

 Workshop Proceedings

ACESMB 2009

Second International Workshop on

Model Based Architecting and Construction
of Embedded Systems

October 6th, 2009, Denver, Colorado, USA

Organized in conjunction with MoDELS’09
12th International Conference on Model Driven Engineering Languages and Systems

Edited by:
Stefan Van Baelen (K.U.Leuven - DistriNet, Belgium)

Thomas Weigert (Missouri University of Science and Technology, USA)
Ileana Ober (University of Toulouse - IRIT, France)

Huascar Espinoza (CEA - LIST, France)

Table of Contents

Table of Contents ...3

Foreword ..5

Acknowledgments ...7

Invited Talk - Semantics preservation issues in the design and optimization of SW architectures for
automotive systems

Marco Di Natale (Scuola Superiore Sant’Anna, Italy) ...9

SOPHIA: a Modeling Language for Model-Based Safety Engineering

Daniela Cancila, François Terrier (CEA LIST), Fabien Belmonte (ALSTOM), Hubert Dubois, Huascar
Espinoza, Sébastien Gérard and Arnaud Cuccuru (CEA LIST) .. 11

PaNeCS: A Modeling Language for Passivity-based Design of Networked Control Systems

Emeka Eyisi, Joseph Porter, Joe Hall, Nicholas Kottenstette, Xenofon Koutsoukos and Janos
Sztipanovits(Vanderbilt University, USA) .. 27

Formal Design Models for Distributed Embedded Control Systems

Christo Angelov, Krzysztof Sierszecki and Yu Guo (University of Southern Denmark, Denmark) 43

Improving Timing Analysis for Matlab Simulink/Stateflow

Lili Tan, Björn Wachter, Philipp Lucas and Reinhard Wilhelm (Universität des Saarlandes, Germany)
 ... 59

Prototyping of Distributed Embedded Systems Using AADL

Mohamed Yassin Chkouri and Marius Bozga (VERIMAG, France) .. 65

Towards Intelligent Tool-Support for AADL Based Modeling of Embedded Systems

Dries Langsweirdt, Yves Vandewoude and Yolande Berbers (K.U.Leuven, Belgium) 81

Model-Based Codesign of Critical Embedded Systems

Marco Bozzano, Alessandro Cimatti (Fondazione Bruno Kessler, Italy), Joost-Pieter Katoen, Viet Yen
Nguyen, Thomas Noll (RWTH Aachen University, Germany) and Marco Roveri (Fondazione Bruno
Kessler, Italy) ... 87

Design Complexity Management in Embedded System Design

Johan Ersfolk, Johan Lilius (Åbo Akademi University, Finland), Jari Muurinen, Ari Salomäki (Nokia
Devices, Finland), Niklas Fors and Johnny Nylund (Åbo Akademi University, Finland)..................... 93

Using Higher-order Transformations to Derive Variability Mechanism for Embedded Systems

Goetz Botterweck (Lero, Ireland), Andreas Polzer and Stefan Kowalewski (RWTH Aachen
University, Germany) ... 107

Model-Based Extension of AUTOSAR for Architectural Online Reconfiguration

Basil Becker, Holger Giese, Stefan Neumann, Martin Schenck and Arian Treffer (University of
Potsdam, Germany) ... 123

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 3

Foreword

The development of embedded systems with real-time and other critical constraints raises
distinctive problems. In particular, development teams have to make very specific
architectural choices and handle key non-functional constraints related to, for example, real-
time deadlines and to platform parameters like energy consumption or memory footprint. In
this context, the last few years have seen an increased interest in using model-based
engineering (MBE) techniques. MBE techniques are interesting and promising for the
following reasons: They allow to capture dedicated architectural and non-functional
information in precise (and even formal) domain-specific models, and they support a layered
construction of systems, in which the (platform independent) functional aspects are kept
separate from architectural and non-functional (platform specific) aspects, where the final
system is obtained by combining these aspects later using model transformations.

The objective of this workshop is to bring together researchers and practitioners interested
in model-based software engineering for real-time embedded systems. We are seeking
contributions relating to this subject at different levels, from modeling languages and
semantics to concrete application experiments, from model analysis techniques to model-
based implementation and deployment. Given the criticality of the application domain, we
particularly focus on model-based approaches yielding efficient and provably correct
designs. Concerning models and languages, we welcome contributions presenting novel
modeling approaches as well as contributions evaluating existing ones. The workshop targets
in particular:

• Architecture description languages (ADLs). Architecture models are crucial elements
in system and software development, as they capture the earliest decisions which
have a huge impact on the realization of the (non-functional) requirements, the
remaining development of the system or software, and its deployment. We are
particularly interested in examining:

o Position of ADLs in an MDE approach;
o Relations between architecture models and other types of models used

during requirement engineering (e.g., SysML, EAST-ADL, AADL), design (e.g.,
UML), etc.;

o Techniques for deriving architecture models from requirements, and deriving
high-level design models from architecture models;

o Verification and early validation using architecture models.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 5

• Domain specific design and implementation languages. To achieve the high
confidence levels required for critical embedded systems through analytical
methods, in practice languages with particularly well-behaved semantics are often
used, such as synchronous languages and models (Lustre/SCADE, Signal/Polychrony,
Esterel), super-synchronous models (TTA, Giotto), scheduling-friendly models (HRT-
UML, Ada Ravenscar), or the like. We are interested in examining the model-oriented
counterparts of such languages, together with the related analysis and development
methods.

• Languages for capturing non-functional constraints (MARTE, AADL, OMEGA, etc.)

• Component languages and system description languages (SysML, MARTE, EAST-ADL,
AADL, BIP, FRACTAL, Ptolemy, etc.).

We accepted 10 papers for the workshop from 8 different countries: 7 full papers and 3
short papers. We hope that the contributions for the workshop and the discussions during
the workshop will help to contribute and provide interesting new insights in Model Based
Architecting and Construction of Embedded Systems.

The ACESMB 2009 organizing committee,

Stefan Van Baelen,
Thomas Weigert,
Ileana Ober,
Huascar Espinoza.

The ACESMB 2009 steering committee,

Mamoun Filali,
Sébastien Gérard,
Susanne Graf,
Iulian Ober.

September 2009.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 6

Acknowledgments

The Organizing Committee of ACESMB 2009 would like to thank the workshop Program
Committee for their helpful reviews.

Nicolas Belloir (LIUPPA, France)
Jean-Michel Bruel (IRIT, France)
Agusti Canals (CS, France)
Arnaud Cuccuru (CEA-LIST, France)
Huascar Espinoza (CEA LIST, France)
Jean-Marie Farines (UFSC, Brasil)
Peter Feiler (SEI, USA)
Mamoun Filali (IRIT, France)
Robert France (CSU, USA)
Pierre Gaufillet (Airbus, France)
Sébastien Gérard (CEA LIST, France)
Susanne Graf (VERIMAG, France)
Bruce Lewis (US Army, USA)
Ileana Ober (IRIT, France)
Iulian Ober (IRIT, France)
Isabelle Perseil (Telecom ParisTech, France)
Dorina Petriu (Carleton University, Canada)
Bernhard Rumpe (RWTH Aachen, Germany)
Douglas C. Schmidt (Vanderbilt University, USA)
Bran Selic (Malina Software, Canada)
Jean-Bernard Stefani (INRIA, France)
Richard Taylor (UCI, USA)
Martin Törngren (KTH, Sweden)
Stefan Van Baelen (K.U.Leuven DistriNet, Belgium)
Tullio Vardanega (University of Padua, Italy)
Eugenio Villar (Universidad de Cantabria, Spain)
Thomas Weigert (Missouri S&T, USA)
Tim Weilkiens (OOSE, Germany)
Sergio Yovine (VERIMAG, France)

This workshop is organised as an event in the context of

• The IST-004527 ARTIST2 Network of Excellence on Embedded Systems Design
• The research project EUREKA-ITEA SPICES (Support of Predictable Integration of

mission Critical Embedded Systems)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 7

Invited Talk

Semantics Preservation Issues in the Design and

Optimization of SW Architectures for

Automotive Systems

Marco Di Natale

Scuola Superiore Sant’Anna, Pisa, Italy

Abstract. Architecture selection and design optimization are critical
stages of the Electronics/Controls/ Software (ECS) -based vehicle design
flow. In automotive systems design, complex functions are deployed onto
the physical HW and implemented in a SW architecture consisting of a
set of tasks and messages.
The talk will present work performed in cooperation with GM R&D
and UC Berkeley, in which we optimized several aspects of the software
architecture design, including the definition of the task periods, the task
placement and the signal-to-message mapping and we automated the
assignment of priorities to tasks and messages in order to meet end-to-
end deadlines and minimize latencies.
Architecture selection can be accomplished by leveraging worst case re-
sponse time analysis within an optimization framework and we provide
hints on how to use stochastic or statistical analysis to further improve
the approach. However, current work has only scantly addressed the is-
sues of preserving the semantics of functional models during implemen-
tation. Semantics preservation issues impose additional constraints on
the optimization problem, but also reveal very interesting tradeoffs be-
tween memory and time/performance. In addition, the need to deal with
heterogeneous models and standards (like AUTOSAR in the automotive
business) further complicates the scenario.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 9

SOPHIA: a Modeling Language for Model-Based

Safety Engineering

Daniela Cancila
1
, Francois Terrier

1
, Fabien Belmonte

2
, Hubert Dubois

1
,

Huascar Espinoza
1
, Sébastien Gérard

1
, and Arnaud Cuccuru

1

CEA LIST⋆, ALSTOM⋆⋆

Abstract. Development of increasingly more sophisticated safety-critical
embedded systems requires new paradigms, since manual approaches are
reaching their limits. Experiences have shown that model-driven engi-
neering is an approach that can overcome many of these limitations. Us-
ing model-based approaches however lead to new challenges regarding the
cohesive integration of both safety engineering and system design along
the system development process. In this paper, we present SOPHIA,
a modelling language that formalizes safety-related concepts and their
relations with system modelling constructs. We particularly focus on ac-
cident models and on how to achieve confidence that the frequency of
possible accidents will be tolerable. In addition, we explore some strate-
gies to implement SOPHIA as a complementary modelling language to
SysML and reuse some useful constructs form the UML MARTE profile.

1 Introduction

In order to cope with the increasing design complexity of safety-critical systems,

safety assurance should be considered as early as possible in the design process.

Among other goals, safety assurance allows achieving confidence that the fre-

quency of accidents will be acceptable. For this purpose, safety engineers need

to specify all possible safety parameters that directly impact the software archi-

tecture design, and then to determine the probability rates of the deviation from

fulfilling the system functions. The Safety Integrity Level (SIL) attribute is an

example of such a parameter. The design of a given system and its subsystems

changes according to the value of the SIL associated with each functionality

of the system. Possible values range between “0” (less critical) and “4” (most

critical) [19]. Thus, a system architecture including SIL4-functionalities must

guarantee the maximum level of safety integrity, which would for example imply

to add redundant hardware nodes.

⋆ CEA LIST, Laboratoire d’Ingénierie dirigée par les modèles pour les
Systèmes Embarqués Point Courrier 94, Gif-sur-Yvette, F-91191 France
{daniela.cancila, francois.terrier, hubert.dubois, huascar.espinoza,

sebastien.gerard,arnaud.cuccuru}@cea.fr
⋆⋆ Alstom Transport Information Solution 48 rue Albert Dhalenne, 93482 Saint-Ouen

Cedex fabien.belmonte@transport.alstom.com

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 11

Recently, the railway safety community has proposed a new methodological

guidance to enhance safety evaluation. In this proposal, SIL-to-function alloca-

tions exploit a new attribute named Tolerable Accident Rate (TAR). The TAR is

defined as the “threshold between what is tolerable and what is undesirable with

respect to the consequence of an accident” [8, 3]. In current industrial practice,

the TAR is manually calculated, typically by using pre-defined tables. As the

value of TAR influences the value of SIL, it may impact the architecture of a

system. More precisely, the value of the TAR for a given accident (e.g. the head-

on collision between trains) is used to calculate the value of the tolerable hazard

for the same accident. Hence, we have a 1:1 correspondence between tolerable

hazard and SIL. (We refer the reader interested in the technical details to [8, 3].)

Most of current practices on system safety assurance rely mainly on manual

processes. They are therefore very dependent of the skill and experience of the

engineers. This problem is exacerbated by the fact that safety engineering and

software design domains have developed their own techniques and methodolo-

gies. Let us consider the example of the railway application domain. On the one

hand, safety actors adopt standards that provide recommendations for safety as-

sessment. Illustrative examples are fault tree analysis [22] and formal verification

techniques, such as the B method [2]. On the other hand, actor from the soft-

ware design and development community follow component-based techniques,

such as [33, 9, 14]. In this context, defining the “right mapping” between safety

models and models for software design/development is an essential challenge.

In order to avoid error-prone processes and to integrate both safety engi-

neering and system design, we adopt a model-based safety engineering process.

Model-Driven Engineering (MDE) [30, 31] is being successfully adopted in several

industrial research projects [21, 18, 32, 29]. Two kinds of approaches are actually

put into practice. In the first case, safety engineers and system designers share

the same model of the system while using different views of it. In the second

case, they use different models with clearly and formally defined relationships

(using for example model transformation descriptors). In both cases, the direct

benefits of MDE concern the possibility of automating part of the process of

safety assurance, e.g. by automatically calculating certain information such as

TAR parameters from the input safety parameters. This capability does not only

simplify the process. It also enables to save time and, more importantly, it makes

safety assurance as explicit part of an iterative design process. Indeed, new re-

sults can be more easily generated once the model has been changed. Moreover,

the fact that models are more formally defined reduces the probability of in-

troducing errors or omitting important details, since the analysis information is

linked to the architectural model of the system.

As a main contribution within this paper, we introduce for the first time

SOPHIA, a modelling language for safety concerns. SOPHIA provides an an-

swer to safety industrial concerns by allowing designers to specify the safety

attributes in a software design model. Our paper focuses on the infrastructure of

SOPHIA, which is similar to that of MARTE [25]: It is based on a metamodeling,

a profiling and a modeling space. As a result, SOPHIA has an independent lan-

guage specification that can complement more general-purpose languages such

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 12

as UML or SysML [24]. At the profile level, we propose to use some suitable

concepts from MARTE, the OMG’s UML profile for real-time embedded sys-

tems [25], in particular the Value Specification Language (MARTE::VSL).
In Section 2, we discuss some related works and we identify fundamental criteria

and principles for model-based safety engineering. In Section 3, we explain our indus-
trial motivations. We also provide a rationale for SOPHIA as well as a description of
its Fundamental Concepts. Moreover, we investigate the strategies regarding the inte-
gration of safety and software design. Section 4 is the central part of the paper. For the
first time, we discuss the whole structure of SOPHIA: from its Fundamental Concepts
to the implementation. In Section 5, we compare our approach with those given in
Section 2. Finally, conclusions and on-going works are presented.

2 Related Work

Integrating safety concerns in general-purpose modelling process is a big challenge that
has been explored in many directions. In this section, we focus on a few works which
are receiving specific attention in the MDE community.

In order to study dependability in AADL (Architecture Analysis & Design Lan-
guage) [1], P. Feiler and al. introduce a framework to model the error state propagations
in a hierarchical architecture [17]. Error propagation can occur at component level (by
composition of the components), at the hardware level (by interconnecting processors)
and between the hardware and the components (“due to their binding to the execution
platform” [17]). In order to limit, or even avoid, the error propagation, the authors pro-
vide suitable filters (guards), for example between the interconnection of components.
In [17], P. Feiler and al. addresses error modelling as a complementary view to system
architecture, which is an important topic related to safety. However, it does not cope
with the problem of accident case modelling and the specification of safety attributes
such as the SIL.

In order to complement AUTOSAR (the European industrial standard to specify
component-based software infrastructures in automotive applications [6]), some Euro-
pean industries and academics have defined an architecture description language, so
called EAST-ADL [5]. This includes requirements modelling, feature content at the
level of a vehicle description, architecture variability, functional structure of applica-
tions, middleware, plant (environment), abstract hardware architecture, and prelimi-
nary functional allocation. In addition, EAST-ADL enables the modelling of system
failure behaviour and allows analysis of that behaviour using safety analysis tools. In
particular, EAST-ADL aimed at using a safety design flow compatible with that de-
fined by the upcoming ISO 26262 standard, including support for concepts such as
hazards, safety goals and requirements, and the representation of ASILs (Automotive
SILs). Many of these concepts were represented in the first version of EAST-ADL, but
there were many others not considered, e.g. accident and its consequences, or ASIL
decomposition.

FTA is one of the main safety analysis tools. In [10], Douglass introduces a UML
safety profile defining notions such as fault, hazard, and traceability of requirements.
Such notions allow us to create fault tree analysis (FTA) diagrams and, hence, to
study how “conditions and faults combine to create hazard”. One of the main con-
tributions of this approach is to adopt UML and its profiling mechanism to provide a
common specification language to integrate safety and design activities. This facilitates
the collaboration and common understanding between safety engineering teams and

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 13

system design teams. The underlying approach is the following. First, designers create
a model with safety attributes, from which FTA is automatically generated. Engineers
then study FTA and then they may manually change the model architecture. In other
words, this approach does not deal with “safety reverse engineering”. As a result, safety
analysis is made a posteriori. When we deal with real industrial cases, a model quickly
increases in complexity and in number of components. Consequently, it also occurs in
the related FTA. The study of FTA is then a very complex work. In order to reduce
such a complexity, one possible way is to iteractivly integrate safety engineering into
model-based engineering of an architectural system. The underlying process is to have
an automatic propagation of safety attributes in the architectural model such that it
is correct with respect to “given safety requirements”.

In [15], de Miguel and al. propose an approach similar to work [10]. Therefore, it has
similar advantages and drawbacks. Finally, in [26], the authors introduces the UML
profile for quality of service and fault tolerance analysis, called QoS&FT profile. In
this profile, some aspects of safety analysis are covered (such that fault, errors, fault,
non desirable events, etc). Notions, such as accidents and SIL are however not here
considered.

3 Safety Engineering

This section provides some background information that have been taken into account
for the definition of SOPHIA. Before describing the safety fundamental concepts, we
want to discuss the high-level requirements for safety modelling from an industrial
perspective.

Standards EN 50126 [11], EN 50128 [12] and EN 50129 [13] define a safety process
plan for programmable electronic signalling devices including risk evaluation, SIL to
function mapping and the life cycle recommendations by SIL. In particular, these stan-
dards recommend applying fully formal specification to ensure SIL 4. It means that
engineers must provide mathematical proven demonstration for the safety properties
of a given component.

Typically, in industry there is a gap between formal methods and textual system
specifications, as well as between subsystem specifications. The main reason for this gap
is that there is no standard and common language can be used to capture the different
aspects. Semi-formal modelling approaches can bring a common basis to interconnect
these different specification aspects. This is the main motivation for formalizing safety
attributes into system models, from the early phases of the development process.

Therefore, SOPHIA has the following objectives:

1. enabling the specification of safety attributes in the architectural model of as sytem;

2. automating the calculation of some safety parameters in order to afford model-
based engineering of safety;

3. providing an environment for system development in which coherence (compati-
bility of all requirements at the same level of abstraction, i.e., horizontal develop-
ment) and correction (“good” decomposition of parent requirements into children
requirements abstraction, i.e., vertical development) properties can be guaranteed
by construction and/or verified a posteriori.

Provided these general needs, we present in the next section an excerpt of some
fundamental concepts of SOPHIA related to accident case concerns

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 14

3.1 SOPHIA Fundamental Concepts

The concepts of SOPHIA (and their relationships) are based on Alstom Ontology [7]
and on Alstom works such as [8, 3], which model their safety domain knowledge. In this
section, we will use metamodels to describe the Fundamental Concepts of SOPHIA.
They are organized into a set of packages and libraries. We use packages to introduce
notions and their relationships, and we use libraries to specify data types. The package
SOPHIA Fundamental Concepts contains two main subpackages, so called respectively
SystemDesing and SafetyConcepts. Package SystemDesing specifies the relationships be-
tween safety concepts and model elements of a system. Package SafetyConcepts contains
the following packages:

• package ACCIDENTS, which describes notions and relationships that are involved
in an accident.

