdinand, C., Heckmann, R., Sergent, T.L., Lopes, D., Martin, B., Fornari, X.,
Martin, F.: Combining a high-level design tool for safety-critical systems with a
tool for WCET analysis on executables. In: Proceedings of ERTS. (2008)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 63

Prototyping of Distributed Embedded Systems

Using AADL⋆

Mohamed Yassin Chkouri and Marius Bozga

{Yassin.Chkouri, Marius.Bozga}@imag.fr

Verimag, Centre Equation - 2, avenue de Vignate 38610 GIERES

Abstract. Prototyping distributed applications can be extremely useful
in evaluating a design, and also in understanding the effect of different
parameters on the performance of an application. Architecture Analysis
and Design Language provide adequate syntax and semantics to express
and support distributed embedded systems. This paper studies a gen-
eral methodology and an associated tool for building and translating
AADL systems into a distributed application using network communica-
tion protocol. This allows runtime analysis to fully asses system viability,
to refine and to correct the behavior of the system using BIP. Using our
prototype we analyse the case study MPC in a native platform (PC).

1 Introduction

Distributed applications are used in many safety-critical domains such as space

and avionics. Designing distributed systems demands more attention and rigour

methodology. The produced systems have to conform to many stringent func-

tional and non-functional requirements from multiple contexts.

Ensuring all the requirements and features becomes very hard if the whole

system is hand-coded. Thus, the application code should preferably be gener-

ated automatically from a verifiable and analyzable model. This makes easier

the work of the developer and helps during the stage of code verification. Be-

sides, constructing a verifiable model from the application model using model

transformation is simpler and safer than constructing this model from source

code.

Architecture Description Languages (ADLs) have been proposed to support

the development process of embedded real-time and distributed applications.

This paper presents a definition framework for ADLs. The utility of the definition

is demonstrated by using it to differentiate and compare several existing ADLs.

This will allow us to choose an ADL according to our requirements.

Among the ADLs, AADL [3] is the Architecture Analysis and Design Lan-

guage that allows the modeling of distributed, real-time applications. AADL was

first introduced to model the hardware and software architectures in the avion-

ics domain. An AADL system model consists of components, their interfaces,

the connections between them and properties on various entities of the system

⋆ This work is partially supported by ITEA/Spices and OpenEMBeDD projects

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 65

model. The AADL standard defines a textual as well as graphical form of the

language.

AADL has been designed to build distributed real-time and embedded sys-

tems. AADL can be seen as a collection of many requirements covering many

domains. System designers and developers need to describe both functional and

non-functional requirements. These requirements must then be sorted and en-

forced at the deployment level. We will presents the set of requirements that

must be respected to build distributed systems.

We have shown in [13], how AADL systems can be automatically translated

into BIP [8] (Behavior Interaction Priority), and analyzed using the BIP toolset.

BIP is a language for the description and composition of components as well as

associated tools for analyzing models and generating code on a dedicated middle-

ware. The language provides a powerful mechanism for structuring interactions

involving rendezvous and broadcast.

In this paper, we present an extension of our translation to prototype dis-

tributed applications using BIP and network communication protocol. We begin

with a model built by the application designer, who maps its application entities

onto a hardware architecture. Then, we use AADL into BIP tool to generate

BIP model conforming to AADL semantics. Finally, we use a code generator to

generate an executable model for each systems with communication protocol.

This translation allows simulation of distributed systems specified in AADL in

addition to the application of formal verification techniques developed for BIP,

e.g. deadlock detection, verification of properties, etc.

The translation from distributed AADL systems into BIP is illustrated on

a case study: the Multi-Platform Cooperation (MPC) example provided by J.

Hugues [18]. Using our tool, we were able to run the case study in a native

platform (PC). In order, to debug and evaluate the case study before deploying

it on a distributed embedded platform.