• package MITIGATIONS, which describes notions and relationships about mecha-
nisms (barriers) to mitigate an accident ;

• package FaultContainmentRegion, which describes notions and relationships that
are involved in error propagations.

In this paper, we focus on package ACCIDENTS. Our intent is to show the details
of the whole language design chain, from the formalization of the TAR attribute in the
SOPHIA Fundamental Concepts, to the language implementation details. The result
of our work is a first, but firm step towards model-based safety engineering.

Figure 1 shows some notions of package ACCIDENTS. Among them, we depict the
TAR attribute. The notions are represented as metaclasses.

Hazard is “an event observable at the system boundary, which has potential either
directly or in combination with other factors (external to the system), for giving rise
to an accident at railway system level” [3].

AccidentCase is an unintended event with undesirable outcomes. AccidentCase leads
to AccidentConsequenques. An AccidentCase is identified by the following properties: a
unique ID; an AccidentType chosen from a statically pre-defined list;
AutomaticTolerableAccidentRate and TolerableAccidentRate.

AutomaticTolerableAccidentRate is the maximum rate of occurrence that is tolerable
for a likely Accident [3]. It is specified by a number of events per hour (real number)
and it is derived from the frequency and the severity of an accident.

TolerableAccidentRate and AutomaticTolerableAccidentRate are similar properties.
The only difference is that TolerableAccidentRate is manually set by safety engineers
when they have to deal with exceptional cases (i.e., for which a pre-defined table is
not available). In Figure 5, Table “a:” identifies the Risk Tolerability of an accident.
It is described with combinations of the following properties: severity of the conse-
quences and frequency of the accident. TolerableAccidentRate is undefined by default.
However, if TolerableAccidentRate is set to a different value than undefined, then it has
a higher priority with respect to AutomaticTolerableAccidentRate. The importance of
having both properties (i.e., one automatically specified and the other one manually
set), is that: 1.) the modelling process can be automated in a correct way that respects
table Risk Tolerability, 2.) we have traced to the computation, which is automatically
derived from table Risk Tolerability. Furthermore, we can identify the divergence points
specified by the exceptional cases. In case of divergence, designers must motivate their
choices with respect to the value automatically calculated from table Risk Tolerabil-
ity. From an implementation standpoint, designers could motivate their decisions in a
suitable dialog box. The implementation of this latter is part of our ongoing work.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 15

Fig. 1. SOPHIA : AccidentCase

AccidentConsequences is the result of a given AccidentCase. It is defined by the
severity of the consequences with respect to the given AccidentCase. Severity may take
only one of the following four predefined values: Catastrophic, Critical, Marginal, or
Insignificant. These values of severity are captured by an enumeration which is part of
our SOPHIA Fundamental Model library.

Next, we discuss the strategies to integrate the safety conceptual concepts defined
above with a given general-purpose modelling language, in this case SysML.

3.2 Integration Strategies for SOPHIA and SysML

SysML was chosen by Alstom since it is an OMG standard specification for modelling of
complex systems. Although SysML provides a formalism to manage requirements and
system design together, SysML is lacking of concepts for dealing with specific concerns
of safety. We have three possible strategies to integrate SOPHIA and SysML.

Strategy a defines SOPHIA as an extension to SysML. It has the advantage to be
optimally tailored to the aimed integration with SysML. One of the main drawbacks of
this strategy is that safety concepts will strongly depend on SysML. Then, any modifi-
cation of SysML might lead to a modification in the SOPHIA extensions. In addition,
safety concepts and SysML are conceptually disjoint, although complementary, and
directly extending SysML does not make sense in our context.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 16

Strategy b defines SOPHIA from scratch, i.e. as a pure domain-specific modeling
specification language (DSML) (i.e. independently of UML) and then combining this
metamodel with SysML. Consequently, Strategy b surmounts the drawbacks of Strat-
egy a: safety concepts are independent not only of SysML but also of UML. It provides
a framework that is fully dedicated to safety concepts and it is independent from other
formalisms. As discussed in work [16], Strategy b has the following drawback: having
safety models defined using two independent formalisms leads to strong difficulties for
interfacing both types of models of the same system. This is particularly problematic
for tracing safety information with the system architecture models. This problem is
mainly reflected at tool level, since traceability always imply an important endeavour.

Strategy c proposes to firstly introduce SOPHIA as a package of Fundamental Con-
cepts via a metamodel, in a way that is independent of the UML formalism. In a second
stage, this metamodel (also called domain model) is implemented as a UML profile. In
this way, we overcome the drawbacks of Stategies a and b, because the concepts are
defined independently of UML, and, thereby, gain the benefits of a domain-specific ap-
proach. Moreover, this approach improves tool interoperability and facilitates the inter-
face and traceability between different modelling aspects of the same system. SOPHIA
and SysML languages (which are both designed as UML profiles) may indeed be used
jointly in the same UML tool. A successful example of this approach is MARTE [25].

One singleMetamodel Profile

EngeneeringLanguage End
Domain

Model

User Tool

Tool

environment

strategy a

strategy b

strategy c

YESNO YES YES

YES NO NONO

YES YES YES YES

Domain

One single

Fig. 2. Strategies to integrate safety modeling language in the system architecture

4 From SOPHIA Safety Concepts to Implementation

4.1 SOPHIA Architecture

We adopt Strategy c and we develop it further. First af all, we strategically use the
definition of profile, firstly introduced by S. Cook, and successfully adopted by other
researchers: a profile is a family of related languages. It suggests the idea of exploiting
the composition of pre-existing profiles. Indeed, our intent is not to define completely
“new” metamodel and profile, covering all concepts from safety to architectural design.
Our intend is indeed to reuse the existing work as much as possible, so that we can
take advantage of pre-existing works and related tools.

In spite of SysML role for requirements and system’s architecture (requirement and
block diagrams), SysML lacks in the specification of temporal attributes [4]. Several
European research projects are therefore willing to define a combined usage of both
SysML and MARTE.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 17

In the context of SOPHIA, we were particularly interested in MARTE to define non-
functional properties (MARTE::NFP) and MARTE::VSL to valuate these properties. The
MARTE::NFP package allows designers to annotate a UML model with non-functional
properties. VSL stands for Value Specification Language and allows designers to specify
“parameters/variables, constants, and expressions in textual form” [25]. Moreover, VSL
supports arithmetic and logical expressions. Beyond the benefits of the SOPHIA align-
ment with a recognized international standard, the main advantage of this integration
is the ability to support a well-formed syntax and semantics for safety parameters
and to consequently enable automated derivation of dependent safety variables (See
Section 4.2).

DOMAIN

SOPHIA
UML

concepts
foundamental

concepts
foundamental

MARTE

LEVEL

MODELING

LEVEL

PROFILE

<<apply>>

LEVEL

CONCEPT

<<reference>>

<<mapping>><<mapping>>

<<reference>>

<<import>>
SysML
(subset) (subset)

MARTE

FUNDAMENTAL

MODEL
USER

LANGUAGE

ENGINEERS

DOMAIN

USER

END

SOPHIA

Fig. 3. Overall Structure

Figure 3 shows the overall structure. We have two main domains: end user domain
and language engineering domain, which is in turn subdivided in two levels, Profile and
Fundamental Concept. End user domain corresponds to M1 level in the OMG four-level
hierarchy [23]. Designers only work in the modeling level. The language engineering
domain corresponds to M2 level in the OMG four-level hierarchy. In the Profile level, we
specify namesake profiles. In the Fundamental Concept level, we have UML metamodel
and data (Fundamental Concepts for safety and MARTE in the figure). In the following,
we discuss the overall structure, as illustrated in Figure 3.

At Modelling level, designers specify the model of a system. In order to specify the
architecture of a system and associated requirements, designers need to apply SysML
to their UML model. Next, designers annotate the model with safety attributes by
applying the SOPHIA profile. In order to specify temporal attributes, designers exploit
the MARTE stereotypes that are already imported by SOPHIA.

At Profile level, we have suitable languages of (at least) three families (profiles):
SysML, SOPHIA and MARTE. One of our on-going works is to identify the minimum
subset of SysML and MARTE to specify the requirements given by Alstom.

SysML is a UML profile. In Figure 3, UML stereotype “reference” shows such a
relationship [27]. Note that SysML is only introduced as a UML extension and, then,
SysML intentionally has not a fundamental concepts level.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 18

SOPHIA is a UML profile for safety modelling modelling whose definition is based
on SOPHIA Fundamental Concepts. In UML, there is not a specific symbol between
a profile and its fundamental concepts. To explicitly capture this relationship, we use
a dashed arrow annotated with the word “mapping”, following the OMG notation
introduced in work [28].

Like SOPHIA, MARTE extends UML and it is based on MARTE Fundamental
Concepts, so-called MARTE Domain Model.

At fundamental concepts level, we have UML metamodels respectively denoting
SOPHIA Fundamental Concepts and MARTE Fundamental Concepts.

4.2 SOPHIA, a UML profile for safety

In this section, we describe the UML profile for SOPHIA. It consists of a set of UML
extensions and libraries concretized through stereotypes and data types. They map to
the SOPHIA Fundamental Concepts (see Figure 3 for a big picture). Similarly to the
SOPHIA Fundamental Concepts packages, the corresponding UML profile the profile is
designed following a modular approach by grouping language constructs into individual
packages, with the ability to select only those packages that are of direct interest in a
given model. Due to space limitations, it is not possible to provide details covering the
all profile. Therefore, we will focus on the SOPHIA package ACCIDENTS described in
Section 3.1.

In the package ACCIDENTS every fundamental concept will directly result in a
UML stereotype with its corresponding properties. In this case, there is a 1:1 map-
ping between the Fundamental Concepts and the profile element. The bottom package
in Figure 4 defines how the metaclasses of the UML metamodel are extended with
SOPHIA concepts, while the top-hand package shows a subset of the SOPHIA library
with some enumeration types of interest.

Before describing the details of how SOPHIA exploits MARTE::VSL, let us introduce
a real industrial railway example of risk assessment.

Example Figure 5 shows a typical example of risk assessment tables used in the railway
domain. Such tables are used to identify the tolerable accident rate (TAR) of a given
accident case (stereotype AccidentCase in Figure 4) and the occurrence rates of the dif-
ferent consequences of an accident case (stereotype AccidentConsequences in Figure 4).
Typically, these tables are standardized by the territory authorities. For the sake of
simplicity, we focus on the calculation of the TAR and the consequence occurrence rate
parameters for a given country.

Starting from “Table a:” of Figure 5, safety engineers define a severity level for
every accident case. This information allows for identifying the threshold of the accident
case risk. (annotated with “T” in the figure.) The threshold risk identifies the upper
limit of a tolerable risk. For instance, let us consider a Critical severity level. The
corresponding threshold risk can be identified in the fourth row of the Critical column.
This corresponds to the Undesirable risk level. The obtained threshold risk level can
then be used to identify a corresponding threshold frequency of the accident case. In
our example, such frequency level is Remote. This yields an input value for “Table b:”.

“Table b:” describes a mapping of frequencies of accident cases and numerical
information about the magnitude order of such frequencies. This magnitude order
is specified as an interval of real numbers. The lower bound value of this interval,
corresponding to the threshold frequency level of a given accident case, represents the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 19

automaticOccurenceRate:

<<enumeration>>
SeverityKind

Catastrophic

Marginal
Insignificant

<<enumeration>>
FrequencyKind

Frequent

Occasional
ProbableCritical

Remote
Improbable
Incredible

<<enumeration>>

Intolerable
Undesiderable
Tolerable
Negligeable

RiskKind

LIBRARY

accidentType: AccidentTypeKind

iD: Identification

<<stereotype>>

tolerableAccidentRate : TAR

automaticTolerableAccidentRate : TAR

UseCase
(uml)

ACTOR

ACCIDENTS

PARAMETERS
(see fig. 5)

<<import>>

<<import>>

MARTE
(subset)

<<apply>>

\\

\\

AccidentCase

(uml)

FrequencyMagnitudoMap

severity: SeverityKind

automaticTolerableAccidentRate : THR

tolerableAccidentRate : THR

<<stereotype>>

Hazard

<<stereotype>>

AccidentConsequences

Fig. 4. SOPHIA: focus on TAR

TAR value for this accident case. In Figure 5, the TAR value the studied accident case
is 1x10-8.

Figure 6 shows the model representation of “Table a:”. In a:RiskTolerabilityAccident,
each line of attribute RiskMapping represents a line of “Table a:”. Consider “Table a:”.
We can read it as: we taken two values, one for colomn and one for row, then, we
uniquely identify one cell, which contains the value of the risk. For example, for the
colomn we select severity = critical and, for the row, frequency = Incredible Hence, we
achieve a unique cell, which contains risk = Negligeable. The first line in Figure 6 repre-
sents the list of these attributes and their values. In instance a:RiskTolerabilityAccident,
each line is given by the above procedure. In order to model the threshold between
what is tolerable and what is undesiderable (noted by “T” in Figure 5), we introduce
the Boolean attribute isThreshold in Figure 6. Therefore, if severity = critical, then
risk = Undesiderable, because isThreshold = True.

a:RiskTolerabilityAccident is an instance of class RiskTolerabilityAccident, which con-
tains one attribute riskMapping of type RiskMappingType. We stereotype RiskMappingType
with VSL::TupleType. As might be expected, the VSL package (which contains a set of
stereotypes extending the data type of UML) is applied to some of the SOPHIA data
types. By definition, a TupleType is a data type that combines different types into a
single aggregated type [25]. This allows instances of these tuple types to be annotated
as composite values following the textual syntax defined for VSL tuple specifications.

Similarly to Table “a:”, we represents “Table b:” by Figure 7, where some pre-
defined MARTE data types are imported and reused in SOPHIA constructs. For in-
stance, RealInterval (a MARTE’s data type stereotyped VSL::IntervalType) is typing the
magnitudoOrder property of FrequencyMapType. This allows instances of IntervalType to

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 20

(5)

Probable

Occasional

Remote

Incredible

Improbable

1E−5 <= F < 1E−3

1E−3 <= F

1E−7 <= F < 1E−5

1E−8 <= F < 1E−7

1E−9 <= F < 1E−8

F < 1E−9

Frequent

Probable

Remote

Insignificant Marginal

Undesiderable

Undesiderable

Critical Catastrophic

input designer

b:

(1)

Tolerable

Undesiderable

Undesiderable

Intolerable

Intolerable

Intolerable

Tolerable

Negligeable

T

T (2)

Intolerable

Intolerable

Negligeable

Negligeable

Tolerable

UndesiderableT
Undesiderable

Intolerable

Negligeable

Negligeable

Negligeable

Tolerable

Undesiderable

Intolerable
T

Occasional

Improbable

Incredible

severity

frequency

a:

frequency real interval

AutomaticTolerableRateAccident
(6)

(3)

(4)

Frequent

Fig. 5. Table Risk Tolerability and Table Frequency

Fig. 6. package PARAMETERS: SOPHIA and MARTE for “Table a:”

be specified with the VSL syntax for interval values, as depicted in b:FrequencyMagnitudoMap.

Algorithm to calculate the TAR parameter: In the sequel, we describes the
algorithm used to derivate the TAR parameter.

GLOBAL VAR RiskTolerableAccident : ARRAY[SEVERITY KIND][FREQUENCY KIND]:
[risk:RISK KIND,IsThereshold:BOOLEAN];

GLOBAL VAR FrequencyMagnitudeMap: ARRAY[FREQUENCY KIND]: REAL INTERVAL;

AutomaticTARCalculate (UserSeverityValue:SEVERITY KIND): TAR;

VAR MyFrequency: FREQUENCY KIND;

VAR MyInterval: REAL INTERVAL;

VAR j: INTEGER;

j := 0;

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 21

Fig. 7. package PARAMETERS: SOPHIA and MARTE for “Table b:”

WHILE (RiskTolerableAccident [UserSeverityValue][j].IsThereshold 〈〉 TRUE)
DO j := j+1;

MyFrequency := FREQUENCY KIND[j];
MyInterval := FrequencyMagnitudeMap[MyFrequency];

RETURN AutomaticTARCalculate := MyInterval.LowerBound;

Although it is written in pseudo-code, it can be implemented in Java code and
easly introduced in a static profile implementation of SOPHIA.

5 Discussion

In Section 2, we have discussed some works on safety that have a great impact in the
MDE community. Most of them provide both a way to specify the safety attributes in
the design model, and tool support for safety analysis. Often, we have faced on two
different models: one for safety and another one for design modelling. The focus is then
on the “right mapping” and in the a-posteriori verification of the safety attributes.

SOPHIA is based on four capital pillars:

– SOPHIA Fundamental Concepts;
– reuse of pre-existing profiles (and then their tool support);
– automation on the propagation of the safety attributes in the design model;
– a-priori verification of the safety attributes in a correct way regarding to pre-defined

risk tables.

In the sequel, we discuss each SOPHIA pillar with respect to some of the works
presented in Section 2.

Altough SOPHIA is a UML profile, SOPHIA Fundamental Concepts have been
created as free as possible from considerations related to specific solution technologies
so as to not embody any premature decisions that may hamper later language use.
This means that the fundamental concepts model can be concretized not only as a

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 22

UML profile, but also as an independent modelling language, possibly implemented as
an Ecore metamodel or an XML schema, as well. Note that, although the SOPHIA
Fundamental Concepts are specified in the form of a metamodel with a textual semantic
description (like in MARTE), it represents only conceptualization entities synthesizing
the “universe of discourse”. This pillar is similar to that presented in work [15] in
which the authors first define a safety conceptual model of safety-aware component-
based architectures and just then define a safety UML profile.

The second pillar introduces SOPHIA as a UML profile, by adopting the definition
of profile firstly given by S. Cook. As a result, SOPHIA profile strategically reuses some
packages of MARTE and can be easily integrated in a SysML system architecture.

The third pillar put the strength in improving the automation of the modelling
process. In particular, SOPHIA provides a framework to automatically generate the
value of TAR and the frequency of an accident, from the specification of only one
attribute by users, which is the severity attribute of a consequence. This attribute is
given by engineers by choosing one of four possible values.

Finally, the fourth pillar’s objective is to enable safety ensurance calculation along
the development process, in a way that is correct with respect to pre-defined tables.

6 Conclusions

In this paper, we present for the fist time SOPHIA, a model-based safety engineering
approach. SOPHIA responds to industrial needs regarding the integration of safety
engineering and system design. SOPHIA provides a metamodeling and profiling infras-
tructure to specify and propagate the safety information on design models. We have
particularly focused on the TAR calculation, which is the first step of the risk evaluation
of an accident. The result of some safety attributes, such as TAR, influences the SIL
and, hence, changes the model architecture. Such safety information is a-priori correct
regarding to pre-defined risk tables. Currently we are performing tests on industrial
real cases. We are applying the same process (as discussed for TAR) to other safety
attributes. We also intend to mathematically formalize correctness of the automatic
propagation of the safety attributes in the design model.

Acknowledgment

This work has been performed in the context of the IMOFIS project of the System@tic
Paris Région Cluster. It is sponsored by the ”Safe, reliable and adapted transportation”
program (PREDIT) of the “Agence Nationale pour la Recherche”. The authors would
like to thank the all member of the IMOFIS project [20] and the reviewers of ACESMB

Workshop for their valuable suggestions.

References

1. AADL. Architecture Analysis & Design Language. www.aadl.info/aadl/

currentsite/index.html.

2. J. R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 23

3. Alstom. Guidance for safety analysis. MODTRAIN, MODCONTROL Sub-Project,
2008.

4. C. André. Time Modeling in MARTE. In FDL’07 Forum on specification and
Design Languages, Barcelona, Spain, 2007.

5. ATESST Project. Advancing Traffic Efficiency and Safety through Software Tech-
nology. ATESST STREP - FP6 project. http://www.atesst.org.

6. AUT@SAR. Automotive Open System Architecture. www.autosar.org.
7. F. Belmonte. T1.1 guide de modélisation. Projet IMOFIS, Alstom Transport,

System@tic, 2009.
8. A. Blas and J. L. Boulanger. Comment améliorer les méthodes d’analyse de risques

et l’allocation des THR, SIL et autres objectifs de sécurité. In Lambda-Mu, 16e
Congrès de Mâıtrise des Risques et de Sûreté de Fonctionnement, Avignon, France,
2008.

9. S. Bliudze and J. Sifakis. The Algebra of Connectors - Structuring Interaction in
BIP. In Int. Conf. EMSOFT, pages 11–20, 2007.

10. B.P. Douglass. Build Safety-Critical Designs with UML-based Fault Tree Analysis-
Defining a Profile. www.embedded.com/design/opensource/217200312?pgno=1.

11. CENELEC. EN-50126: Application ferroviaires -Spécification et démonstration de
Fiabilité, Disponibilité, Maintenabilité et Sécurité (FMDS). Norme, CENELEC,
1999.

12. CENELEC. EN-50128: Applications ferroviaires - Système de signalisation, de
télécommunication et de traitement - Logiciels pour systèmes de commande et de
protection ferroviaire. Norme, CENELEC, 2001.

13. CENELEC. EN-50129: Application ferroviaires - système de signalisation, de
télécommunication et de traitement - systèmes électroniques relatifs à la sécurité
pour la signalisation. Norme, CENELEC, 2001.

14. L. de Alfaro and T. A. Henzinger. Interface automata. In Proceedings of the Ninth
Annual Symposium on Foundations of Software Engineering, pages 109–120. ACM
Press, 2001.

15. M. de Miguel, J. Briones, J. Silva, and A. Alonso. Integration of satety analysis in
model-driven software development. 2008.

16. H. Espinoza, B. Selic, D. Cancila, and S. Gérard. Challenges in Combining SysML
and MARTE for Model-Based Design of Embedded Systems. In In Proc. of Int.
Conf. on Model Driven-Architecture Foundations and Applications (ECMDA 09),
volume 5562. LNCS, 2009.

17. P. Feiler and A. Rugina. Dependability Modeling with the Architecture Analysis
& Design Language (AADL). Technical report, Software Engineering Institute,
Carnegie Mellon, 2007.

18. B. Hamid, A. Radermacher, A. Lanusse, C. Jouvray, S. Gerard, and F. Terrier. De-
signing fault-tolerant component based applications with a model driven approach.
In IFIP Workshop on Software Technologies for Future Embedded and Ubiquitos
Systems (SEUS 2008), Springer LNCS.

19. IEC. 61508:1998 and 2000, part 1 to 7. Functional Safety of Electrical, Electronic
and Programmable Electronic Systems., 2000.

20. IMOFIS Project. Ingénierie des MOdèle de FonctIons Sécuritaires. www.imofis.

org/.
21. E. Jouenne and V. Normand. Tailoring IEEE 1471 for MDE Support. In UML

Modeling Languages and Applications, LNCS, Springer, 2005.
22. N. Limnios. Fault trees. ISTE, 2007.
23. OMG. http://www.omg.org/.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 24

24. OMG. Systems Modeling Language SysML. www.sysml.org.
25. OMG. UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded

systems, Beta 3. www.omgmarte.org.
26. OMG. UML Profile for Modeling Quality of Service and Fault Tolerance Charac-

teristics & Mechanisms (QoS & FT profile). www.omg.org.
27. OMG. Unified Modeling Language (UML) Specification: Infrastructure. Version

2.0. www.uml.org, 2004.
28. OMG. UML Profile for Schedulability, Performance, and Time Specification. www.

uml.org, 2005.
29. F. Ougier and F. Terrier. ADONA: an open Integration Platform for Automative

Systems Development Tools. In Euopean Congress Embedded real Time Software
(ERTS), 2008.

30. D. Schmidt. Model-driven engineering. IEEE Computer, pages 25–31, February
2006.

31. B. Selic. From Model-Driven Development to Model-Driven Engineering. Keynote
talk at ECRTS’07. http://feanor.sssup.it/ecrts07/keynotes/k1-selic.pdf.

32. F. Terrier and S. Gerard. MDE benefits for distributed, real-time and embedded
systems. In From Model-Driven Design to Resource Management for Distributed
Embedded Systems, IFIP TC 10 Working Conference on Distributed and Parallel
Embedded Systems (DIPES 2006), 2006.

33. Veryard Projects. Component-based Development FAQ. http://www.users.

globalnet.co.uk/~rxv/CBDmain/cbdfaq.htm, February 2008.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 25

PaNeCS: A Modeling Language for
Passivity-based Design of Networked Control

Systems

Emeka Eyisi, Joseph Porter, Joe Hall, Nicholas Kottenstette, Xenofon
Koutsoukos and Janos Sztipanovits

Institute for Software Integrated Systems
Vanderbilt University

2015 Terrace Place, Nashville, TN 37203 USA
emeka.p.eyisi@vanderbilt.edu

Abstract. The rapidly increasing use of distributed architectures in
constructing real-world systems has led to the urgent need for a sound
systematic approach in designing networked control systems. Commu-
nication delays and other uncertainties complicate the development of
these systems. This paper describes a prototype modeling language for
the design of networked control systems using passivity to decouple the
control design from network uncertainties. The modeling language in-
cludes an integrated analysis tool to check for passivity and a code gener-
ator for simulation in MATLAB/Simulink using the TrueTime platform
modeling toolbox. The resulting designs are by construction more robust
to platform effects and implementation uncertainties.

1 Introduction

The heterogeneous composition of computing, sensing, actuation, and commu-
nication components has enabled a modern grand vision for real-world Cyber
Physical Systems (CPS). Real-world CPSs such as automotive vehicles, building
automation systems, and groups of unmanned air vehicles are monitored and
controlled by networked control systems (NCS). NCS involve the interaction of
physical dynamics, computational dynamics, and communication networks. This
heterogeneity does not go well with current methods of compositional design. The
most important principle used in achieving compositionality is separation of con-
cerns which works if the design views are orthogonal, i.e. design decisions in one
view do not influence design decisions in other views. Unfortunately, achieving
compositionality for multiple physical and functional properties simultaneously
is a very hard problem because of the lack of orthogonality among the design
views.

Model-based design for embedded control systems involves creating mod-
els and checking correctness at different stages in the development process [1].
Model-based design flow progresses along precisely defined abstraction layers,
typically starting with control design followed by system-level design for the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 27

specification of platform details, code organization, and deployment details, and
the final stage of integration and testing on the deployed system. This design
approach cannot be applied directly to NCS because domain heterogeneity and
tight coupling between design concerns create a number of challenges. Ensur-
ing controller stability and performance for physical systems in the presence
of network uncertainties (e.g. time delay, packet loss) couples the control and
system-level design layers. In addition, downstream code modifications during
testing and debugging invalidate results from earlier design-time analysis and
any component change often results in “restarting” the design process.

A number of research projects seek to address the problems of model-based
design for NCS. The ESMoL modeling language for designing and deploying
time-triggered control systems explicitly captures in model structure many of
the essential relationships in an embedded design[2]. The ESMoL tools include
schedule determination for time-triggered communications, code generation, and
a portable time-triggered virtual machine. AADL [3] is a textual language and
standard for specifying deployments of control system designs in data networks
[4]. AADL projects also include integration with verification and scheduling anal-
ysis tools. The Metropolis modeling framework [5] aims to give designers tools to
create verifiable system models. Metropolis integrates with SystemC, the SPIN
model-checking tool, and other tools for scheduling and timing analysis.

In order to tackle the challenges of designing NCS, we propose an auto-
mated model-based approach based on passivity control theory. We used Model-
Integrated Computing [1] to develop a domain specific modeling language (DSML)
called the Passive Network Control Systems language (PaNeCS). Our approach
is based on the passive control architecture presented in [6] which provides the
theoretical foundations for analysis and design of NCS emphasizing robustness to
network delays and packet loss. This paper focuses on the design of the DSML
as well as a compositional tool for passivity analysis and code generation for
Matlab/Simulink/Truetime models. We aim to address a number of significant
challenges:

– Changes made during design, development, and testing cycles may cause ex-
tensive software revisions and force expensive re-verification. Model-integrated
computing tools provide automated software generation, analysis, and sys-
tem configuration directly from models. PaNeCS supports forward genera-
tion of platform-specific simulation models as well as passivity analysis of
system components.

– Control systems are often verified using complex optimization techniques.
For example, linear matrix inequalities (LMIs) can model many important
controller properties (e.g. stability, response time, reachability). In a system
built from the composition of multiple blocks, such analysis quickly becomes
intractable. In order to assess global stability, designers would have to build
a single, large analysis model which includes all possible state variables in
the system. In contrast, the passive control architecture can ensure global
stability (in a robust way) by a combination of component analysis and
specific rules for composition of passive components.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 28

– Control designers create models for both physical systems and controllers
using tools like Simulink and Stateflow [7]. Deployment of a control design
such as a Simulink model to a networked architecture introduces uncer-
tainties due to time-varying delay, data rate limitations, jitter, and packet
loss. Deployment of the design is often expensive, and failure during test-
ing can be costly. An increasingly accepted way to address these problems
is to enrich abstractions in each layer with implementation concepts. An
excellent example for this approach is TrueTime [8] that extends Simulink
with platform-related modeling concepts (i.e., networks, clocks, schedulers)
and supports simulation of networked and embedded control systems with
the modeled implementation effects. While this is a major step in improv-
ing understanding of implementation effects, it does not help in decoupling
design layers and improving orthogonality across design concerns. A control
designer can factor in implementation effects (e.g., network delays), but if
the implementation changes the controller may need to be redesigned. Our
approach imposes passivity constraints on the component dynamics, so that
the design becomes insensitive to network effects, thus establishing orthog-
onality (with respect to network effects) across the controller design and
implementation design layers.

The paper is organized as follows: Section 2 presents a passive control archi-
tecture for NCS. Section 3 presents our prototype modeling language. Section 4
discusses an integrated analysis tool for automatically checking passivity. Sec-
tion 5 presents a model interpreter for generating Matlab/Simulink simulation
code using the TrueTime platform modeling toolbox. Section 6 shows a case
study of a NCS consisting of two discrete plants and a controller. Section 7
provides our conclusion.

2 Passivity-Based Control of Networked Control Systems

Our approach for designing NCS is based on passivity theory. There are various
precise mathematical definitions for passive systems [9]. Essentially all defini-
tions state that the output energy must be bounded so that the system does not
produce more energy than was initially stored. Passive systems have a unique
property that when connected in either a parallel or negative feedback manner
the overall system remains passive. Passivity provides an inherent safety – pas-
sive systems are insensitive to certain implementation uncertainties [10] [11][12],
so passivity can be exploited in the design of NCS. The main idea is that by
imposing passivity constraints on the component dynamics, the design becomes
insensitive to network effects, thus establishing orthogonality (with respect to
network effects) across the various design layers. This separation of concerns al-
lows the model-based design process to be extended to networked control systems
which is what our model-based approach provides.

We briefly discuss the passivity based control architecture for multiple plants
controlled by a single controller via a network [6]. Fig. 1 depicts a sample net-
worked control system where only one plant is shown. The Bilinear Transform

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 29

Fig. 1. A networked control system

block represents a transformation between signals and wave variables. Wave vari-
ables were introduced by Fettweis in order to circumvent the problem of delay-
free loops and guarantee a realizable implementation for digital filters [10]. Wave
variables also allow systems to remain passive while transmitted data over a net-
work subject to arbitrary fixed time delays and data dropouts [11], [12]. In Fig.
1, upk(i) (k=1,2), can be thought of as sensor output data in wave variable form
from each plant. Likewise, vcj(i) (where j=1,2) can be thought of as a command
output in wave variable form from the controller.

The power junction in Fig. 1 is an abstraction used to interconnect wave
variables from multiple controllers and multiple plants in parallel such that the
total input power is always greater than or equal to the total output power.
This provides a formal way to construct a networked control system. The power
junction makes it possible for a single controller to control multiple plants over
a network and guarantee that the overall system remains stable. A detailed
mathematical definition of the power junction can be found in [6]. In Fig. 1,
the power junction has waves entering and leaving as indicated by the arrows.
The waves entering the power junction from the controller are the network-
delayed version of the waves leaving the controller, as indicated by the time
delay block. Also, the waves entering the controller are the delayed version of
the waves leaving the power junction. Likewise, the waves entering the plant are
the delayed version of waves leaving the power junction and the waves entering
the power junction are the delayed version of waves leaving the plant.

Fig. 2. The passive upsampler and passive downsampler.

Due to bandwidth constraints, the controller typically runs at a slower rate
than the sensors and actuators of the plants. In order to preserve passivity in the
multi-rate digital control network we use the passive upsampler (PUS) and pas-

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 30

sive downsampler (PDS) pair to handle the data rate transitions. Fig. 2 depicts
the passive upsampler (PUS) and passive downsampler (PDS). wo(i) denotes a
discrete wave variable going out of a wave transform block. For example, in Fig.
1, vc1(i)and up2(i), the wave variables going out of the Bilinear Transformation
block, are each connected as wo(i) to their respective downsampler blocks. Sim-
ilarly, wi(i) represents the respective discrete wave variable going into a wave
transform block. uc1(i) and vp2(i), correspond to the wi(i) connections in Fig.
2. The PUS and PDS provide the upsampled and downsampled versions of their
respective wave variable inputs while preserving passivity. The block parameter
M is the sampling ratio – the data rate of the fast side of the connection divided
by the data rate on the slow side.

3 PaNeCs

We introduce the passivity-based modeling language (PaNeCS). The modeling
language is developed using a meta-configurable tool, the Generic Modeling En-
vironment (GME), from the Model Integrated Computing (MIC) tool suite [13].
GME provides a metamodeling environment similar to UML. The class stereo-
types are defined as follows: Models are entities that may contain other objects
while Atoms are indivisible entities which cannot contain other objects; Con-
nections are association classes used to describe the relationship between two
entities. It represents a line that connects two entities of a model. Connectors
signified by “.” specify a visualization for a connection in the model. Associa-
tions to the connector have possible roles (“src” and “dst”) to define the allowed
direction of a connector.

3.1 Components

The language top level consists of four main components: the PlantSystem,
the ControllerSystem, the PowerJunction and the WirelessNetwork.

PlantSystem Fig. 3 shows a part of the PaNeCS metamodel that describes
the plant subsystem. Plant represents a model for any discrete linear time-
invariant (LTI) system and can be extended to a nonlinear system. The dynamics
of the Plant are represented by the following state space equations:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

(1)

The Plant dynamics are parameterized by matrix attributes A, B, C, D, and a
scalar SamplingTime. The attributes can be specified using any valid Matlab ex-
pression that evaluates to the proper dimensions. BilinearTransformP represents
a model for the wave scattering technique for transforming the wave variables
received from the power junction into control input to the plant and for trans-
forming the plant output signal into wave variables that are transmitted over the
network. PassiveUpSampler and PassiveDownSampler pair represent the PUS
and PDS pair discussed in Section 2.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 31

Fig. 3. PlantSystem portion of the Metamodel

ControllerSystem Fig. 4 shows the part of the language that describes the
controller subsystem. DigitalController is a model representing the algorithm

Fig. 4. ControllerSystem portion of the Metamodel

for controlling the networked plants. Similar to the model of the Plant in the
PlantSystem, the DigitalController is modeled as a LTI system and its dy-
namics can also be represented in the state space form of Eq. (1). Therefore, the
DigitalController parameters have similar attributes to the Plant. BilinearTrans-
formC is similar to the BilinearTransformP described in the PlantSystem.
ZeroOrderHold represents a component that holds its input for the time period
specified in the sampling time attribute. ReferenceInput represents the desired

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 32

signal to be tracked by the plants.
Power Junction Fig. 5 shows the part of the language that describes the

power junction. The PowerJunction can contain ports for the connection of the

Fig. 5. PowerJunction portion of the Metamodel

plants and controllers. They are briefly described as follows: PowerInputPower-
Output represents a port through which the PlantSystem connects to the Pow-
erJunction. Through it, the PowerJunction sends calculated control signals
to the PlantSystem and also receives sensor signals from the PlantSystem.
PowerOutputPowerInput represents a port through which the ControllerSys-
tem can connect to the PowerJunction. Through it, the PowerJunction
sends the averaged sensor signal to the ControllerSystem and receives the
calculated control signal from the ControllerSystem.

WirelessNetwork Fig. 6 represents the network and its parameters for the
NCS. The WirelessNetwork model provides modifiable parameters for simu-

Fig. 6. Wireless Network portion of the Metamodel

lation. Data rate sets the throughput for simulating network activity. Disturban-
cePacketSize configures the size of simulated disturbance attack packets on the
network (introduces delays). This provides a way for simulating the NCS under
non-optimal conditions. DisturbancePeriod configures the frequency of distur-
bance attacks on the network.

3.2 Language Aspects

Our modeling language has two aspects (GME aspects are similar to modeling
views in other tools): Control Design Aspect and Platform Aspect. The

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 33

Control Design Aspect visualizes the controller modeling layer. This includes
the plants, controller, and power junction, as well as their interconnections –
indicating the flow of control and sensor signals.
The Platform Aspect visualizes the physical platform layer. This model view
shows the physical components of the NCS. The entities in this view include
the plants, controller, and the wireless network as well as their interconnections
indicating the flow of data packets over the network. Though the plants and
controller appear in both aspects, in the Platform aspect they represent physical
entities rather than control design concepts.

3.3 Structural Semantics

The main objective of our language design is to ensure the “correctness-by-
construction” for passive designs of NCS designed using PaNeCS. In order to
achieve this objective, we impose constraints on the properties of components
of NCS as well as their interconnections. The metamodel notations described
above does not capture all the required structural constraints. Using the Object
Constraint Language (OCL), we can describe well-formedness rules for defining
precise control of static semantics of the language. GME is embedded with an
OCL engine which can be used to define constraints that are enforced at design
time, giving direct feedback when the user attempts to create faulty connections
in the model or violates any of the specified constraints. In Section 4, we will
describe an analysis tool that is used to verify that system components satisfy
the component-level passivity constraints.

We implemented three classes of constraints: Cardinality Constraints, Con-
nection Constraints and Unique Name Constraints. Cardinality Constraints en-
sure that the required and correct number of components are used in the NCS
design. For example, for each PlantSystem model there must be one Plant.
Connection Constraints restrict the number of allowable connections between
components. For example, in the PlantSystem model there can be only one
bidirectional connection between the Plant and BilinearTransformP. Unique
Name Constraints ensure the uniqueness of the names of components in the
Plant and Controller subsystems as well as in the top level model of the NCS.

An example of an OCL constraint implementation is shown below. This spec-
ifies that the number of allowable connections from a BilinearTransformC model
to a DigitalController to be one.

Desc r ip t i on : There must be only one b i d i r e c t i o n a l connect ion
between Bil inearTransformC to the D i g i t a lCon t r o l l e r

Equation : l e t dstCount = . . .
s e l f . a t tach ingConnect ions (” s r c ” , C on t r o l l e r B i l i n e a r)−> s i z e in
dstCount <> 0 implies dstCount = 1

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 34

3.4 Operational Semantics

NCS modeled in PaNeCS are implemented in MATLAB/Simulink using models
generated by an integrated code generator which is discussed in Section 5.

The Plant and DigitalController entities are implemented as Simulink blocks
that model the behavior of each entity based on user-specified parameters. The
PlantSystem and ControllerSystem are modeled as Simulink subsystems.
In order to model the behavior of a real network, Simulink is extended with
TrueTime as described previously.