Distributed embedded application code generation from models is not lim-

ited to AADL. In fact, distributed and high-integrity systems are probably the

domain which has the most maturity. OCARINA [17] allows model manipula-

tion, generation of formal models to perform scheduling analysis and generate

distributed applications. OCARINA allows code generation from AADL descrip-

tions to Ada. PolyORB [27] is a middleware toolset that provides distribution

services through standard programming interfaces and communication proto-

cols. However, the generated code from AADL does not take into account the

annex behavior specifications [1].

This paper is organized as follows. Section 2 gives definition and comparaison

between existing ADLs. Section 3 gives an overview of AADL. In section 4,

we explain how to translate AADL systems into distributed application using

network communication protocol. In section 5, we present a MPC case study

and it deploylment into a distributed application. Conclusions close the article

in Section 6.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 66

2 Architecture Description Languages

Architecture Description Languages (ADLs) have been proposed as modeling

notations to support architecture-based development. An ADL is a language

that provides features for modeling a software system’s conceptual architecture,

distinguished from the system’s implementation. ADLs provide both a concrete

syntax and a conceptual framework for characterizing architectures.

The building blocks of an architectural description are (1) components, (2)

connectors, and (3) architectural configurations. Here we give a short description

of these blocks:

– A component in an architecture is a unit of computation or a data store.

– Connectors are architectural links used to model interactions among compo-

nents and rules that govern those interactions.

– Architectural configurations, or topologies, are connected graphs of compo-

nents and connectors that describe architectural structure. This information

is needed to determine whether appropriate components are connected, their

interfaces match, connectors enable proper communication, and their com-

bined semantics result in desired behavior.

A number of ADLs have been proposed for modeling architectures both within

a particular domain and as general-purpose architecture modeling languages.

We specifically consider those languages most commonly referred to as ADLs:

C2 [21, 20], Rapide [15], Darwin [19], UniCon [24], SADL [22, 26], AADL [3].

Several researchers have attempted to shed light on these issues, either by

surveying what they consider existing ADLs [28, 14] or by classifing and com-

paring several existing ADLs in some specific areas [25].

Comparisons between the languages (Figures 1, and 2) are given with respect

to: components, connections, priorities between components, behavior descrip-

tion and support for distributed embedded system.

All the above languages make distinction between a component interface

and an instance of a component that exhibits that interface. All the languages

provide syntax and semantics for component interface specification. All the lan-

guages view a component interface specification as defining a component type,

where there can be multiple instances of components that exhibit that same

interface. All languages allow a hierarchical composition that allows architec-

tures to describe software systems at different levels, by using a collection of

subcomponents and connections between those subcomponents.

C2, Darwin, SADL, and UniCon share much of their vocabulary and refer

to them simply as components; in Rapide they are interfaces; and in AADL

component categories.

In this paper, we are interested by ADL which support distributed embedded

systems, priority for schedulability analysis, behavior using state machine, and

functional and non-functional properties. AADL was first introduced to model

the hardware and software architectures in the avionics and automotives domain,

and it is backed by several industries.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 67

Component

Interface Implementation Non-functional properties

C2 exported through top and component none

buttom ports; provided implementation

and required

SADL input and output ports component requires component

(iports and oports) implementation modification

Rapide provides, requires, interface; none

action and service implementation

Darwin services (provided and component none

required) implementation

Unicon players component attributes for

implementation schedulability analysis

AADL inputs and outputs ports component time constraints

(event and/or data); implementation schedulability

provide and require; properties

in and out parameters safety level

Fig. 1. Comparison between ADLs

Noticeable about the AADL is its strong syntactic and semantic support for

architectures consisting of components of a limited number of functional cate-

gories. Along with this it allows to add non-functional properties to architectural

components, such as timing, memory consumption and safety properties. In this

way, the model of a system architecture allows specific tools to predict non-

functional properties of the system in early design phases, which makes AADL a

particularly interesting notation for distributed embedded software development.

Compared to other modeling languages, AADL defines low-level abstractions

including hardware descriptions. These abstractions are more likely to help de-

sign a detailed model close to the final product.

3 Architecture Analysis & Design Language

The SAE Architecture Analysis & Design Language (AADL) [3] is a textual

and graphical language used to design and analyze the software and hardware

architecture of performance-critical real-time systems. It plays a central role in

several projects such as Topcased [6], OSATE [4], ASSERT [2], SPICES [5].

A system modelled in AADL v.1 consists of application software mapped to

an execution platform. Data, subprograms, threads, and processes collectively

represent application software. They are called software components. Processor,

memory, bus, and device collectively represent the execution platform. They are

called execution platform components. Execution platform components support

the execution of threads, the storage of data and code, and the communication

between threads. Systems are called compositional components. They permit

software and execution platform components to be organized into hierarchical

structures with well-defined interfaces. Operating systems may be represented

either as properties of the execution platform or can be modelled as software com-

ponents. Behavior specifications [1] can be attached to AADL model elements

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 68

Connectors Priorities Behavior Distributed

C2 interface with each low and high consists of an invariant yes

component via a priority and a set of operations.

separate port; interface The invariant is used to

elementare provided specify properties that must

and required be true of all component states

SADL specifies the supported scheduling of the mathematical none

data types process using a static calculation

priority

Rapide connection; in-line priority information consists of set of yes

for schedulability transitions rule

analysis

Darwin binding; in-line; no priority information using CORBA yes

explicit modeling of for schedulability

component interactions analysis

Unicon connector priority information attributes for yes

for schedulability schedulability analysis

analysis

AADL connector (ports, security level using subprograms; C/C++; yes

parameters, data access) ADA; state machine

Fig. 2. Comparison between ADLs

using an annex. The behavioral annex describes a transition system attached to

subprograms and threads.

3.1 AADL Components

Software Components AADL has the following categories of software com-

ponents: subprogram, data, thread and process.

A subprogram component represents an execution entry-point in the source

text. Subprograms can be called from threads and from other subprograms.

These calls are handled sequentially by the threads. The data component type

represents a data type in the source text that defines a representation and inter-

pretation for instances of data. A thread represents a sequential flow of control

that executes instructions within a binary image produced from source text. A

thread always executes within a process. A scheduler manages the execution of

a thread. A process represents a virtual address space. Process components are

an abstraction of software responsible for executing threads.

Hardware Components Execution platform components represent hardware

and software that is capable of scheduling threads, interfacing with an external

environment, and performing communication for application system connections.

AADL processor components are an abstraction of hardware and software

that is responsible for scheduling and executing threads. In other words, a pro-

cessor may include functionality provided by operating systems. A device com-

ponent represents an execution platform component that interfaces with the

external environment. A device can interact with application software compo-

nents through their ports. A bus components are used to describe all kinds of

networks, buses, etc. A Memory components are used to represent any storage

device: RAM, hard disk, etc.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 69

Systems A system is the top-level component of the AADL hierarchy of com-

ponents. A system component represents a composite component as an assembly

of software and execution platform components. All subcomponents of a system

are considered to be contained in that system.

3.2 Connections

A connection is a linkage that represents communication of data and control

between components. This can be the transmission of control and data between

ports of different threads or between threads and processor or device components.

4 From AADL to Distributed Implementation Using BIP

4.1 The BIP Component Framework

BIP (Behavior Interaction Priority) is a framework for modeling heterogeneous

real-time components [8]. The BIP framework consists of a language and a toolset

including a frontend for editing and parsing BIP programs and a dedicated plat-

form for model validation. The platform consists of an Engine and software

infrastructure for executing models. It allows state space exploration and pro-

vides access to model-checking tools of the IF toolset [12] such as Aldebaran [11],

as well as the D-Finder tool [10]. This permits to validate BIP models and en-

sure that they meet properties such as deadlock-freedom, state invariants and

schedulability. The BIP language allows hierarchical construction [16] of com-

posite components from atomic ones by using connectors and priorities. Several

case studies were carried out such as an MPEG4 encoder [23], TinyOS [9], and

DALA [7].