Each PlantSystem and ControllerSystem are connected to a TrueTime
Kernel block. The TrueTime Kernel essentially represents each subsystem as
a node in the network. It is responsible for I/O and network data acquisition
as well as implementing other user-defined tasks, and models the computer or
processor on which the subsystem is implemented. The task in each TrueTime
kernel connected to a PlantSystem is performed periodically based on the
specified sampling time of the subsystem. For this version of our language, the
PowerJunction is implemented as a task in the TrueTime Kernel connected to
the ControllerSystem. The task that implements the power junction operates
based on the occurrence of an event such as the arrival of sensor data or control
signal. Each TrueTime kernel has two main scripts: 1) The Initialization script
specifies the number of inputs and outputs, the function code name and also
indicates the kernel’s node id which is used to identify the kernel on the net-
work. 2) The function script essentially implements the user specified task such
as sending and receiving of wave variables over a network. The function code for
the TrueTime kernel connected to the ControllerSystem also performs the ad-
ditional task of implementing the PowerJunction. Hence, the PowerJunction
sends and receives wave variables from the ControllerSystem locally while the
PlantSystem sends and receives wave variables from the power junction over
the simulated wireless network.

The wireless network is implemented using the TrueTime Wireless network
block. It simulates the network dynamics, implementing the transfer of data
packets over a wireless network from one node to another. It essentially simulates
the routing of data received from the TrueTime kernels over the wireless network
to their respective destination.

In a typical cycle of operation of the NCS, the wave variables from a PlantSys-
tem or multiple PlantSystems are computed and sent to the PowerJunction
from each TrueTime kernel. The received wave variables are sent to the Con-
trollerSystem to compute the control signal which is then sent back to the
PlantSystems.

4 Passivity Analysis

4.1 Component Analysis

In order to achieve the desirable properties observed in passive systems, we have
to analyze the components of the networked control system and make sure they
satisfy passivity constraints.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 35

The analysis of the Plant and DigitalController components of the networked
control system for passivity is done automatically by an integrated Matlab anal-
ysis function. Each component is assumed to have a linear time-invariant (LTI)
discrete-time model, so we use LMIs together with the CVX semidefinite program-
ming tools for Matlab [14, 15]. On invocation (i.e. the modeler presses a button),
a C++ model interpreter within GME [13] visits each component, and invokes
the analysis function. Any components failing the passivity test are reported to
the user.

The dynamics of the Plant and DigitalController models can each be defined
by Eq.(1) and are characterized by the matrices A, B,C, D of size compatible
with the number of inputs and outputs in the system and the number of states
in the model. The passivity constraints for these models is defined by Linear
Matrix Inequality (LMI) constraints [16]. For example, a LMI formula for strict
output passivity for an LTI digital controller is given by

[
AT PA− P − Q̂ AT PB − Ŝ

(AT PB − S)T −R̂ + BT PB

]
� 0

Q̂ = CT QC, Ŝ = CT S + CT QD

R̂ = DT QD + (DT S + ST D) + R

∃ε > 0, Q = −εI, R = 0, S =
1
2
I

(2)

The CVX semidefinite programming (SDP) tool is used in a Matlab script to
solve the LMI for each component.

4.2 System-Level Analysis

Due to the “correct-by-construction” approach we use in designing networked
control, we only analyze the Plant and DigitalController elements for passivity.
If the Plant and DigitalController both satisfy the passivity constraints, the
network control system as whole also satisfies the passivity principles.

The realization of the power junction element enforces some simple mathe-
matical constraints which ensure passivity for interconnected components at run-
time. These effects are also captured in the simulation of the power junction, so
simulation should reveal any destabilizing effects. Further, the component inter-
connections are restricted in such a way that they are “correct-by-construction”.
Only valid (parallel) connections are allowed to the power junction, so any inter-
connected system of passive components in the language will be globally passive.
The modeling language and its constraints encode the passive composition se-
mantics, greatly reducing the analysis burden for determining passivity (and
hence stability [6], [9], [17]) of the composed system design.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 36

5 Code Generation

The main objective of the code generator is to generate MATLAB code that
maps the models designed using the modeling language to Simulink models that
represent the networked control system.

We developed a model interpreter that is used to synthesize simulation code
from an instance model of the passivity based modeling language. The interpreter
is developed in C++ using the Builder Object Network (BON2) API provided
with GME [13]. The interpreter traverses all the entities of a particular networked
control system instance model and extracts model parameters. These parameters
and model structure are used to generate MATLAB files for configuring and
building Simulink and TrueTime models to simulate the NCS.

The model interpreter creates translation rules between models and desired
outputs. The entities in the instance model each map to a set of equivalently-
defined components in Simulink and components from an advanced Simulink
passivity-based control library. For example, the Plant and DigitalController
entities discussed in Section 3 each map to an equivalent discrete state-space
Simulink block. For these two entities the parameters for the equivalent Simulink
blocks are instantiated using the parameter values entered by the user describ-
ing the dynamics of the entities. These parameters include the A, B, C and D
matrices as well as the sampling time.

6 Case Study

We introduce a case study to demonstrate our design approach and also show
that networked control systems designed using this approach are robust and
remain stable when subject to uncertain network effects.

We created a networked control system which involves the control of two
discrete plants using a single controller. The controller controls the two discrete
plants to track a specified reference signal. The goal of the experiment was to
model the network control system and generate a simulation of the behavior
of the system. Although we used only two discrete plants for this case study,
PaNeCS can model and simulate an arbitrary number of plants.

Fig. 7a and 7b respectively show the control design and platform aspects
of the instance model respectively. Also, Fig. 7c shows the details of the plant
system while Fig. 7d show the details of the controller system. The two plants
modeled in the experiment are simple integrators (corresponding to physical
models of inertial masses of 2kg and .25kg respectively) which are discretized.
The plants’ dynamics were modeled in state space form and the corresponding
A, B, C and D matrices as well as the sampling time, Ts were provided as
parameters to the instance model.

We used a proportional controller as the digital controller to command the
plants to track a user-specified reference. The digital controller was also modeled
in state space form and the A, B, C and D matrices and also the sampling time,
Ts were provided as input parameters to the instance model. The parameters for

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 37

(a) Control Design Aspect

(b) PlatformAspect

(c) Plant Subsystem

(d) Controller Subsystem

Fig. 7. Sample Model of a Networked Control System

the dynamics of the plants and controller are provided in Table 1. The analysis
tool checked and verified that the Plant and DigitalController models satisfied
the passivity constraints. Then the code generator was used to generate code for
creating a platform-specific Simulink simulation model from the parameters and
design models in the modeling language.

PaNeCS provides the flexibility to easily model networked control systems
using passivity and more quickly configure the model parameters of the system
for many different adaptations. Using PaNeCs we tested the dynamics of the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 38

NCS by running different experiments under different network conditions by ad-
justing parameters in the language and then generating code for simulating each
configuration of the model. Table 2 shows the parameters for the simulations.

Experiment 1: Nominal Conditions In experiment 1, the system operated
without the introduction of disturbance attacks. The three sample periods con-
sidered were 0.1s, 0.5s and 1s. The data rates were achieved by modifying the
Sample, M parameters of the PassiveUpSampler and PassiveDownSampler enti-
ties. We only present plots for the results of the NCS having a sample period of
0.1s. Fig. 8 displays the velocity of the plants and the reference velocity provided
to the controller. The plants closely tracked the reference velocity. The round
trip delay for each plant seemed to have very little effect on the stability of the
plants’ velocity response. The delay can be attributed to the internal processing
of the plants and controllers rather than network delay itself.

Table 1. Plant and Controller Dynamics.

A B C D Ts

Plant1 1 1 .005 .0025 .01s

Plant2 .996 1 .04 .02 .01s

Controller 0 0 0 10π .1s

Fig. 8. Nominal velocity response and time delays (Data rate=0.1s)

Experiment 2: Network disturbances In experiment 2, a disturbance attack
was introduced in the network. A disturbance node is configured using the Dis-
turbancePeriod and DisturbancePacketSize from the WirelessNetwork model.
Disturbance packets were sent over the network based on the value of a uniformly
generated random number. Similar to Experiment 1, three different sample rates
were tested, but we only present the results for the 0.1s sample period. Fig. 9
shows the velocity response of the plants and the time delay for each plant. The

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 39

results show that even in the presence of disturbance attacks, the plants remain
stable in tracking the reference velocity. This demonstrates the advantage of the
passivity approach we use in designing networked control systems which guar-
antees the stability of the NCS in the presence of uncertainties due to network
effects.

Fig. 9. Velocity response and time delays with disturbance attack (Data rate=0.1s)

Table 2. Simulation Parameters Summary.

Sample Periods

0.01s 0.05s 0.1s

Plant1,M 10 50 100

Plant2,M 10 50 100

Disturbance Ts = 0.01 Packetsize = 110, 000bits

7 Conclusion and Future Work

Our model-based approach simplifies the process of designing passive networked
control systems. We presented PaNeCS, a prototype modeling language for that
purpose. We have presented an analysis tool that is used to test system com-
ponents for passivity. We have also described model interpreters that generate
code for simulation in MATLAB/Simulink using the TrueTime platform model-
ing toolbox. A case study involving the control of multiple discrete plants over
a wireless network was used to demonstrate the details of models generated us-
ing the modeling language as well as the resulting simulation of the generated
networked control system. The results showed that a networked control system
could be designed using our approach which is robust and insensitive to un-
certainties due to a few particular network effects. Our future work focuses on
two major directions: (i) extending the language to include nonlinear and more
complex systems,(ii) generating executables for deployment on actual systems.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 40

References

1. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (Jan. 2003)

2. Porter, J., Karsai, G., Volgyesi, P., Nine, H., Humke, P., Hemingway, G., Thi-
bodeaux, R., Sztipanovits, J.: Towards model-based integration of tools and tech-
niques for embedded control system design, verification, and implementation. In:
Workshops and Symposia at MoDELS 2008, Springer LNCS 5421, Toulouse, France

3. AS-2 Embedded Computing Systems Committee: Architecture analysis and de-
sign language (aadl). Technical Report AS5506, Society of Automotive Engineers
(November 2004)

4. Hudak J. and Feiler P.: Developing aadl models for control systems: A practitioner’s
guide. Technical Report CMU/SEI-2007-TR-014, CMU SEI (2007)

5. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Paserone, C., Sangiovanni-
Vincentelli, A.L.: Metropolis: an integrated electronic system design environment.
IEEE Computer 36(4) (April 2003)

6. Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P., Sztipanovits, J.: Digital
control of multiple discrete passive plants over networks. Intl. Journal of Systems,
Control and Communications, Special Issue on Progress in Networked Control
Systems (2009)

7. The MathWorks, Inc.: Simulink/Stateflow Tools. http://www.mathworks.com
8. Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 Reference Man-

ual. Dept. of Automatic Control, Lund University, Sweden. (January 2007)
http://www.control.lth.se/truetime/.

9. Kottenstette, N., Antsaklis, P.J.: Stable digital control networks for continuous
passive plants subject to delays and data dropouts. In: Proceedings of the 46th
IEEE Conference on Decision and Control. (2007) 4433 – 4440

10. Fettweis, A.: Wave digital filters: theory and practice. Proceedings of the IEEE
74(2) (1986) 270 – 327

11. Secchi, C., Stramigioli, S., Fantuzzi, C.: Digital passive geometric telemanipulation.
In: IEEE Intl. Conference on Robotics and Automation. (2003) 3290 – 3295

12. Berestesky, P., Chopra, N., Spong, M.W.: Discrete time passivity in bilateral
teleoperation over the internet. In: IEEE International Conference on Robotics
and Automation. (2004) 4557 – 4564

13. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., IV, C.T., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. Workshop on
Intelligent Signal Processing (May 2001)

14. Grant, M., Boyd, S.: Cvx: Matlab software for disciplined convex programming.
http://stanford.edu/ boyd/cvx (February 2009)

15. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs.
Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer
Lecture Notes in Control and Information Sciences (2008) 95–110

16. Kottenstette, N., Antsaklis, P.J.: Time domain and frequency domain conditions
for passivity. Technical Report ISIS-2008-002, Institute for Software Integrated
Systems, Vanderbilt University and University of Notre Dame (November 2008)

17. Kottenstette, N., Koutsoukos, X., Hall, J., Antsaklis, P.J., Sztipanovits, J.:
Passivity-based design of wireless networked control systems for robustness to time-
varying delays. RTSS (December 2008) 15–24

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 41

Formal Design Models for Distributed Embedded

Control Systems

Christo Angelov, Krzysztof Sierszecki, Yu Guo

Mads Clausen Institute for Product Innovation

University of Southern Denmark

Alsion 2, 6400 Soenderborg, Denmark

{angelov, ksi, guo}@mci.sdu.dk

Abstract. The paper presents a formal specification of the software design

models used in COMDES-II – a component-based framework for distributed

control systems, featuring open architecture and predictable operation under

hard real-time constraints. In this framework, an application is modelled as a

network of distributed embedded actors that communicate transparently by

exchanging labeled messages (signals), independent of their allocation on

network nodes. Actors are configured from prefabricated executable

components such as modal function blocks controlled by a master state

machine, whereby actor structure is specified by a data flow model (function

block network). Accordingly, actor behaviour is specified by composite

functions representing signal transformations - from input to output signals, and

system behaviour - by actor-level composite functions representing the overall

sequence of computation – from system input to system output signals. Input

and output signals are exchanged with the controlled plant at precisely specified

time instants in accordance with the concept of Distributed Timed Multitasking,

resulting in the elimination of transaction I/O jitter. System operation is

ultimately described by a clocked synchronous model of computation featuring

communicating actors, atomic (zero-time) execution of input and output actions

and constant, non-zero execution time of system reactions.

Keywords: distributed control systems, component-based design of embedded

software, domain-specific frameworks, correct-by-construction systems

1 Introduction

Nowadays, embedded software development is still dominated by conventional design

methods and manual coding techniques. However, these are not able to cope with

continuously growing demands for high quality of service, reduced development and

operational costs, reduced time to market, as well as ever growing demands for

software safety and dependability. In particular, software safety is severely affected by

design errors that are typical for informal design methods, as well as implementation

errors that are introduced during the process of manual coding.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 43

This situation has stimulated the development of new software design methods

based on formal design models (frameworks) specifying system structure and

behaviour, which can be verified and validated before the generation of the program

code [1, 2]. Furthermore, model-driven development can be combined with

component-based design, whereby design models are implemented by means of

reusable and reconfigurable components. Thus, embedded applications can be

configured using repositories of prefabricated and validated components (rather than

programmed), whereby the configuration specification is stored in data structures

containing relevant information such as component parameters, input/output

connections, execution sequences, etc. Hence, it is possible to reconfigure applications

by updating data structures rather than reprogramming and reloading the entire

application.

The main problem that has to be addressed with this method is to develop a

comprehensive, yet intuitive and open framework for embedded systems. There are a

considerable number of frameworks developed in the traditional Software Engineering

domain that employ components with operational interfaces as well as various types of

port-based objects, e.g. actor frameworks [4-8]. However, it can be argued that the

architecture of the framework (i.e. models used to specify component functionality,

interfacing and interaction) should be derived from areas such as Control Engineering

and System Science, taking into account that modern embedded systems are

predominantly control and monitoring systems. This approach has been used for some

time with industrial control systems, whose software is built from component objects

(function blocks) that implement standard application functions and interact by

exchanging signals. Accordingly, function blocks are „softwired‟ into function block

networks that are mapped onto real-time control tasks, e.g. standards IEC 61131-3 [10]

and IEC 61499 [11].

Unfortunately, this is a relatively low-level approach, which is inadequate for

modern embedded applications. These vary from simple controllers to highly complex,

time-critical and distributed systems featuring autonomous subsystems with

concurrently running activities (tasks) that have to interact with one another within

various types of distributed transactions. The above standards do not provide modeling

techniques and component definitions at this level and do not define concurrency,

whereby the mapping of function block networks on real-time tasks, as well as task

scheduling and interaction are considered implementation details that are not a part of

the standard.

In order to overcome the above problems, the Control Engineering models must be

augmented with concepts and techniques developed in the Computer Science domain

(concurrency, scheduling, communication, state machines, etc.), as advocated by

leading experts in the area of Embedded Software Design, e.g. [2], [3]. The resulting

framework must support compositionality and scalability through a well-defined

hierarchy of reusable and reconfigurable components, including both actors and

function blocks. On the other hand, it has to adequately specify system behaviour for a

broad range of sequential, continuous and hybrid control applications.

These guidelines have been instrumental in developing the framework COMDES-II

[13]. This is a domain-specific framework for time-critical distributed control

applications, featuring a hierarchical component model as well as transparent signal-

based communication at all levels of specification. In COMDES-II, an embedded

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 44

application is composed from actors, which are configured from prefabricated function

blocks. This is an intuitive and simple model that is easy to use and understand by

application experts, i.e. control engineers.

An informal description of the above component models is given elsewhere [13].

This paper presents a formal specification of COMDES-II design models focusing on

two interrelated aspects, i.e. system structure and behaviour. It is organized as follows:

Section 2 presents a top-down specification of system structure in terms of data flow

models describing actors and actor interactions, as well the internal structure of actors,

which are composed of prefabricated function blocks. Section 3 presents a bottom-up

specification of system behaviour starting with function block behaviour, followed by

actor behaviour and finally - system behaviour. These are defined as composite

functions specifying signal transformations - from input to output signals - of function

blocks, actors and the system itself, respectively. Section 4 presents related research.

The concluding section summarizes the main features of the framework and their

implications for a software development process aimed at designing systems that are

correct by construction.

2 Specification of System Structure

2.1 COMDES-II Design Models - an Introduction

In COMDES-II, an embedded system is conceived as a composition of active objects

(actors) that communicate via labelled state messages (signals) encapsulating process

variables, such as speed, pressure, temperature, etc. Communication is transparent, i.e.

independent of the allocation of actors on network nodes. Accordingly, the system can

be modelled by an actor network specifying constituent actors and the signals

exchanged between them (see e.g. Fig. 1).

Command Entry

Sensor Controller ActuatorPulses Voltage

Sensor
Speed

Controller
Voltage

O
St

at
io

nM
od

e

O
St

at
io

nM
an

ua
lV

ol
ta

ge

O
St

at
io

nS
pe

ed

O
St

at
io

nP
ar

am
et

er
s

Visualization Unit

Fig. 1. COMDES-II actor network – an example: the DC Motor Control System

An actor is modelled as an integrated circuit consisting of a signal-processing block,

which is mapped onto a non-blocking (basic) task, as well as input and output signal

drivers that are used to exchange signals with other actors and the outside world (see

Fig. 2). Actor tasks are configured from function blocks (FBs) and are modelled by

function block networks. A function block is a reusable executable component that

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 45

may have multiple instances within a given configuration. There are four kinds of

function block: basic, composite, state machine and modal function blocks that can be

used to implement a broad range of sequential, continuous and hybrid applications.

OStationManualVoltage

Digital
control ControllerVoltage

OStationMode

OStationParameters

SensorSpeed

OStationSpeed

voltage1 1

PIDParam1 5

setRPM1 4

realRPM1 3

manual
voltage1 2

mode1 1

Output signal driversSignal processing block (task)Input signal drivers

Local signals

Fig. 2. COMDES-II Controller actor

Basic function blocks have simple stateless behaviour, which is specified by

functions defining signal transformations - from input signals to output signals (e.g. a

PID controller function block). Complex stateful behaviour is implemented with modal

function blocks (MFBs). These may be viewed as a generalization of stateless function

blocks: a MFB has a number of operational modes where each mode encapsulates one

or more FB instances used to execute a control action associated with that mode. A

modal function block receives indication of current mode from a supervisory state

machine (SSM), whereby it executes the corresponding control action, in the context of

a continuous or sequential control actor, e.g. manual/automatic control of DC motor

rotation speed (see Fig. 3). A function block network may be encapsulated into a

composite function block, which can be subsequently reused as an integral component.