4.2 Transformation from AADL to BIP

The AADL models are transformed into BIP automatically by using our AADL

to BIP translation tool described in [13]. The supported development process is

shown in the Figure 3.

The model construction methodology applied to AADL models, opens the

way for enhanced analysis and early error detection by using BIP verifications

techniques. Once the model has been generated, three model checking techniques

for verification can be applied:

D-Finder: is an interactive tool for checking deadlock-freedom for component-

based systems by using a static analysis method. It takes as input BIP programs

and applies proof strategies to eliminate potential deadlocks by computing in-

creasingly stronger deadlocks.

Model checking by Aldebaran: The second technique of verification is model-

checking by using the tool Aldebaran [11]. Exhaustive exploration by the BIP

exploration engine generates a Labeled Transition System (LTS) which can be

analyzed by model checking. e.g, Aldebaran takes as input the LTS generated

from BIP and checks for deadlock-freedom and other temporal properties.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 70

Fig. 3. Verification cycle

Model checking with observers: The third technique of verification is by using

BIP observers to express and check requirements. Observers allow us to express

in a much simple manner most safety requirements. We apply this technique

to verify some properties as verification of communication, and verification of

thread deadline.

Simulation & Debugging: In addition to the verifications, we can simulate or

tests prototype implementations by creating an executable system. We can use

an interactive simulation and debugger to verify each interaction step by step

and to know which state or port is activated. These analysis allow to fully asses

system viability, to refine and to correct the behavior of system.

Code generator: The code generator takes as input a model, generated by the

parser, and transforms it to a C++ application code. The application is an

executable model of the original BIP program. Code is generated for each atomic

component, connectors and priorities, i.e., the code is modular and preserves the

structure of the initial model.

4.3 Prototyping Distributed Implementation

Building distributed systems is a very tedious task since the application has to

be verifiable and statically analyzable. The AADL fits these two requirements

and allows the designer to describe different aspects of his distributed application

(number of processors, number of threads in each processors, connection between

threads...).

Requirement: Requirements for prototyping distributed embedded system can

be seen as a collection of many requirements covering many domains. System

designers and developers need to describe both functional and non-functional

requirements. AADL support the different steps of system construction. Sup-

ported entities and extensible property sets allow one to build full models and

adapt them to the application context. Furthermore, analysis tools can process

the models to assess its viability.

Therefore, we list the following requirements for a prototyping process:

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 71

1. Data types and related functions to operate on them

2. Supporting runtime entities (threads) and interactions between them (through

ports and connections)

3. Association of subprograms to threads

4. Mapping of threads onto processes and binding processes to hardware entities

to form the deployed system.

5. Binding connections to buses to form the deployed system.

AADL allows us to refine the description of each entity to detail more pre-

cisely its behavior or some non-functional attributes. This allows us to have a

library of reusable components and helps in prototyping by refining and extend-

ing them.

Deployement: The deployement we describe here supports all of the require-

ments discussed above. We begin with a model built by the application designer,

who maps its application entities onto a hardware architecture. Then, we use

AADL into BIP tool to generate BIP model conforming to AADL semantics. Fi-

nally, this architecture is tested for soundness, any mismatch in the application

is reported by the analysis BIP tool chain.

AADL is expressive enough to detail the deployment view of the application:

threads, processors, buses, threads on each process; properties refine the type

of tasks (periodicity, priority), and their associated implementation. We defined

our distribution model as a set of sender/receiver. It is supported by an AADL

architectural model that defines the location of each system and the payload of

the message exchanged as a thread-port name plus possible additional data.

Figure 4 shows the steps for generating from a distributed AADL system’s

description an executable distributed application as follow:

1. Identify each system and a connector’s mapped to the bus.

2. Generate for each AADL system its corresponding description in BIP, and

for each connector’s mapped to the bus a communication protocol.

3. Compile BIP system’s and generate an executable for each system with com-

munication protocol.

4. Run and debug the distributed application.

Our protocol supports communication between two or more computers. It

provide a full-duplex communication channel between processes that do not

necessarily run on the same computer. We consider channels for data exchange

among multiple threads in one or more processes are managed by the BIP Engine,

if processes are running on one computer. Otherwise, if processes are running

on different computers connected by a network, we use a network communi-

cation protocol. Before sending data through network to a server, we initially

converted into encoded version before being transported (suitable for network

transfer). After receiving data (Sever side), it can be converted back.

Most network communication protocols use the client server model. These

terms refer to the two machines which will be communicating with each other.

One of the two machines, the client, connects to the other machine, the server,

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 72

Fig. 4. Deployment

typically to make a request for information. Notice that the client needs to know

of the existence of and the address of the server, but the server does not need

to know the address of the client prior to the connection being established.

Our protocol use sockets. Sockets are associated with the concept of network

communication in the form of client-server programming; a pair of processes of

which one will be a client and one a server. The client process will send requests

to the server. Of course, when creating a socket, we have to specify the type

of communication that will be needed, since different modes of communication

requires different protocols.

The steps involved in establishing a communication protocol on the client

side are as follows: (1) Create a communication protocol; (2) Connect the com-

munication to the address of the server; (3) Send and receive data.

The steps involved in establishing a communication protocol on the server

side are as follows: (1) Create a communication protocol; (2) Bind the commu-

nication to an address. For a server, an address consists of a port number on

the host machine; (3) Listen for connections; (4) Accept a connection. This call

typically blocks until a client connects with the server; (5) Send and receive data.

The generated BIP code provides a framework that will directly call user

code when necessary. This allows a rapid and flexible design of the distributed

system and does not restrict the user implementations.

5 Case study: MPC (Multi-Platform Cooperation)

This case study has been inspired J. Hugues [18]. Figure 5 shows the software

view of our case study. This model holds three system (Partitions); each is a

spacecraft with different roles:

– Spacecraft 1 is a leader spacecraft that contains a periodic thread, which

sends its position to Spacecraft 2 and Spacecraft 3.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 73

Fig. 5. Software view of the MPC case study

– Spacecraft 2 and Spacecraft 3 are follower spacecraft. They receive the po-

sition sent by Spacecraft 1 with a sporadic thread (Receiver thread), up-

date their own position and sends the position to the Reader thread. A

Reader thread in these two spacecraft reads periodically the position value

from the Receiver thread and store it in a protected object. A third thread

“watches and reports” all elements at that position (e.g., earth observation).

This model gathers typical elements from distributed systems, with a set of

periodic tasks devoted to the processing of incoming orders (Watcher thread),

Reader thread to store these orders (Protected Object), and sporadic threads

to exchange data (Receiver thread). These entities work at different rates and

should all respect their deadlines so that the Watcher thread can process all

observation orders in due time.

The software view only represents how the processing is distributed onto dif-

ferent entities (threads) and gathered as AADL processes to form partitions. The

next step is to map this view onto a physical hardware view, so that Processor

resources can be associated to each Partition.

Figure 6 is a graphical representation of the deployment view of the system.

It only shows the global architecture of the application (number of partition

and their mapping to hardware components). It indicates that each partition is

bound to a specific Processor and how the communication between partitions

occurs, using different buses.

These two views are expressed using the same modeling notation. They can

be merged to form the complete system: interacting entities in the software

view represent the processing logic of the system, whereas the hardware view

completes the system deployment information by allocating resources.