MFB

SSM
1

1
mode

2

3

5

setRPM4

3

manual voltage2

mode1

realRPM

voltage

1

2
3

5
4

1 1

PIDParam

Fig. 3. The Digital control task composed of state machine and modal function blocks

Signal drivers are a special class of component - these are wrappers providing an

interface to the system operational environment by executing kernel- or hardware-

dependent functions. Specifically, signal drivers can invoke kernel primitives to

transparently broadcast and receive signals, independent of the allocation of sender and

receiver actors on network nodes [14].

A detailed informal description of the above component models is given elsewhere

[13]. The following discussion presents a formal specification of COMDES-II

components and component configurations. The latter takes into account the two levels

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 46

of the framework, i.e. system and actor levels, which are treated in a top-down fashion.

At the top level, the system is described as an actor network - a data flow model

involving system actors and the global signals exchanged between them, as well as a

definition of the signals in terms of identifiers and constituent signal variables. At the

next level, each system actor is described by a function block network, i.e. a data flow

model involving constituent function blocks and the local signals exchanged.

2.2 Distributed Control System Specification

A distributed embedded control system (ECS) is modelled as an actor network:

ECS = < A, S, C > , (1)

where A is the set of system actors, S is the set of system signals and C is the set of

channels used to exchange signals between actors. The set of system actors A consists

of environment actors Aenv modelling the plant, and control actors Acon operating in a

distributed system environment:

A = Aenv Acon . (2)

The set of system signals S can be represented as:

S = Sin Scom Sout , (3)

where Sin is the subset of physical input signals, Scom is the subset of signals (messages)

exchanged over the communication network, and Sout is the set of output physical

signals. Furthermore, si S: si = < Idi, Vi >, where Idi is a signal identifier and Vi is a

set of signal variables defined in terms of variable names and the corresponding data

types:

Vi = { < s
i
1: type

i
1>, < s

i
2: type

i
2>, … , <s

i
ki: type

i
ki > } , (4)

e.g. signal OStationParameters consisting of PID parameters, such as proportional,

integral and derivative gain values (see Fig. 2).

The communication relationship between actors is specified in terms of channels

that are defined by a source - signal - destination relation:

C A S 2
A

, (5)

e.g. one of the channels depicted in Fig. 1, which is specified by the tuple < Sensor,

Sensor_Speed, {Controller, Vizualization_Unit} > .

In an actual implementation, control actors will be allocated to network nodes, and

channels – to the network communication channel and physical I/O channels. The

subsequent discussion assumes a real-time network with predictable message latency,

such as CAN, which has been used for the experimental validation of COMDES-II.

A system control actor can be defined as:

acon = < X , Lin, NFB, Lout, Y > , (6)

where: X is the set of input signals received by the actor, X S, Lin is an input signal

latch, NFB is a signal-processing network of function blocks, Lout is an output signal

latch and Y is a set of output signals generated by the actor, Y S.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 47

The input latch is used to receive input signals and decompose them into input

signal variables constituting the set V, which may be viewed as local signals that are

processed by the function block network. The latter computes output variables

constituting the set W, which are used to compose the output signals generated by the

output latch (see e.g. Figs. 2 and 3).

The I/O latches are composed of communication objects called signal drivers,

denoted as D
in
 and D

out
. In particular:

Lin = { D
in

i }; D
in

i : s
in

i Vi , Vi V ,

Lout = { D
out

i }; D
out

i : Wi s
out

i , Wi W ,
(7)

where Vi and Wi denote the constituent variables of the corresponding I/O signals s
in

i

and s
out

i , respectively.

The I/O latches are activated at the release and deadline instants of the actor task.

This is a basic (non-blocking) task, whose internal structure is specified as a function

block network performing the transformation of input signal variables into output

signal variables: V W.

The FB network is modelled by an acyclic data flow graph (see e.g. Fig. 3), which

can be defined as follows:

NFB = < B, Z, Con > , (8)

where B is a set of function blocks (FBs), Z is a set of FB network variables and Con is

the set of FB network connections.

A function block performs the signal transformation X Y, where X is the set of

FB input variables, X Z, and Y is the set of FB output variables, Y Z.

Specifically, a function block can be defined as:

FB = < X, Y, P, F > , (9)

where X, Y and P denote input, output and persistent variables, respectively and F is a

set of functions.

Input variables X are generated by input drivers or other function blocks, X Z.

These are used together with persistent variables to compute output variables Y,

Y Z. Persistent variables P represent the internal state of the function block, which

is retained from one execution to the next, e.g. various types of controllers, filters, etc.

[10]. Simple function blocks may not have internal state, e.g. arithmetic function

blocks, comparators. Output variables are computed by functions f F that are

defined as y = f(x, p), where y Y, x X and p P.

The variables constituting the set Z may be viewed as local signals associated with

the function block network:

Z = V I W , (10)

where the input signal variables V are generated by input drivers and processed by

function blocks; internal variables I are generated and processed by function blocks;

output signal variables W are generated by function blocks and used by output drivers

to compose output signals (see e.g. Fig. 3).

FB network connections are used to wire function blocks with input and output

signal drivers, and with each other. The corresponding set can be specified as a union

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 48

of subsets denoting input, internal and output connections: Con = Conin Conint

Conout . These are defined as source - local signal - destination relations as follows:

Conin Lin V B ,

Conint B I B ,

Conout B W Lout ,

(11)

e.g. the connection represented by the tuple < SSM, mode, MFB > shown in Fig. 3.

3 Specification of System Behaviour

3.1 COMDES-II Model of Computation – an Introduction

System operation is specified in terms of distributed transactions executed in

accordance with a model of computation known as Distributed Timed Multitasking

[12, 13], which is presently supported by the distributed real-time kernel HARTEXμ

[14]. The distributed transaction involves a number of actors that execute transaction

phases by invoking sequences of function blocks within the corresponding actor tasks.

Actors interact with each other by exchanging labelled state messages (signals) using

dedicated communication objects (signal drivers) that provide for transparent one-to-

many communication between the actors involved.

Distributed Timed Multitasking (DTM) combines the concepts of Timed

Multitasking [5] and transparent signal-based communication. With this model, it is

assumed that signal drivers are short pieces of code that are executed atomically in

logically zero time at precisely specified time instants, which is typical for control

applications. Specifically, input signal drivers are executed when the actor task is

released, and output drivers - when the task deadline arrives or when the task comes to

an end, if it has no deadline (see Fig. 4). Consequently, task I/O jitter is effectively

eliminated as long as the task comes to an end before its deadline.

Fig. 4. Actor execution under Distributed Timed Multitasking

Jitter-free operation can be extended to distributed systems, e.g. a phased-aligned

transaction involving the actors Sensor (S), Controller (C) and Actuator (A) from

Fig. 1, which are triggered by a periodic timing event, such as a synchronization (sync)

message denoting the initial instant of the transaction period (T), with deadline D ≤ T

Actor task release event

Input drivers

Input signals

task

preemption
Output drivers

Output signals

jitter

Deadline

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 49

(see Fig. 5). In this case, input and output signals are generated at transaction start and

deadline instants, resulting in the elimination of transaction I/O jitter.

ti
k to

k to
k+1ti

k+1

I/O

actuator

c → a

controller

s → c

sensor

OStationSync

deadline event

message arrival event

T

D (D ≤ T)

Fig. 5. Jitter-free execution of distributed transactions

The following discussion presents a formal specification of system operation, taking

into account the adopted model of computation and the model of system structure

developed in the preceding section.

3.2 Specification of Function Block Behaviour

Function block operation is specified with simple and/or composite functions from FB

input variables x(k) to FB output variables y(k), x X, y Y, assuming periodic

execution of system actors and constituent function blocks, which are invoked at time

instants kT, k = 1, 2, …... , where T is the execution period of the host actor.

Basic function blocks implement standard signal-processing functions, such as:

y(k) = f(x(k)) - with simple FBs implementing various kinds of

mathematical operations, comparators, etc.

(12)

y(k) = f(x(k), p(k-1), p(k-2), … p(k-l)) - with FBs having persistent state, (13)

where the state is defined in terms of one or more persistent variables p(k-1), p(k-2),

…., p(k-l), retained from previous periods 1, 2 …, l and updated during each period (as

specified by the concrete FB algorithm, e.g. the discrete-time versions of filters,

various control algorithms, etc. [10]).

A composite function block (CFB) encapsulates a FB network whose behaviour is

described with one or more functions such as y(k) = f(x(k)) , where f is a composite

function specifying the transformation of signals from CFB inputs to CFB outputs,

which is defined in terms of the functions executed by the constituent function blocks.

Assuming that the CFB encapsulates a sequence of r function blocks, this function can

be represented as:

f = fr ◦ fr-1 ◦ ◦ f1 , or using another notation: y(k) = fr (fr-1 (... (f1(x(k)))...)) (14)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 50

In the general case, this function will have a different expression for each particular
configuration of the FB network, which has to be always modelled by an acyclic data
flow diagram. However, cycles are allowed at actor level but these are effectively
broken by one-period delays due to the adopted clocked synchronous model of
computation (see below).

The supervisory state machine (SSM) implements the reactive aspect of actor

behaviour, in separation from the transformational (signal processing) aspect, which

is delegated to the modal function block. The SSM generates two output signals - m

and u, meaning mode and mode-updated, which are specified by the corresponding

functions:

m(k) = f (m(k-1), e(k), pr(e(k)) - a mode transition function, and

u(k) - a Boolean function, which is defined as follows:

u(k) = true when m(k) ≠ m(k-1), i.e. when a mode transition has taken place,

u(k) = false when m(k) = m(k-1), and no transition has taken place.

(15)

In the above expression e(k) denotes a transition trigger, i.e. an event specified as a

Boolean expression involving binary input signals that are present at time kT, T is the

period of the host actor, and pr(k) is the priority of the event triggering the transition

from m(k-1) to m(k).

The modal function block (MFB) implements the signal processing aspect of actor

behaviour by executing constituent function blocks within the corresponding modes of

operation. These compute control signals yi, i = 1, 2, …, r, by invoking signal

transformation functions f1, f2, …., fr – from input to output signals. Subsets of these

functions are selected for execution, depending on the mode and mode-updated input

signals indicated by the state machine function block, such that:

yi Ap , yi(k) = fi(x(k)) , and yi Aq, q p, yi(k) = yi(k-1) - when m(k) = p

and u(k) = true;

yi , yi(k) = yi(k-1) - when u(k) = false ,

(16)

where Ap denotes the control action, i.e. the subset of control signals generated in mode

p, and fi is the function executed by the corresponding function block(s) in order to

generate the signal yi, yi Ap. For instance, the control signal voltage of Fig.3 will be

generated by a PID function block if mode has been updated to automatic.

The composition of supervisory state machine and modal function block operates as

a periodically executed event-driven state machine whose operational semantics and

implementation are presented in [15]. This state machine is invoked within a

periodically executing host actor but a state transition takes place only when the

corresponding transition trigger is present, much in the same way as event-driven state

machines triggered by external interrupts.

3.3 Specification of Actor Behaviour

Actors generate reactions to execution triggering events in the form:

e Ye , (17)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 51

where Ye Y, Ye being the set of output signals generated by the actor in response to

the execution trigger e. The latter may be a local timing event ↑(kT), a global timing

event ↑sync(kT) generated by a periodic synchronization message or an external event

↑xtrigger , where xtrigger is one of the actor input signals (e.g. a message arrival event)1.

Actor output signals y Y are specified by functions of input signals x X that are

latched by input drivers at the time of input tin. With periodic actors triggered by local

or global timing events tin = kT, k = 0, 1, 2, …

Output signals are composed of output signal variables generated by the actor FB

network, which has a zero logical execution time (LET). Hence, the output signal

variables are logically related to the input time instant kT:

w(k) = φ(v(k)) , (18)

where φ is a composite function – from input signal variables v V to output signal

variables w W that constitute actor input signals x and output signals y, respectively.

With actors having purely transformational behaviour, φ can be defined like a CFB

function, e.g.:

φ = fr ◦ fr-1 ◦ ….. ◦ f1 , (19)

where fi are basic and/or composite signal-transformation functions executed by

constituent function blocks, i = 1, 2, …, r.

With complex actors built from supervisory state machines coupled to modal

function blocks, each mode generates certain control signals specified by the

corresponding functions, for example:

w1(k) = φ
1
 (v(k)) - generated in mode 1

w2(k) = φ
2
 (v(k)) - generated in mode 2

.............................

ws(k) = φ
s
 (v(k)) - generated in mode s

(20)

In this case, for each φ
i
, φ

i
 = fi ◦ m , where m is the mode transition function of the

SSM function block and fi(v(k)) is the signal transformation function executed by the

modal function block when the supervisory state machine has indicated that m(k) = i.

In the general case:

φ
i

 = fi ◦ m ◦ g ,
(21)

where g denotes a pre-processing function. The latter is executed by a pre-processing

(basic or composite) function block, generating a transition-trigger signal for the

supervisory state machine (e.g. various types of arithmetic, comparators, counters, etc.)

The output variables generated by the actor task are used to compose output signals,

which are latched into the output drivers at the time of output:

y(tout) = φ(x(tin)) , tout = tin+ D = kT + D, k = 0, 1, 2, … ; 0 ≤ D ≤ T , (22)

Hence:

y(kT + D) = φ(x(kT)) , (23)

1 Bold symbols denote actor-level events and input/output signals.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 52

and the actor as a whole has a clocked synchronous semantics [19], chracterized by a

non-zero logical execution time (LET).

In the special case of actor without deadline, it is assumed that D = 0, and tin = tout =

kT. Hence: y(k) = φ(x(k)), and the actor has a perfect synchronous semantics (zero

LET). This is the case with intermediate actors of phase-aligned transactions, where

the deadline is usually associated with the last actor, which has to generate the control

signal at the transaction deadline instant (see next section).

3.4 Specification of System Behaviour

System operation is specified in terms of distributed transactions, such as the

transaction shown in Fig. 5, assuming: 1) Periodic phase-aligned transactions involving

non-blocking basic tasks, such as the one shown in Fig. 5, which are typical for

distributed control applications [18]; 2) Non-blocking signal-based communication;

3) Distributed Timed Multitasking, which is an extension of Timed Multitasking for

distributed transactions.

Under these assumptions, a periodic phase-aligned transaction with a period Ttrans

can be represented as a sequence of transaction phases, involving a number of actors,

which are executed in response to a global timing event ↑sync(kTtrans) represented by

the arrival of a synchronisation (sync) message generated by a sync master node:

↑sync(kTtrans) y1 ; y1 = φ1 (x1) ,

↑x2 y2 ; y2 = φ2 (x2) ,

.....................

↑xn yn ; yn = φn (xn) ,

(24)

where: x1 = xin , x2 = y1, x3 = y2 ,…, xn = yn-1, yn = yout .

Hence, transaction execution can be modelled with a composite function:

Φ = φn ◦ φn-1 ◦ ….. ◦ φ1 , (25)

where φi is the function implemented by the i-th actor, i = 1, 2, …., n.

Taking into account Distributed Timed Multitasking, transaction execution can be

represented as a transformation from input signals xin(tin) to output signals yout(tout),

where tin and tout are determined by the transaction period Ttrans and deadline Dtrans :

↑sync(kTtrans) yout ,

yout (kTtrans + Dtrans) = Φ(xin (kTtrans)); Dtrans ≤ Ttrans .
(26)

For the particular example illustrated by Figures 1 and 5, the behaviour of the

control system can be represented in the form:

Voltage(kTtrans + Dtrans) = Φ(pulses(kTtrans)), Φ = φactuator ◦ φcontroller ◦ φsensor .

In the general case, the distributed system may consist of multiple subsystems

executing distributed transactions with different rates of activation (multi-rate system),

e.g. a multi-loop distributed control system. Accordingly, subsystem actors are

allocated onto network nodes, and subsystem channels – onto the physical

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 53

communication channel(s). This raises the issue of concurrent execution of transaction

tasks/communications within the corresponding operational domains.

Following the adopted model of computation (Fig. 4), actor tasks are executed in a

dynamic priority-driven scheduling environment provided by node-resident kernels,

which are instances of the HARTEXμ timed multitasking kernel [14]. Communication

takes place in a real-time network supporting predictable interactions, such as CAN.

Transparent signal-based communication is supported by a dedicated protocol

provided by the HARTEXμ kernel. With this protocol, signal drivers are executed

atomically at precisely specified time instants that are fixed on the time axis. This

makes it possible to eliminate the undesirable effects of task preemption and network

communication, i.e. transaction I/O jitter, as long as transaction (end-to-end) response

times are less than the corresponding end-to-end deadlines. This requirement can be

checked using response time analysis developed for distributed real-time systems, e.g.

the analysis method and tool presented in [18].

4 Related research

COMDES-II is a follow-on version of COMDES-I [12]. It employs an actor-based

system model, whereby actors are conceived as units of concurrency as well as

functionality (e.g., sensor, controller, actuator, etc.), whereas in the previous version a

system is composed from function units encapsulating multiple threads of control. It

also incorporates a different, i.e. composite state machine model emphasizing the

separation of reactive and transformational (signal-processing) behaviour.

In COMDES-II, system operation is described by the Distributed Timed

Multitasking (DTM) model of computation, which has been inspired by the original

Timed Multitasking model [5] and is similar to the LET model adopted in the xGiotto

language [6]. However, both of these models use port-based communication between

actors, whereas DTM employs broadcast communication with labeled state messages

(signals). This solution rules out artifacts such as ports, message queues, mailboxes,

operational interfaces, etc., and provides for transparent interactions that are

independent of the allocation of the actors on network nodes. Furthermore, the above

frameworks use flat actor models with actors programmed in a conventional fashion,

whereas COMDES-II actors are configured from prefabricated executable components

– function blocks.

The adopted communication mechanism is characterized by complete separation of

computation and communication, as recommended in [9], since signal drivers are

executed in separation from actor tasks and from each other. That is not the case with

port-based objects, where ports are usually defined as communication objects whose

methods are invoked within task I/O drivers in a conventional call-return manner, see

e.g. [5]. Consequently, the communication pattern is „hardwired‟ in the code of I/O

drivers and cannot be reconfigured without reprogramming.

The presented model of computation bears certain similarities with the models used

in synchronous languages [20], and in particular: atomic execution of input and output

actions; clocked operation similar to the execution pattern used in LUSTRE and

SIGNAL; compositional data flow models inspired by the Control Engineering domain.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 54

At the same time, there are substantial differences that have to be highlighted in

order clearly differentiate the two models:

─ Synthetic, component-based approach using prefabricated executable components

vs. a conventional language-based approach used in synchronous languages

─ True actor-level concurrency vs. conceptual concurrency, which is „compiled

away‟ during program compilation

─ Constant non-zero reaction time vs. instantaneous (zero-time) reaction assumed by

perfectly synchronous systems.

The last feature facilitates the engineering of distributed systems and eliminates

problems related to fixpoints, instantaneous loops, etc., which have been major issues

with synchronous systems. Furthermore, the synchronous model does not address the

problem of task and transaction jitter because of the very nature of the synchrony

hypothesis, whereas it is practically eliminated with the COMDES model of distributed

computation.

5 Conclusion

The paper presents the formal specification of COMDES-II - a domain-specific

framework for distributed embedded control systems, which combines open

architecture and predictable behaviour under hard real-time constraints. The

framework employs a hierarchical system model combining the concepts of both actor

and function block: an embedded system is composed from autonomous system agents

(actors), which are configured from prefabricated executable components – function

blocks. Actors interact by exchanging signals, i.e. labeled messages with state message

semantics, rather than using I/O ports or operational interfaces. This feature facilitates

system reconfiguration and provides for transparent communication between actors,

resulting in flexible and truly open distributed systems. Signal-based communication is

also used for internal interactions involving constituent function blocks. That is why

system configuration is specified by data flow models at all levels of specification.

Consequently, actor behaviour is represented as a composition of component functions,

and system behaviour – as a composition of actor functions. A synchronous model of

computation is applied at the component level. A clocked synchronous model of

execution is applied at the actor and system levels, i.e. Distributed Timed Multitasking.