5.1 AADL Models

MPC case study is built by creating software component and mapping entities

onto a hardware architecture. The flexibility of AADL allows us to partially

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 74

Fig. 6. Hardware view of the MPC case study

define components and use them in other components. This is very useful during

the first steps of prototyping where every detail of the system is not yet clear.

Details can be added to these components either by means of AADL properties

or by component extension, without having to redefine all other components.

Data Types AADL data components model the messages that are exchanged

among the Partitions of a distributed application or inside one of these Parti-

tions. To express the kind of a data type, we use AADL data component as

shown in the listing 1.1.

Subprograms Subprograms encapsulate the behavioral aspects of a distributed

application. They are modeled using the subprogram AADL component. The

implementation of a subprogram may be written entirely by the user by indi-

cating the source file or the pre-built libraries that contain the implementation.

Listing 1.2 shows the subprogram called Update.

�

data Record Type
end Record Type ;

data implementation Record Type . Impl
subcomponents

X : data behavior : : i n t e g e r ;
Y : data behavior : : i n t e g e r ;
Z : data behavior : : i n t e g e r ;

end Record Type . Impl ;

� �
Listing 1.1. MPC data type

�
subprogram Update

features

Data Sink : in parameter Record Type ;
Protected : out parameter Record Type ;

end Update ;

subprogram implementation Update . impl
properties

Source Language => C;
Source Name => ”Update ” ;
Source Text => ”mpc . cpp ” ;

end Update . impl ;

� �
Listing 1.2. MPC subprogram

AADL subprograms can be modeled in several other ways. AADL2BIP allows

three type of subprograms implementation by adding an external source file

(C/C++), or by adding annex behavior specification, or by using subprogram

calls sequence. All this gives the programmer more flexibility when prototyping

his system.

Threads Threads are active parts of a distributed application. A Partition must

contain at least one thread. The thread’s interface consists of ports. In this case

study we use two type of threads:

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 75

– Periodic threads, i.e., triggered by a time event (Period). Listing 1.3 shows

the AADL model of the periodic thread Sender thread that is located in

the Partition1. This thread sends a data of type Record Type. The dispatch

protocol of the thread and its period are specified using standard AADL

properties. In the thread implementation, we describe the behavior of the

thread by giving the subprogram that models its activity.
�

thread Sender Thread
features

Data Source : out event data port Record Type ;
Data ac t iva t e : in event data port Record Type ;

properties

Dispatch Protoco l => Per iod i c ;
Period => 100 Ms;

end Sender Thread ;

thread implementation Sender Thread . Impl
c a l l s Main : {

Wrapper : subprogram Sender Thread Wrapper . impl ;
} ;

connections

parameter Wrapper . Data Source −> Data Source ;
parameter Data ac t iva t e −> Wrapper . Data act ivat e ;

end Sender Thread . Impl ;

� �
Listing 1.3. MPC sender thread

– Sporadic threads. In this case, they are triggered by an incoming event. The

AADL model of the sporadic thread Receiver thread is located in Spacecraft 2

and Spacecraft 3 and is triggered by the reception of a position sent from

Spacecraft 1 by thread Sender thread.

Processes Processes are the AADL components used to model the Partitions

of distributed applications. Listing 1.4 shows the AADL model of the process

called Sender Process.
�

process Sender Proces s
features

Data Source : out event data port Record Type ;
end Sender Proces s ;

process implementation Sender Proces s . Impl
subcomponents

Sender : thread Sender Thread . Impl ;
connections

event data port Sender . Data Source −> Data Source ;
end Sender Proces s . Impl ;

� �

Listing 1.4. MPC Process: Spacecraft 1

5.2 Deployment

The generation of BIP code helps us to rapidly prototype the MPC case study

and make it to a distributed application using our communication protocol be-

tween each partition. The prototype helped us to analyse the case study in a

native platform (PC) in order to easily debug and evaluate it before running it

on an embedded platform.

The separation between software and hardware in AADL allows the program-

mer to model all the software parts of his application and test it with a native

platform (generally a PC). If the tests are successful, the same software part can

be reused with the actual hardware AADL. In addition, going from one hardware

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 76

AADL BIP

Spacecraft 1 Spacecraft 2 Spacecraft 3

Components 20 4 8 8

Connectors 21 8 18 18

Lines of code 350 250 600 600

Fig. 7. Comparison between AADL & BIP

Fig. 8. Simulation of Spacecraft 1 Fig. 9. Simulation of Spacecraft 2

architecture to another is reduced (most of the time) to the modification of the

values of some few AADL properties.

In the MPC case study, we generate for each AADL partition mapped to the

processor, its corresponding description in BIP, and for each connection mapped

to the bus a network communication protocol (sender/receiver). We compile BIP

partitions and we generate an executable model. Then, we put every executable

in the native platform (PC). First, we launch a receiver executable and then

the sender executable. When the network protocol communication is initialized

between the sender and receiver, the exchange of data is started.

Once the executable model has been launched, interactive simulation and

debugging is useful for understanding the working of the distributed application.

This helped us to verifies each interaction step by step, to know which state or

port is activated, and to see the value of data received/sended. In addition, we

use observers which moves to an error state if the period of a thread exceeds

its deadline. These analysis allow to fully asses system viability, to refine and to

correct the behavior of a system.

Figure 7 summarizes the size of lines of code, number of components and con-

nectors in AADL and respectively the BIP code for the MPC case study. We split

the BIP in three parts because we generate for each Spacecraft a corresponding

BIP description system. Figures 8 and 9 show a fragment of the simulation of

Spacecraft 1 and Spacecraft 2 in the distributed platform.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 77

6 Conclusion

In this article, we proposed a prototyping process to model and build distributed

embedded systems. We select AADL to implement this prototype. AADL allows

a clear modeling structure and provides all the required information to configure

a local application as well as distributed application.

We showed the requirements and assessments for prototyping distributed em-

bedded system using our tools chain. In addition, we provide a general method-

ology for building and translating distributed embedded systems into an ex-

ecutable implementation by using network communication protocol. The exe-

cutable application is tested for soundness, any mismatch in the application is

reported by the analysis BIP tool chain. We provide also MPC case study, which

is tested and analysed on a native platform.

In the future we are continuing to work on:

– Communication between processes can have different delay characteristics

depending on the underlying communication network. The prototyping en-

vironment should support different delay characteristics for communication

between different processes so that realistic prototypes can be built.

– Real-time clocks. This will allow real-time distributed algorithms to be im-

plemented, and timing properties to be studied.

References

1. Annex Behavior Specification SAE AS5506.
2. ASSERT: http://www.assert-project.net/.
3. SAE. Architecture Analysis & Design Language (standard SAE AS5506), Septem-

ber 2004, available at http://www.sae.org.
4. SEI. Open Source AADL Tool Environment. http://la.sei.cmu.edu/aadlinfosite/

OpenSourceAADLToolEnvironment.html.
5. SPICES: http://www.spices-itea.org/public/news.php.
6. TOPCASED: http://www.topcased.org/.
7. A. Basu, S. Bensalem, M. Gallien, F. Ingrand, C. Lesire, T.H. Nguyen, and

J. Sifakis. Incremental component-based construction and verification of a robotic
system. In Proceedings of ECAI’08, Patras, Greece, 2008.

8. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in bip. In Proceedings of SEFM ’06, Pune, India, pages 3–12. IEEE Computer
Society, 2006.

9. A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis. Using bip for modeling
and verification of networked systems – a case study on tinyos-based networks. In
Proceedings of NCA’07, Cambridge, MA USA, pages 257–260, 2007.

10. S. Bensalem, M. Bozga, J. Sifakis, and T.H. Nguyen. Compositional verification
for component-based systems and application. In Proceedings of ATVA’08, Seoul,
South Korea, 2008.