The presented software architecture has important implications for software safety

and predictability, as well as the entire software development process. In this case,

applications are configured from prefabricated and validated (trusted) components,

following strict composition rules that are derived from the syntax and static semantics

of the framework. The behaviour of software components and applications is

rigorously specified via a hierarchy of formal models that constitute the behavioural

semantics of the framework. On the other hand, the use of timed multitasking makes it

possible to engineer highly predictable systems operating in a flexible, dynamic

scheduling environment.

This has been demonstrated in a number of experiments used to validate the

framework, e.g. distributed computer control systems involving physical and computer

models of plants, such as electric DC motor, production cell, steam-boiler, turntable

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 55

machine, etc. It has also been applied in an industrial case study - a medical ventilator

control system [17]. In all cases, the use of the framework helped reduce development

time and increase software quality. This was quite obvious with some of the systems

mentioned above, e.g. the production cell control system, which was developed in a

relatively short time and became operational without extensive testing and debugging.

However, in order to guarantee that an application is correct by construction, it has

to be proven correct with respect to the required functional and timing behaviour. That

is only possible if a precise and unambiguous system model is developed, whose

particular features would desirably facilitate the process of analysis. In COMDES-II

that is accomplished through formal design models emphasizing the principle of

separation of concerns, i.e. separate treatment of computation and communication,

functional and timing behaviour, reactive and transformational behaviour, etc. Thus,

different aspects of system behaviour can be verified in separation using appropriate

techniques and tools. Functional behaviour can be analyzed using tools such as

Simulink (with continuous systems) and Uppaal (with discontinuous systems),

following semantics-preserving transformation of system design models into the

corresponding analysis models, whereas timing behaviour can be verified through

numerical response-time analysis.

In particular, Simulink can be used to analyse system behaviour via simulation. That

is facilitated by the similarity between COMDES-II design models and Simulink

analysis models representing the controller part of the system, both of which are

discrete-time data flow models. Consequently, it is possible to export a COMDES-II

design model to the Simulink environment, by wrapping COMDES-II components into

S-functions and wiring them together, following the interconnection pattern of the

original design model. This analysis method has been successfully experimented with

the medical ventilator case study, whereby the COMDES-II design of the control

system has been exported to Simulink and subsequently validated via numerical

simulation.

The envisioned development process will make it possible to engineer embedded

applications that are correct by construction. This will hopefully eliminate design

errors, which are difficult and costly to repair. On the other hand, implementation

errors will be eliminated through an automated configuration process supported by an

integrated toolchain [16], which is based on meta-models that have been derived from

the formal design models presented in this paper. Ultimately, the elimination of both

design and implementation errors will considerably enhance software safety, which is

of paramount importance for the overall safety of embedded applications.

6 References

1. B. Bouyssounouse and J. Sifakis (Eds.), “Embedded Systems Design. The ARTIST

Roadmap for Research and Development”, LNCS 3436 (2005)

2. T.A. Henzinger and J. Sifakis, “The Embedded Systems Design Challenge”, Proc. of the

14th International Symposium on Formal Methods FM 2006, LNCS 4085 (2006), pp. 1-15

3. P. Caspi, “Some Issues In Model-Based Development for Embedded Control Systems”,

Invited Lecture, DIPES‟2006, Braga, Portugal, Oct. 2006

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 56

4. D.B. Stewart, R.A. Volpe and P.K. Khosla, “Design of Dynamically Reconfigurable Real-

Time Software Using Port-Based Objects”, IEEE Transactions on Software Engineering,

vol. 23, No 12, 1997, pp. 759-776

5. J. Liu and E.A. Lee, “Timed Multitasking for Real-Time Embedded Software”, IEEE

Control Systems Magazine: Advances in Software Enabled Control, Feb. 2003, pp. 65-75

6. A. Ghosal, T.A. Henzinger, C.M. Kirsch and M.A. Sanvido, “Event-Driven Programming

with Logical Execution Times”, Proc. of HSCC 2004, LNCS 2993 (2004), pp. 357-371

7. D. Isovic and C. Norström, “Components in Real-Time Systems”, Proc. of the 8th

International Conference on Real-Time Computing Systems and Applications

RTCSA‟2002, Tokyo, Japan, March 2002

8. H. Hansson, M. Åkerholm, I. Crnkovic and M. Törngren, “SaveCCM – A Component

Model for Safety-Critical Real-Time Systems”, Proc. of the 30th EUROMICRO

Conference on Software Engineering and Advanced Applications SEAA 2004, pp. 627-635

9. A.L. Sangiovanni-Vincentelli and G. Martin, “Platform-Based Design and Software Design

Methodology for Embedded Systems”, IEEE Design and Test of Computers, vol. 18

(2001), pp. 23-33

10. K.H. John and M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems,

Springer, 2001

11. R. Lewis, Modeling Control Systems Using IEC 61499, Institution of Electrical Engineers

(2001)

12. C. Angelov, K. Sierszecki, N. Marian and J. Ma, “A Formal Component Framework for

Distributed Embedded Systems”, in I. Gorton et al. (Eds.): Proc. of CBSE 2006,

LNCS 4063 (2006), pp. 206-221

13. C. Angelov, X. Ke and K. Sierszecki, “A Component-Based Framework for Distributed

Control Systems”, Proc. of the 32nd EUROMICRO Conference on Software Engineering

and Advanced Applications SEAA 2006, Cavtat, Dubrovnik, Croatia, Aug.-Sept. 2006, pp.

20-27

14. K. Sierszecki, C. Angelov and X. Ke, “A Run-Time Environment Supporting Real-Time

Execution of Embedded Control Applications”, Proc. of the 14th International IEEE

Conference on Embedded and Real-Time Computing Systems and Applications RTCSA

2008, Kaohsiung, Taiwan, Aug. 2008

15. C. Angelov, X. Ke, Y. Guo and K. Sierszecki, “Reconfigurable State Machine Components

for Embedded Applications”, Proc. of the 34th EUROMICRO Conference on Software

Engineering and Advanced Applications SEAA 2008, Parma, Italy, Sept. 2008, pp. 51-58

16. Y. Guo, K. Sierszecki and C. Angelov, “COMDES Development Toolset”, Proc. of the 5th

International Workshop on Formal Aspects of Component Software FACS 2008, Malaga,

Spain, Sept. 2008, pp. 233-238

17. F. Zhou, W. Guan, K. Sierszecki and C. Angelov, “Component-Based Design of Software

for Embedded Control Systems: the Medical Ventilator Case Study”, Proc. of the

International Conference on Embedded Software and Systems ICESS 2009, Hanchzhou,

China, June 2009

18. W. Henderson, D. Kendall and A. Robson, “Improving the Accuracy of Scheduling

Analysis Applied to Distributed Systems”, Real-Time Systems, vol. 20, No 1 (2001), pp. 5-

25

19. A. Jantsch, Modeling Embedded Systems and SoCs - Concurrency and Time in Models of

Computation, Morgan Kaufmann, 2003

20. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic and R. de Simone, “The

Synchronous Languages 12 Years Later”, Proc. of the IEEE, vol. 91, No 1, Jan. 2003, pp.

64-83

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 57

Improving Timing Analysis

for Matlab Simulink/Stateflow

Lili Tan, Björn Wachter, Philipp Lucas, Reinhard Wilhelm⋆

Universität des Saarlandes, Saarbrücken, Germany
{lili,bwachter,phlucas,wilhelm}@cs.uni-sb.de

1 Introduction

Control software in embedded hard real-time systems is subject to stringent
timing constraints. To compute the required safe upper bounds on its worst-case
execution-time (WCET), static timing analysis is used in industry [1].

Today control software is predominantly developed with model-based design
tools such as Matlab Simulink/Stateflow. However, current timing tools lose
precision as they consider infeasible executions, e.g., changes between operat-
ing modes not admissible in the model. These tools analyze compiled executa-
bles where information about the feasibility of executions is hard to derive. We
propose systematic methods that make model information available to timing
analysis and present promising results with Simulink/Stateflow models.

Static Timing Analysis. Static timing analysis [2] uses abstract interpretation [3]
to derive program properties that hold for all executions. A classical static anal-
ysis is interval analysis, which determines, for each variable, a range of values for
each program point which contains all the values of the variable in any program
execution. The ranges are guaranteed to be safe, i.e., they can be used to exclude
division by zero and array-out-of-bounds accesses at compile time. More gener-
ally, static analysis computes provably safe approximations of program states.

Static timing analysis determines execution time bounds for programs. These
bounds must be safe, i.e., they must not underestimate the execution time. They
should also be tight to avoid unnecessary safety margins.

The established methodology splits the problem into different phases. The
input to the analysis is a compiled executable of the program. The first phase
reconstructs from the executable a control-flow graph (CFG) over basic blocks.
In the next phase, a variation of interval analysis, called value analysis, deter-
mines the contents of registers and memory locations. Then a micro-architectural
analysis computes execution-time bounds for basic blocks. It accounts for the
tremendous hardware-induced execution-time variability: depending on whether
a memory access causes a cache hit or a cache miss, the execution time of an
instruction may differ by two orders of magnitude. Therefore complex, processor-
specific architectural features like cache and pipeline effects are considered [4]. In
the final phase, path analysis determines a safe estimate of the WCET. First an

⋆ Supported by ITEA 2 project 06042, EU-FP7 Grant 216008 and SFB/TR 14.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 59

ILP generator models the control flow the program as an integer linear program.
Each ILP variable corresponds to the traversal count of a basic block. The value
of the objective function in the solution is the predicted execution time bound.

The CFG also describes infeasible program executions if conditions are not
interpreted. Consider the C code if(a>0) x=1; else x=2; if(a==0) a=x;.
Conditions a>0 and a==0 are clearly correlated, more specifically, they mutu-
ally exclude each other. Although the control-flow graph contains the path from
x=1 to a=x, this is not a feasible program execution. In general, we call a control-
flow path an infeasible path if it does not correspond to any program execution
(this notion is distinct from dead code).

To make path analysis more precise, so-called flow constraints can be added
to the ILP that eliminate infeasible paths. A salient point of our work is that
such constraints can be systematically derived from model information.

Matlab Models and Generated Code. Matlab Simulink/Stateflow is a hierarchical
modeling language for control software with a sequential, imperative semantics.
The underlying methodology is to design control computation within Simulink
and control logic within Stateflow. Simulink offers building blocks for propor-
tional, integral and differential (PID) control computations and estimations,
e.g., filters, look-up tables, and arithmetic operators. Stateflow is an automata
specification language that can be used to express transitions between different
operating modes of the system. Blocks communicate with each other via signals
and receive external inputs from the environment.

For deployment, code generators synthesize production C code, in which the
internal states of Stateflow and Simulink blocks are encoded by state variables.
Signals and internal inputs also map to C variables. The implementation of
blocks can be traced in the source code. However this mapping depends on
characteristics of different code generators.

2 Model-aware Timing Analysis

In real-time systems, the different tasks run periodically and are triggered by a
scheduler. These tasks are commonly implemented with model-based tools like
Matlab. A periodic run corresponds to one execution of the Matlab model where
inputs are received, the internal state is updated, and outputs are produced.
Timing analysis has to determine an execution time bound that is safe for each

run. It is impossible in practice to know the worst-case inputs or the worst-case
internal state, hence the analysis has to cover all possibilities for each run.

To ensure safety, the analysis must not assume that the value of an external
input variable remains constant between definition and use, i.e., the variable is
‘volatile’ in C terminology. For the internal state, timing analysis has to assume
all possibilities at task entry, i.e., for a state variable, assume all potential states.
Thus, both input and state must be treated specially to obtain a safe execution
time bound. In Matlab-generated code, input and state variables can be identified
syntactically. This enables an automatic solution that guarantees safe bounds.
In the remainder of the section, our goal is to make these bounds tighter.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 60

We investigate where precision is lost due to infeasible paths. To this end,
we focus on typical patterns at the level of the model that lead to infeasible
paths. As a running example, we consider the fuel-rate controller which is a
Matlab demo model that contains typical features of embedded controllers. The
controller estimates airflow rate, and calculates the fuel injection rate based on
PID control principle.

We analyzed the controller with aiT WCET Analyzer, the static timing anal-
ysis tool [2] of AbsInt [5]. aiT produces a worst-case path to explain the execution
time bound it has computed. Without providing flow constraints, the execution
time is over-approximated and the computed worst-case path is infeasible, since
static timing analysis is not aware of certain dependencies in the model.

For example, like any control software, the fuel-rate controller has operat-
ing modes and signals that conditionally exclude each other. Depending on the
current mode, signals, and their logical combinations, different look-up tables
or computations are triggered. As discussed in the introduction, the timing an-
alyzer generally does not interpret conditions. Hence it has to take the longer
branch of a conditional, even if execution history of the path does not admit so.
As a result, the worst-case path spuriously ‘switches’ between operating modes.

For illustration, we consider such spurious resolutions of conditions on the
worst-case path. Some resemble the infeasible-path example in the introduction,
e.g., they involve conditions like mode==LOW and mode==RICH. Other conditions
are more involved. For example, condition O2_fail==0 && mode==LOW checks
if the oxygen sensor is valid and the system is in operating mode LOW, while
condition pressure_fail==1 checks if the pressure sensor has failed. These con-
ditions do not have shared variables, and, simply by looking at the expressions,
they seem not to be related. Yet there is a relation entailed by the model: the
conditions are, in fact, mutually exclusive. The conditions are used in a Simulink
block, while the variables mode, O2_fail, pressure_fail are set by a Stateflow
automaton. However, the Stateflow automaton would not set mode to LOW if any
sensor had sent a failure signal. Such entailed relations need to be derived by
analyzing the model semantics. In the source code or executable, dependencies
are more implicit and even harder to track than in the model. In the following,
we show how to construct flow constraints from the model to achieve a more
precise timing analysis.

Trigger Conditions. We aim at conditions that determine whether a piece of the
model is executed. These conditions on external inputs, internal signals (e.g.,
mode variables), and states guard signal transformation and control computa-
tion. Simulink/Stateflow express this by conditional blocks, similar to condition-
als in C, e.g., triggered and enabled subsystems, guarded transitions in Stateflow
and switch-blocks. We uniformly refer to the conditions as trigger conditions.

Flow Constraints from Definition-Use Dependencies. We formulate flow con-
straints that relate a definition, e.g., a mode variable, and uses of that variable.
Certain definitions always make a trigger condition false. Trivially, a program
execution cannot pass through such a condition and the branch guarded by the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 61

trigger condition. This can be expressed by flow constraints. One example for
such constraints in the fuel-rate controller are signals that indicate a failure of
a sensor. These signals are set in a Stateflow block and are used in a Simulink
block to trigger the evaluation of a lookup table.

Flow Constraints from Correlations between Trigger Conditions. Relations be-
tween trigger conditions can be formulated as flow constraints, e.g., independent,
equivalence, implication, antivalence, and exhaustion can be expressed. To be ef-
fective, entailed relations need to be considered. The analysis of entailed relations
requires information about deep semantic properties of Stateflow and Simulink
blocks. To this end, we anticipate that relational abstract domains from static
analysis may be helpful.

Other relations could be derived purely from Simulink. This includes the
common case of a choice between two implementations of an algorithm with
directly inverse trigger conditions.

Significant Branches. Eliminating infeasible paths does not per se improve pre-
cision. For example, if branches of conditionals have approximately the same
execution time, there can be little gain in precision. Therefore, we focus on
significant unbalanced branches when giving flow constraints. In our running
examples, the invocations of look-up tables and mode-dependent discrete filters
give rise to such branches.

Relative to Stateflow, the Simulink blocks typically dominate the execution
time, while Stateflow blocks themselves contribute little to the overall execution
time. This is because control logic computations consist of conditionals and
assignments, while the expensive computations are often in the Simulink part,
e.g., lookup tables and discrete filters for estimation and PID control. Thus
determination of infeasible paths pays off more in the Simulink part than in
Stateflow.

Experimental Results. We used aiT for our experiments. For the fuel-rate con-
troller, we have manually applied the described derivation method for flow con-
straints. Flow constraints from definition-use dependencies alone reduced the ex-
ecution time bound by 4%. Adding both kinds of flow constraints yields an overall
reduction by 19% and a feasible worst-case path. If we compute an execution-
time bound for each operating mode, we achieve a reduction from 20% to 48%
per operating mode.

3 Related Work

Previous work on flow constraints focused on the executable [6], or C level. In [7],
the authors consider timing analysis of code synthesized from Esterel. They iden-
tify flow constraints to eliminate feasible paths. The principal ideas concerning
the two kinds of flow constraints are related, however Esterel is significantly dif-
ferent from Matlab Simulink, e.g., Esterel does not have automata as a language
feature. Hence rules to derive flow constraints differ significantly.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 62

[8] describes early work on timing analysis for Simulink models without State-
flow. Model information like loop bounds is passed to the underlying timing
analysis tool. They modified the code generator and used their own (uncertified)
compiler. Their timing analysis tool lacks value analysis [9] and thus does not
discover loop bounds which aiT derives from the executable alone. Integrations
of aiT with ASCET and SCADE are described in [10] and [11]. They pass model
information to aiT, e.g., variable ranges and loop bounds. Unlike this paper, [8,
10, 11] mainly focus on other aspects than precision.

4 Conclusion

Initial results the benefit of model information in terms of automation and preci-
sion of WCET analysis. We propose model-based generation of flow constraints
and have evaluated our method using the industrial tool aiT. Initial results with
the fuel-rate controller are promising. While definition-use flow constraints are
relatively easy to apply, relations between trigger conditions are more difficult
to automate due to entailed relations. In future work, we will automate the
generation of flow constraints and apply our approach to industrial examples.

References

1. Thesing, S., Souyris, J., Heckmann, R., Randimbivololona, F., Langenbach, M.,
Wilhelm, R., Ferdinand, C.: An Abstract Interpretation-Based Timing Validation
of Hard Real-Time Avionics Software Systems. In: Proceedings of DSN. (2003)

2. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: EMSOFT. Volume 2211 of LNCS. (2001) 469 –485

3. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL77,
Los Angeles, California (1977) 238–252

4. Heckmann, R., Langenbach, M., Thesing, S., Wilhelm, R.: The influence of pro-
cessor architecture on the design and the results of WCET tools. Proceedings of
the IEEE 91 (2003) 1038–1054

5. AbsInt Angewandte Informatik GmbH: http://www.absint.com/
6. Stein, I., Martin, F.: Analysis of path exclusion at the machine code level. In:

Proceedings of WCET. (2007)
7. Ju, L., Huynh, B.K., Roychoudhury, A., Chakraborty, S.: Performance debugging

of Esterel specifications. In: CODES+ISSS. (2008) 173–178
8. Kirner, R., Lang, R., Freiberger, G., Puschner, P.: Fully automatic worst-case

execution time analysis for Matlab/Simulink models. In: ECRTS. (2002) 31–40
9. Tan, L.: The worst-case execution time tool challenge 2006. International Journal

on Software Tools for Technology Transfer (STTT) 11 (2009) 133 – 152
10. Ferdinand, C., Heckmann, R., Wolff, H.J., Renz, C., Parshin, O., Wilhelm, R.:

Towards model-driven development of hard real-time systems. In: Proceedings of
ASWSD. (2006) 145–160

11. Ferdinand, C., Heckmann, R., Sergent, T.L., Lopes, D., Martin, B., Fornari, X.,
Martin, F.: Combining a high-level design tool for safety-critical systems with a
tool for WCET analysis on executables. In: Proceedings of ERTS. (2008)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 63

Prototyping of Distributed Embedded Systems

Using AADL⋆

Mohamed Yassin Chkouri and Marius Bozga

{Yassin.Chkouri, Marius.Bozga}@imag.fr

Verimag, Centre Equation - 2, avenue de Vignate 38610 GIERES

Abstract. Prototyping distributed applications can be extremely useful
in evaluating a design, and also in understanding the effect of different
parameters on the performance of an application. Architecture Analysis
and Design Language provide adequate syntax and semantics to express
and support distributed embedded systems. This paper studies a gen-
eral methodology and an associated tool for building and translating
AADL systems into a distributed application using network communica-
tion protocol. This allows runtime analysis to fully asses system viability,
to refine and to correct the behavior of the system using BIP. Using our
prototype we analyse the case study MPC in a native platform (PC).