11. M. Bozga, J-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol verification with
the aldebaran toolset. STTT, 1:166–183, 1997.

12. M. Bozga, S. Graf, Il. Ober, Iul. Ober, and J. Sifakis. The if toolset. In Proceedings
of SFM’04, Bertinoro, Italy, volume 3185 of LNCS, pages 237–267.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 78

13. M.Y Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating AADL into BIP -
Application to the Verification of Real-Time Systems. In Models in Software Engi-
neering: Workshops and Symposia at MODELS 2008, Toulouse, France, September
28 - October 3, 2008., pages 5–19.

14. P. C. Clements. A survey of architecture description languages. In In Proceed-
ings of the Eighth International Workshop on Software Specification and Design,
Paderborn, Germany, 1996.

15. L. M. Augustin J. Vera D. Bryan D. C. Luckham, J. J. Kenney and W. Mann.
Specification and analysis of system architecture using rapide. In IEEE Transac-
tions on Software Engineering, volume 1 no.4, pages 336–335, 1995.

16. J. Sifakis G. Gossler. Composition for component-based modeling. Science of
Computer Programming, 55:161–183, March 2005.

17. J. Hugues, B. Zalila, L. Pautet, and F. Kordon. Rapid Prototyping of Distributed
Real-Time Embedded Systems Using the AADL and Ocarina. In Proceedings of
the 18th IEEE International Workshop on Rapid System Prototyping (RSP’07),
pages 106–112, Porto Alegre, Brazil, May 2007. IEEE Computer Society Press.

18. J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the final
embedded system using the ocarina aadl tool suite. ACM Trans. Embed. Comput.
Syst., 7(4):1–25, 2008.

19. J. Magee and J. Kramer. Dynamic structure in software architectures. In In Pro-
ceedings of ACM SIGSOFT’96: Fourth Symposium on the Foundations of Software
Engineering (FSE4), pages 3–14, 1996.

20. N. Medvidovic. A language and environment for architecture-based software de-
velopment and evolution. In In Proceedings of the 1999 International Conference
on Software Engineering, pages 44–53, 1999.

21. N. Medvidovic, P. Oreizy, J.E. Robbins, and R.N. Taylor. Using object-oriented
typing to support architectural design in the c2 style. In In Proceedings of ACM
SIGSOFT2̆01996: Fourth Symposium on the Foundations of Software Engineering
(FSE4), pages 24–32. ACM Press, 1996.

22. M. Moriconi and R. A. Riemenschneider. Introduction to sadl 1.0: A language for
specifying software architecture hierarchies. In Technical Report SRI-CSL-97-01,
SRI International, 1997.

23. M. Poulhiès, J. Pulou, C. Rippert, and J. Sifakis. A methodology and support-
ing tools for the development of component-based embedded systems. In 13th
Monterey Workshop, Paris, France, volume 4888 of LNCS, pages 75–96, 2006.

24. M. Shaw, R. Deline, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik. Ab-
stractions for software architecture and tools to support them. IEEE Transactions
on Software Engineering, 21:314–335, 1995.

25. R.M. Taylor and N. Medvidovic. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software En-
gineering, 26:70–93, 2000.

26. S. Sendall V. Crettaz, M.M. Kand and A. Strohmeier. Integrating the concernbase
approach with sadl. In In Proceedings 4th International Conference on Modeling
Languages, Concepts, and Tools .Toronto, Canada, pages 166–181, 2001.

27. T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: a schizophrenic
middleware to build versatile reliable distributed applications. In Proceedings of the
9th International Conference on Reliable Software Techologies Ada-Europe 2004,
volume LNCS 3063, pages 106 – 119, Palma de Mallorca, Spain, Jun.

28. S. Vestal. A cursory overview and comparison of four architecture description
languages. In Technical Report, Honeywell Technology Center, 1993.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 79