1 Introduction

Distributed applications are used in many safety-critical domains such as space

and avionics. Designing distributed systems demands more attention and rigour

methodology. The produced systems have to conform to many stringent func-

tional and non-functional requirements from multiple contexts.

Ensuring all the requirements and features becomes very hard if the whole

system is hand-coded. Thus, the application code should preferably be gener-

ated automatically from a verifiable and analyzable model. This makes easier

the work of the developer and helps during the stage of code verification. Be-

sides, constructing a verifiable model from the application model using model

transformation is simpler and safer than constructing this model from source

code.

Architecture Description Languages (ADLs) have been proposed to support

the development process of embedded real-time and distributed applications.

This paper presents a definition framework for ADLs. The utility of the definition

is demonstrated by using it to differentiate and compare several existing ADLs.

This will allow us to choose an ADL according to our requirements.

Among the ADLs, AADL [3] is the Architecture Analysis and Design Lan-

guage that allows the modeling of distributed, real-time applications. AADL was

first introduced to model the hardware and software architectures in the avion-

ics domain. An AADL system model consists of components, their interfaces,

the connections between them and properties on various entities of the system

⋆ This work is partially supported by ITEA/Spices and OpenEMBeDD projects

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 65

model. The AADL standard defines a textual as well as graphical form of the

language.

AADL has been designed to build distributed real-time and embedded sys-

tems. AADL can be seen as a collection of many requirements covering many

domains. System designers and developers need to describe both functional and

non-functional requirements. These requirements must then be sorted and en-

forced at the deployment level. We will presents the set of requirements that

must be respected to build distributed systems.

We have shown in [13], how AADL systems can be automatically translated

into BIP [8] (Behavior Interaction Priority), and analyzed using the BIP toolset.

BIP is a language for the description and composition of components as well as

associated tools for analyzing models and generating code on a dedicated middle-

ware. The language provides a powerful mechanism for structuring interactions

involving rendezvous and broadcast.

In this paper, we present an extension of our translation to prototype dis-

tributed applications using BIP and network communication protocol. We begin

with a model built by the application designer, who maps its application entities

onto a hardware architecture. Then, we use AADL into BIP tool to generate

BIP model conforming to AADL semantics. Finally, we use a code generator to

generate an executable model for each systems with communication protocol.

This translation allows simulation of distributed systems specified in AADL in

addition to the application of formal verification techniques developed for BIP,

e.g. deadlock detection, verification of properties, etc.

The translation from distributed AADL systems into BIP is illustrated on

a case study: the Multi-Platform Cooperation (MPC) example provided by J.

Hugues [18]. Using our tool, we were able to run the case study in a native

platform (PC). In order, to debug and evaluate the case study before deploying

it on a distributed embedded platform.

Distributed embedded application code generation from models is not lim-

ited to AADL. In fact, distributed and high-integrity systems are probably the

domain which has the most maturity. OCARINA [17] allows model manipula-

tion, generation of formal models to perform scheduling analysis and generate

distributed applications. OCARINA allows code generation from AADL descrip-

tions to Ada. PolyORB [27] is a middleware toolset that provides distribution

services through standard programming interfaces and communication proto-

cols. However, the generated code from AADL does not take into account the

annex behavior specifications [1].

This paper is organized as follows. Section 2 gives definition and comparaison

between existing ADLs. Section 3 gives an overview of AADL. In section 4,

we explain how to translate AADL systems into distributed application using

network communication protocol. In section 5, we present a MPC case study

and it deploylment into a distributed application. Conclusions close the article

in Section 6.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 66

2 Architecture Description Languages

Architecture Description Languages (ADLs) have been proposed as modeling

notations to support architecture-based development. An ADL is a language

that provides features for modeling a software system’s conceptual architecture,

distinguished from the system’s implementation. ADLs provide both a concrete

syntax and a conceptual framework for characterizing architectures.

The building blocks of an architectural description are (1) components, (2)

connectors, and (3) architectural configurations. Here we give a short description

of these blocks:

– A component in an architecture is a unit of computation or a data store.

– Connectors are architectural links used to model interactions among compo-

nents and rules that govern those interactions.

– Architectural configurations, or topologies, are connected graphs of compo-

nents and connectors that describe architectural structure. This information

is needed to determine whether appropriate components are connected, their

interfaces match, connectors enable proper communication, and their com-

bined semantics result in desired behavior.

A number of ADLs have been proposed for modeling architectures both within

a particular domain and as general-purpose architecture modeling languages.

We specifically consider those languages most commonly referred to as ADLs:

C2 [21, 20], Rapide [15], Darwin [19], UniCon [24], SADL [22, 26], AADL [3].

Several researchers have attempted to shed light on these issues, either by

surveying what they consider existing ADLs [28, 14] or by classifing and com-

paring several existing ADLs in some specific areas [25].

Comparisons between the languages (Figures 1, and 2) are given with respect

to: components, connections, priorities between components, behavior descrip-

tion and support for distributed embedded system.

All the above languages make distinction between a component interface

and an instance of a component that exhibits that interface. All the languages

provide syntax and semantics for component interface specification. All the lan-

guages view a component interface specification as defining a component type,

where there can be multiple instances of components that exhibit that same

interface. All languages allow a hierarchical composition that allows architec-

tures to describe software systems at different levels, by using a collection of

subcomponents and connections between those subcomponents.

C2, Darwin, SADL, and UniCon share much of their vocabulary and refer

to them simply as components; in Rapide they are interfaces; and in AADL

component categories.

In this paper, we are interested by ADL which support distributed embedded

systems, priority for schedulability analysis, behavior using state machine, and

functional and non-functional properties. AADL was first introduced to model

the hardware and software architectures in the avionics and automotives domain,

and it is backed by several industries.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 67

Component

Interface Implementation Non-functional properties

C2 exported through top and component none

buttom ports; provided implementation

and required

SADL input and output ports component requires component

(iports and oports) implementation modification

Rapide provides, requires, interface; none

action and service implementation

Darwin services (provided and component none

required) implementation

Unicon players component attributes for

implementation schedulability analysis

AADL inputs and outputs ports component time constraints

(event and/or data); implementation schedulability

provide and require; properties

in and out parameters safety level

Fig. 1. Comparison between ADLs

Noticeable about the AADL is its strong syntactic and semantic support for

architectures consisting of components of a limited number of functional cate-

gories. Along with this it allows to add non-functional properties to architectural

components, such as timing, memory consumption and safety properties. In this

way, the model of a system architecture allows specific tools to predict non-

functional properties of the system in early design phases, which makes AADL a

particularly interesting notation for distributed embedded software development.

Compared to other modeling languages, AADL defines low-level abstractions

including hardware descriptions. These abstractions are more likely to help de-

sign a detailed model close to the final product.

3 Architecture Analysis & Design Language

The SAE Architecture Analysis & Design Language (AADL) [3] is a textual

and graphical language used to design and analyze the software and hardware

architecture of performance-critical real-time systems. It plays a central role in

several projects such as Topcased [6], OSATE [4], ASSERT [2], SPICES [5].

A system modelled in AADL v.1 consists of application software mapped to

an execution platform. Data, subprograms, threads, and processes collectively

represent application software. They are called software components. Processor,

memory, bus, and device collectively represent the execution platform. They are

called execution platform components. Execution platform components support

the execution of threads, the storage of data and code, and the communication

between threads. Systems are called compositional components. They permit

software and execution platform components to be organized into hierarchical

structures with well-defined interfaces. Operating systems may be represented

either as properties of the execution platform or can be modelled as software com-

ponents. Behavior specifications [1] can be attached to AADL model elements

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 68

Connectors Priorities Behavior Distributed

C2 interface with each low and high consists of an invariant yes

component via a priority and a set of operations.

separate port; interface The invariant is used to

elementare provided specify properties that must

and required be true of all component states

SADL specifies the supported scheduling of the mathematical none

data types process using a static calculation

priority

Rapide connection; in-line priority information consists of set of yes

for schedulability transitions rule

analysis

Darwin binding; in-line; no priority information using CORBA yes

explicit modeling of for schedulability

component interactions analysis

Unicon connector priority information attributes for yes

for schedulability schedulability analysis

analysis

AADL connector (ports, security level using subprograms; C/C++; yes

parameters, data access) ADA; state machine

Fig. 2. Comparison between ADLs

using an annex. The behavioral annex describes a transition system attached to

subprograms and threads.

3.1 AADL Components

Software Components AADL has the following categories of software com-

ponents: subprogram, data, thread and process.

A subprogram component represents an execution entry-point in the source

text. Subprograms can be called from threads and from other subprograms.

These calls are handled sequentially by the threads. The data component type

represents a data type in the source text that defines a representation and inter-

pretation for instances of data. A thread represents a sequential flow of control

that executes instructions within a binary image produced from source text. A

thread always executes within a process. A scheduler manages the execution of

a thread. A process represents a virtual address space. Process components are

an abstraction of software responsible for executing threads.

Hardware Components Execution platform components represent hardware

and software that is capable of scheduling threads, interfacing with an external

environment, and performing communication for application system connections.

AADL processor components are an abstraction of hardware and software

that is responsible for scheduling and executing threads. In other words, a pro-

cessor may include functionality provided by operating systems. A device com-

ponent represents an execution platform component that interfaces with the

external environment. A device can interact with application software compo-

nents through their ports. A bus components are used to describe all kinds of

networks, buses, etc. A Memory components are used to represent any storage

device: RAM, hard disk, etc.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 69

Systems A system is the top-level component of the AADL hierarchy of com-

ponents. A system component represents a composite component as an assembly

of software and execution platform components. All subcomponents of a system

are considered to be contained in that system.

3.2 Connections

A connection is a linkage that represents communication of data and control

between components. This can be the transmission of control and data between

ports of different threads or between threads and processor or device components.

4 From AADL to Distributed Implementation Using BIP

4.1 The BIP Component Framework

BIP (Behavior Interaction Priority) is a framework for modeling heterogeneous

real-time components [8]. The BIP framework consists of a language and a toolset

including a frontend for editing and parsing BIP programs and a dedicated plat-

form for model validation. The platform consists of an Engine and software

infrastructure for executing models. It allows state space exploration and pro-

vides access to model-checking tools of the IF toolset [12] such as Aldebaran [11],

as well as the D-Finder tool [10]. This permits to validate BIP models and en-

sure that they meet properties such as deadlock-freedom, state invariants and

schedulability. The BIP language allows hierarchical construction [16] of com-

posite components from atomic ones by using connectors and priorities. Several

case studies were carried out such as an MPEG4 encoder [23], TinyOS [9], and

DALA [7].

4.2 Transformation from AADL to BIP

The AADL models are transformed into BIP automatically by using our AADL

to BIP translation tool described in [13]. The supported development process is

shown in the Figure 3.

The model construction methodology applied to AADL models, opens the

way for enhanced analysis and early error detection by using BIP verifications

techniques. Once the model has been generated, three model checking techniques

for verification can be applied:

D-Finder: is an interactive tool for checking deadlock-freedom for component-

based systems by using a static analysis method. It takes as input BIP programs

and applies proof strategies to eliminate potential deadlocks by computing in-

creasingly stronger deadlocks.

Model checking by Aldebaran: The second technique of verification is model-

checking by using the tool Aldebaran [11]. Exhaustive exploration by the BIP

exploration engine generates a Labeled Transition System (LTS) which can be

analyzed by model checking. e.g, Aldebaran takes as input the LTS generated

from BIP and checks for deadlock-freedom and other temporal properties.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 70

Fig. 3. Verification cycle

Model checking with observers: The third technique of verification is by using

BIP observers to express and check requirements. Observers allow us to express

in a much simple manner most safety requirements. We apply this technique

to verify some properties as verification of communication, and verification of

thread deadline.

Simulation & Debugging: In addition to the verifications, we can simulate or

tests prototype implementations by creating an executable system. We can use

an interactive simulation and debugger to verify each interaction step by step

and to know which state or port is activated. These analysis allow to fully asses

system viability, to refine and to correct the behavior of system.

Code generator: The code generator takes as input a model, generated by the

parser, and transforms it to a C++ application code. The application is an

executable model of the original BIP program. Code is generated for each atomic

component, connectors and priorities, i.e., the code is modular and preserves the

structure of the initial model.

4.3 Prototyping Distributed Implementation

Building distributed systems is a very tedious task since the application has to

be verifiable and statically analyzable. The AADL fits these two requirements

and allows the designer to describe different aspects of his distributed application

(number of processors, number of threads in each processors, connection between

threads...).

Requirement: Requirements for prototyping distributed embedded system can

be seen as a collection of many requirements covering many domains. System

designers and developers need to describe both functional and non-functional

requirements. AADL support the different steps of system construction. Sup-

ported entities and extensible property sets allow one to build full models and

adapt them to the application context. Furthermore, analysis tools can process

the models to assess its viability.

Therefore, we list the following requirements for a prototyping process:

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 71

1. Data types and related functions to operate on them

2. Supporting runtime entities (threads) and interactions between them (through

ports and connections)

3. Association of subprograms to threads

4. Mapping of threads onto processes and binding processes to hardware entities

to form the deployed system.

5. Binding connections to buses to form the deployed system.

AADL allows us to refine the description of each entity to detail more pre-

cisely its behavior or some non-functional attributes. This allows us to have a

library of reusable components and helps in prototyping by refining and extend-

ing them.

Deployement: The deployement we describe here supports all of the require-

ments discussed above. We begin with a model built by the application designer,

who maps its application entities onto a hardware architecture. Then, we use

AADL into BIP tool to generate BIP model conforming to AADL semantics. Fi-

nally, this architecture is tested for soundness, any mismatch in the application

is reported by the analysis BIP tool chain.

AADL is expressive enough to detail the deployment view of the application:

threads, processors, buses, threads on each process; properties refine the type

of tasks (periodicity, priority), and their associated implementation. We defined

our distribution model as a set of sender/receiver. It is supported by an AADL

architectural model that defines the location of each system and the payload of

the message exchanged as a thread-port name plus possible additional data.

Figure 4 shows the steps for generating from a distributed AADL system’s

description an executable distributed application as follow:

1. Identify each system and a connector’s mapped to the bus.

2. Generate for each AADL system its corresponding description in BIP, and

for each connector’s mapped to the bus a communication protocol.

3. Compile BIP system’s and generate an executable for each system with com-

munication protocol.

4. Run and debug the distributed application.

Our protocol supports communication between two or more computers. It

provide a full-duplex communication channel between processes that do not

necessarily run on the same computer. We consider channels for data exchange

among multiple threads in one or more processes are managed by the BIP Engine,

if processes are running on one computer. Otherwise, if processes are running

on different computers connected by a network, we use a network communi-

cation protocol. Before sending data through network to a server, we initially

converted into encoded version before being transported (suitable for network

transfer). After receiving data (Sever side), it can be converted back.

Most network communication protocols use the client server model. These

terms refer to the two machines which will be communicating with each other.

One of the two machines, the client, connects to the other machine, the server,

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 72

Fig. 4. Deployment

typically to make a request for information. Notice that the client needs to know

of the existence of and the address of the server, but the server does not need

to know the address of the client prior to the connection being established.

Our protocol use sockets. Sockets are associated with the concept of network

communication in the form of client-server programming; a pair of processes of

which one will be a client and one a server. The client process will send requests

to the server. Of course, when creating a socket, we have to specify the type

of communication that will be needed, since different modes of communication

requires different protocols.

The steps involved in establishing a communication protocol on the client

side are as follows: (1) Create a communication protocol; (2) Connect the com-

munication to the address of the server; (3) Send and receive data.

The steps involved in establishing a communication protocol on the server

side are as follows: (1) Create a communication protocol; (2) Bind the commu-

nication to an address. For a server, an address consists of a port number on

the host machine; (3) Listen for connections; (4) Accept a connection. This call

typically blocks until a client connects with the server; (5) Send and receive data.

The generated BIP code provides a framework that will directly call user

code when necessary. This allows a rapid and flexible design of the distributed

system and does not restrict the user implementations.

5 Case study: MPC (Multi-Platform Cooperation)

This case study has been inspired J. Hugues [18]. Figure 5 shows the software

view of our case study. This model holds three system (Partitions); each is a

spacecraft with different roles:

– Spacecraft 1 is a leader spacecraft that contains a periodic thread, which

sends its position to Spacecraft 2 and Spacecraft 3.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 73

Fig. 5. Software view of the MPC case study

– Spacecraft 2 and Spacecraft 3 are follower spacecraft. They receive the po-

sition sent by Spacecraft 1 with a sporadic thread (Receiver thread), up-

date their own position and sends the position to the Reader thread. A

Reader thread in these two spacecraft reads periodically the position value

from the Receiver thread and store it in a protected object. A third thread

“watches and reports” all elements at that position (e.g., earth observation).

This model gathers typical elements from distributed systems, with a set of

periodic tasks devoted to the processing of incoming orders (Watcher thread),

Reader thread to store these orders (Protected Object), and sporadic threads

to exchange data (Receiver thread). These entities work at different rates and

should all respect their deadlines so that the Watcher thread can process all

observation orders in due time.

The software view only represents how the processing is distributed onto dif-

ferent entities (threads) and gathered as AADL processes to form partitions. The

next step is to map this view onto a physical hardware view, so that Processor

resources can be associated to each Partition.

Figure 6 is a graphical representation of the deployment view of the system.

It only shows the global architecture of the application (number of partition

and their mapping to hardware components). It indicates that each partition is

bound to a specific Processor and how the communication between partitions

occurs, using different buses.

These two views are expressed using the same modeling notation. They can

be merged to form the complete system: interacting entities in the software

view represent the processing logic of the system, whereas the hardware view

completes the system deployment information by allocating resources.

5.1 AADL Models

MPC case study is built by creating software component and mapping entities

onto a hardware architecture. The flexibility of AADL allows us to partially

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 74

Fig. 6. Hardware view of the MPC case study

define components and use them in other components. This is very useful during

the first steps of prototyping where every detail of the system is not yet clear.

Details can be added to these components either by means of AADL properties

or by component extension, without having to redefine all other components.

Data Types AADL data components model the messages that are exchanged

among the Partitions of a distributed application or inside one of these Parti-

tions. To express the kind of a data type, we use AADL data component as

shown in the listing 1.1.

Subprograms Subprograms encapsulate the behavioral aspects of a distributed

application. They are modeled using the subprogram AADL component. The

implementation of a subprogram may be written entirely by the user by indi-

cating the source file or the pre-built libraries that contain the implementation.

Listing 1.2 shows the subprogram called Update.

�

data Record Type
end Record Type ;

data implementation Record Type . Impl
subcomponents

X : data behavior : : i n t e g e r ;
Y : data behavior : : i n t e g e r ;
Z : data behavior : : i n t e g e r ;

end Record Type . Impl ;

� �
Listing 1.1. MPC data type

�
subprogram Update

features

Data Sink : in parameter Record Type ;
Protected : out parameter Record Type ;

end Update ;

subprogram implementation Update . impl
properties

Source Language => C;
Source Name => ”Update ” ;
Source Text => ”mpc . cpp ” ;

end Update . impl ;

� �
Listing 1.2. MPC subprogram

AADL subprograms can be modeled in several other ways. AADL2BIP allows

three type of subprograms implementation by adding an external source file

(C/C++), or by adding annex behavior specification, or by using subprogram

calls sequence. All this gives the programmer more flexibility when prototyping

his system.

Threads Threads are active parts of a distributed application. A Partition must

contain at least one thread. The thread’s interface consists of ports. In this case

study we use two type of threads:

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 75

– Periodic threads, i.e., triggered by a time event (Period). Listing 1.3 shows

the AADL model of the periodic thread Sender thread that is located in

the Partition1. This thread sends a data of type Record Type. The dispatch

protocol of the thread and its period are specified using standard AADL

properties. In the thread implementation, we describe the behavior of the

thread by giving the subprogram that models its activity.
�

thread Sender Thread
features

Data Source : out event data port Record Type ;
Data ac t iva t e : in event data port Record Type ;

properties

Dispatch Protoco l => Per iod i c ;
Period => 100 Ms;

end Sender Thread ;

thread implementation Sender Thread . Impl
c a l l s Main : {

Wrapper : subprogram Sender Thread Wrapper . impl ;
} ;

connections

parameter Wrapper . Data Source −> Data Source ;
parameter Data ac t iva t e −> Wrapper . Data act ivat e ;

end Sender Thread . Impl ;

� �
Listing 1.3. MPC sender thread

– Sporadic threads. In this case, they are triggered by an incoming event. The

AADL model of the sporadic thread Receiver thread is located in Spacecraft 2

and Spacecraft 3 and is triggered by the reception of a position sent from

Spacecraft 1 by thread Sender thread.

Processes Processes are the AADL components used to model the Partitions

of distributed applications. Listing 1.4 shows the AADL model of the process

called Sender Process.
�

process Sender Proces s
features

Data Source : out event data port Record Type ;
end Sender Proces s ;

process implementation Sender Proces s . Impl
subcomponents

Sender : thread Sender Thread . Impl ;
connections

event data port Sender . Data Source −> Data Source ;
end Sender Proces s . Impl ;

� �

Listing 1.4. MPC Process: Spacecraft 1

5.2 Deployment

The generation of BIP code helps us to rapidly prototype the MPC case study

and make it to a distributed application using our communication protocol be-

tween each partition. The prototype helped us to analyse the case study in a

native platform (PC) in order to easily debug and evaluate it before running it

on an embedded platform.

The separation between software and hardware in AADL allows the program-

mer to model all the software parts of his application and test it with a native

platform (generally a PC). If the tests are successful, the same software part can

be reused with the actual hardware AADL. In addition, going from one hardware

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 76

AADL BIP

Spacecraft 1 Spacecraft 2 Spacecraft 3

Components 20 4 8 8

Connectors 21 8 18 18

Lines of code 350 250 600 600

Fig. 7. Comparison between AADL & BIP

Fig. 8. Simulation of Spacecraft 1 Fig. 9. Simulation of Spacecraft 2

architecture to another is reduced (most of the time) to the modification of the

values of some few AADL properties.

In the MPC case study, we generate for each AADL partition mapped to the

processor, its corresponding description in BIP, and for each connection mapped

to the bus a network communication protocol (sender/receiver). We compile BIP

partitions and we generate an executable model. Then, we put every executable

in the native platform (PC). First, we launch a receiver executable and then

the sender executable. When the network protocol communication is initialized

between the sender and receiver, the exchange of data is started.

Once the executable model has been launched, interactive simulation and

debugging is useful for understanding the working of the distributed application.

This helped us to verifies each interaction step by step, to know which state or

port is activated, and to see the value of data received/sended. In addition, we

use observers which moves to an error state if the period of a thread exceeds

its deadline. These analysis allow to fully asses system viability, to refine and to

correct the behavior of a system.

Figure 7 summarizes the size of lines of code, number of components and con-

nectors in AADL and respectively the BIP code for the MPC case study. We split

the BIP in three parts because we generate for each Spacecraft a corresponding

BIP description system. Figures 8 and 9 show a fragment of the simulation of

Spacecraft 1 and Spacecraft 2 in the distributed platform.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 77

6 Conclusion

In this article, we proposed a prototyping process to model and build distributed

embedded systems. We select AADL to implement this prototype. AADL allows

a clear modeling structure and provides all the required information to configure

a local application as well as distributed application.

We showed the requirements and assessments for prototyping distributed em-

bedded system using our tools chain. In addition, we provide a general method-

ology for building and translating distributed embedded systems into an ex-

ecutable implementation by using network communication protocol. The exe-

cutable application is tested for soundness, any mismatch in the application is

reported by the analysis BIP tool chain. We provide also MPC case study, which

is tested and analysed on a native platform.

In the future we are continuing to work on:

– Communication between processes can have different delay characteristics

depending on the underlying communication network. The prototyping en-

vironment should support different delay characteristics for communication

between different processes so that realistic prototypes can be built.

– Real-time clocks. This will allow real-time distributed algorithms to be im-

plemented, and timing properties to be studied.

References

1. Annex Behavior Specification SAE AS5506.
2. ASSERT: http://www.assert-project.net/.
3. SAE. Architecture Analysis & Design Language (standard SAE AS5506), Septem-

ber 2004, available at http://www.sae.org.
4. SEI. Open Source AADL Tool Environment. http://la.sei.cmu.edu/aadlinfosite/

OpenSourceAADLToolEnvironment.html.
5. SPICES: http://www.spices-itea.org/public/news.php.
6. TOPCASED: http://www.topcased.org/.
7. A. Basu, S. Bensalem, M. Gallien, F. Ingrand, C. Lesire, T.H. Nguyen, and

J. Sifakis. Incremental component-based construction and verification of a robotic
system. In Proceedings of ECAI’08, Patras, Greece, 2008.

8. A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in bip. In Proceedings of SEFM ’06, Pune, India, pages 3–12. IEEE Computer
Society, 2006.

9. A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis. Using bip for modeling
and verification of networked systems – a case study on tinyos-based networks. In
Proceedings of NCA’07, Cambridge, MA USA, pages 257–260, 2007.

10. S. Bensalem, M. Bozga, J. Sifakis, and T.H. Nguyen. Compositional verification
for component-based systems and application. In Proceedings of ATVA’08, Seoul,
South Korea, 2008.

11. M. Bozga, J-C. Fernandez, A. Kerbrat, and L. Mounier. Protocol verification with
the aldebaran toolset. STTT, 1:166–183, 1997.

12. M. Bozga, S. Graf, Il. Ober, Iul. Ober, and J. Sifakis. The if toolset. In Proceedings
of SFM’04, Bertinoro, Italy, volume 3185 of LNCS, pages 237–267.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 78

13. M.Y Chkouri, A. Robert, M. Bozga, and J. Sifakis. Translating AADL into BIP -
Application to the Verification of Real-Time Systems. In Models in Software Engi-
neering: Workshops and Symposia at MODELS 2008, Toulouse, France, September
28 - October 3, 2008., pages 5–19.

14. P. C. Clements. A survey of architecture description languages. In In Proceed-
ings of the Eighth International Workshop on Software Specification and Design,
Paderborn, Germany, 1996.

15. L. M. Augustin J. Vera D. Bryan D. C. Luckham, J. J. Kenney and W. Mann.
Specification and analysis of system architecture using rapide. In IEEE Transac-
tions on Software Engineering, volume 1 no.4, pages 336–335, 1995.

16. J. Sifakis G. Gossler. Composition for component-based modeling. Science of
Computer Programming, 55:161–183, March 2005.

17. J. Hugues, B. Zalila, L. Pautet, and F. Kordon. Rapid Prototyping of Distributed
Real-Time Embedded Systems Using the AADL and Ocarina. In Proceedings of
the 18th IEEE International Workshop on Rapid System Prototyping (RSP’07),
pages 106–112, Porto Alegre, Brazil, May 2007. IEEE Computer Society Press.

18. J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the final
embedded system using the ocarina aadl tool suite. ACM Trans. Embed. Comput.
Syst., 7(4):1–25, 2008.

19. J. Magee and J. Kramer. Dynamic structure in software architectures. In In Pro-
ceedings of ACM SIGSOFT’96: Fourth Symposium on the Foundations of Software
Engineering (FSE4), pages 3–14, 1996.

20. N. Medvidovic. A language and environment for architecture-based software de-
velopment and evolution. In In Proceedings of the 1999 International Conference
on Software Engineering, pages 44–53, 1999.

21. N. Medvidovic, P. Oreizy, J.E. Robbins, and R.N. Taylor. Using object-oriented
typing to support architectural design in the c2 style. In In Proceedings of ACM
SIGSOFT2̆01996: Fourth Symposium on the Foundations of Software Engineering
(FSE4), pages 24–32. ACM Press, 1996.

22. M. Moriconi and R. A. Riemenschneider. Introduction to sadl 1.0: A language for
specifying software architecture hierarchies. In Technical Report SRI-CSL-97-01,
SRI International, 1997.

23. M. Poulhiès, J. Pulou, C. Rippert, and J. Sifakis. A methodology and support-
ing tools for the development of component-based embedded systems. In 13th
Monterey Workshop, Paris, France, volume 4888 of LNCS, pages 75–96, 2006.

24. M. Shaw, R. Deline, D.V. Klein, T.L. Ross, D.M. Young, and G. Zelesnik. Ab-
stractions for software architecture and tools to support them. IEEE Transactions
on Software Engineering, 21:314–335, 1995.

25. R.M. Taylor and N. Medvidovic. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software En-
gineering, 26:70–93, 2000.

26. S. Sendall V. Crettaz, M.M. Kand and A. Strohmeier. Integrating the concernbase
approach with sadl. In In Proceedings 4th International Conference on Modeling
Languages, Concepts, and Tools .Toronto, Canada, pages 166–181, 2001.

27. T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: a schizophrenic
middleware to build versatile reliable distributed applications. In Proceedings of the
9th International Conference on Reliable Software Techologies Ada-Europe 2004,
volume LNCS 3063, pages 106 – 119, Palma de Mallorca, Spain, Jun.

28. S. Vestal. A cursory overview and comparison of four architecture description
languages. In Technical Report, Honeywell Technology Center, 1993.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 79

Towards Intelligent Tool-Support for AADL
Based Modeling of Embedded Systems

Dries Langsweirdt, Yves Vandewoude and Yolande Berbers

Katholieke Universiteit Leuven, Department of Computer Science, Celestijnenlaan
200A, B-3001 Leuven, Belgium

{dries.langsweirdt, yves.vandewoude, yolande.berbers}@cs.kuleuven.be

Abstract. Model-driven design (MDD) of complex embedded systems
is currently based on successive cycles of model changes, analysis and
simulation. This iterative process suffers from a delay between applying
changes on the model and knowledge about the resulting properties of the
system. Current research on Architecture Discription Languages (ADL)
in general, and AADL in specific, focuses primarily on tools and support
for analysis and simulation, as distinct phases during design. We give an
overview of existing work on AADL, and illustrate though a case study
the opportunities for a novel, integrating research domain on ADL.�

1 Introduction

Model-driven design (MDD) helps system architects master the complexities as-
sociated with the development of large and multi-concern embedded systems.
Architecture Description Languages (ADL) are hereby a primary way to model
the system components and their interactions. ADL specific analysis and simula-
tion tools applied on these models can estimate the properties and the behavior
of the final system, and thus predict if the system will meet its requirements.
Deviations between analysis and simulation results on the one hand, and ex-
pected properties and behavior on the other, lead to model changes. As such,
the design follows an iterative scheme. Changing the model implies changing
the properties of the system, be it functional or non-functional. However, the
relation between a model change and the resulting properties is often unclear
until the subsequent analysis and simulation phase, making this iterative cycle
unnecessarily long. There is a clear need for tools able to seamlessly integrate
the modeling, analysis and simulation phases as to assist the architect in deci-
sion making through direct feedback on model changes. Formalization of domain
knowledge and architectural patterns are prime concerns in this context. This
paper identifies the need for research addressing these concerns, and does so in

� This work has been carried out as a part of the Condor project (http://www.esi.nl
Projects->Condor) at FEI company under the responsibilities of the Embedded
Systems Institute (ESI). This project is partially supported by the Dutch Ministry
of Economic Affairs under the BSIK program.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 81

2 Dries Langsweirdt, Yves Vandewoude and Yolande Berbers

the concrete context of the Architecture Analysis and Design Language (AADL)
[1, 2] as a prime example of a Real-Time/Embedded (RT/E) ADL.

This paper is organized as follows. Section 2 gives an overview of the current
work on AADL. Section 3 introduces an example used to pinpoint the current
technical barriers, and is a first incite towards more intelligent tool-support. In
section 4, we discuss our current ideas and provide a possible roadmap for future
research. Conclusions are drawn in the final section.

2 Overview of current work on AADL

Four research domains applicable to AADL are currently under active develop-
ment: front-end processing, code generation, analysis and simulation. Figure 1
shows a classification of the most important initiatives, which are discussed next.
OSATE [3] targets front-end processing and semantic checking of AADL models,
with two possibilities to extend its capabilities into the analysis and simulation
domain. First, plugins can be build on top of OSATE’s functionality, allowing for
custom analysis on OSATE resident models. Second, models can be exported in
an XMI schema, which allows for analysis on the models by external tools. The
TOPCASED [4] project integrates with OSATE to visualize the AADL models.
Ocarina [5] is an Ada tool suite with the ability to generate the infrastruc-
tural code in Ada or C of a distributed, real-time and high-integrity application
from an AADL specification. Ocarina links the generated applications with the
high-integrity middleware libraries PolyORB-HI-Ada and -C, derived from the
PolyORB [6] project. STOOD [7] offers the embedded engineer multiple mod-
eling paradigms: UML2.0, HRT HOOD and AADL 1.0. Like Ocarina, STOOD
generates Ada and C code from AADL models, but the generated applications
are not distributed. Cheddar [8] is a framework for schedulabilty analysis. CPN-
AMI [9] is a CASE environment able to analyze and simulate Petri-net based
models. Both projects are independent of AADL, but provide a good example of
how the aforementioned XMI scheme (together with appropriate model trans-
formations) can bring external analysis tools to the AADL scene. ADeS [10]
aims at behavioral simulation of AADL models. The goal is to implement the
entire AADL Behavior Model Annex in the simulation kernel Jimex, but cur-
rently ADeS only implements a simple behavioral model on threads. In contrast,
AADS [11] transforms a subset of AADL to SystemC for simulation. Building on
the SCoPE [12] project, AADS is well suited for HW/SW co-design. Finally, [13]
proposed execution of AADL models based on a translation to the synchronous
languages Scade and Lustre.

Only minor integration between the different domains is noted. Intelligent
integration of the available work to assist the system architect during the actual
act of modeling is absent, and is why we suggest a fifth domain on design support
(see figure 1). Intelligent in this context refers to the availability of formalized
knowledge and patterns specific to the embedded domain. Reasoning algorithms
could apply this knowledge on the concrete, but potentially incomplete, models

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 82

Towards Intelligent Tool-Support for AADL Based Modeling 3

to deduct architectural suggestions, warnings and optimal properties. A more
concrete discussion can be found under section 4.

Fig. 1: Overview of the four existing and proposed fifth domain on AADL.

3 Case Study

We present the extension of an existing OSATE plugin as an illustration of more
integrated modeling support. It also identifies current problems with analysis on
unfinished, declarative AADL models.

3.1 System Specification Versus Instantiation

AADL differentiates between system specification and instantiation. A system is
defined as completely instantiable if: “the system implementation being instan-
tiated is completely specified and completely resolved”. The tools presented in
section 2 almost exclusively work on instantiated models, and thus complete with
respect to the compositional and legality rules of AADL. They are incapable of
gathering information from, and act on, declarative models.

(a) (b)

Fig. 2: Automated model completion through bin-packing and scheduling from (a) the
isolated thread set, to (b) the instantiable system implementation.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 83

4 Dries Langsweirdt, Yves Vandewoude and Yolande Berbers

3.2 Automated Bin-packing and Scheduling

The case study extends OSATE’s bin-packing and scheduling plugin, which is an
implementation of the work done on partitioned bin-packing algorithms by de
Niz et al. [14, 15]. The plugin automates the assignment of threads to processors
available in an instantiated AADL model. We extended the plugin to work on
declarative models as well. Provided with a minimum of information (a thread set
and its properties, with optionally a processor and/or bus used as templates),
our plugin calculates the amount of needed processors and links to make the
threads schedulable. The plugin then extends the declarative model bottom-up,
based on the outcome of the analysis, to a completely instantiable model with
bounded threads. This model transformation is illustrated in figure 2.

3.3 OSATE Deficiencies and AADL Intricacies

Although the case study is limited, we noted the following four interesting prob-
lems. First, the API of OSATE with respect to extensive manipulations of declar-
ative models could be much improved upon. One example is the asymmetry
between addition and removal of component types or implementations. For re-
moval, the programmer needs to rely directly on the Eclipse Ecore infrastructure.
Second, because of the AADL semantics, information can be scattered through-
out the declarative model in complex ways. Instantiated models do not have this
problem as such, because the relations between components are fixed and their
properties can be referenced directly. Gathering information on the declarative
model quickly results in multiple model scans, potentially leading to a scalabil-
ity issue in the current OSATE implementation. Finally, two forms of ambiguity
in the use of the AADL standard (first noted by Delanote in [16]) complicate
the automated extension and analysis of an unfinished model. First, the legality
rules are different for each component category, making component composition
not only complex, but also ambiguous. For example, the model extension in
the case study wraps each process in a separate system component. There are
however multiple other legal ways with respect to the standard to complete the
model, without the advantages of one approach over another being obviously
clear. Second, there is no well defined relation between the analysis of certain
system properties, and the AADL model properties needed to conduct it. With
these relations being unclear, it becomes hard to discover missing information
in the model.

4 Roadmap

As mentioned in section 2, key to assisted modeling is formalization and em-
bedding of domain specific knowledge and architectural patterns, together with
appropriate reasoning algorithms, in the tools the system architect uses to con-
struct ADL models. Concrete properties and interconnections of model compo-
nents can as such be linked with corresponding analysis and simulation routines.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 84

Towards Intelligent Tool-Support for AADL Based Modeling 5

The results of these routines, automatically invoked on each incremental model
change, can be fed back to the architect in the form of suggestions on architec-
tural changes. If appropriate, changes can be performed automatically by the
tool, already illustrated in the case study. Note that, as stated in section 3.1
and 3.3, analyzing an incomplete model is a non-trivial task making analysis
and simulation adaptation, or virtual model completion, a necessity. The first
challenge, formalization, is in principle ADL-agnostic, and depends on the RT/E
domain in general. Harvesting model properties and performing model changes
on the other hand, depend on the legality and compositional rules of the con-
crete ADL. Both challenges are interesting tracks that can be addressed by the
proposed domain on design support.

5 Conclusion

This paper discusses the need for more research focusing on support for the
embedded systems architect during modeling, compared to analysis of a certain
made choice. Through an AADL case study, we identified some of the existing
barriers and defined a roadmap for future research.

References

1. Feiler, P., Gluch, D., Hudak, J.: AADL: An Introduction. Tech. rep., SAE (2006)
2. SAE: Architecture Analysis & Design Language (AS5506A), http://www.sae.org
3. Open Source AADL Tool Environment (OSATE). Techn. rep., SEI (2006)
4. The Open-Source Toolkit for Critical Systems, http://www.topcased.org/
5. Hugues, J., Zalila, B., Pautet, L.: From the Prototype to the Final Embedded System

Using the Ocarina AADL Tool Suite. In: ACM TECS 7 No.4, Art.42 (2008)
6. Vergnaud, T., Hugues, J., Pautet, L.: PolyORB: A schizophrenic middleware to

build versatile reliable distributed applications. LNCS, vol. 3063, pp 106–119.
Springer, Heidelberg (2004)

7. Ellidiss-Software: STOOD, http://www.ellidiss.com/stood.shtml
8. Singhoff, F., Legrand., J., Tchamnda, L.: Cheddar: A flexible real time scheduling

framework. J. ACM Ada Lett. 24, 1–8 (2004)
9. The CPN-AMI home page, http://www.lip6.fr/cpn-ami
10. ADeS: a simulator for AADL, http://www.axlog.fr/aadl/ades_en.html
11. Varona-Gmez, R., Villar, E.: AADL Simulation and Performance Analysis in Sys-

temC. In: IEEE ICECCS, pp. 323–328. IEEE Computer Society, Potsdam (2009)
12. SCoPE v1.0.0 UC 2008, http://www.teisa.unican.es/scope
13. Jahier, E., Halbwachs, N., Lesens, D.: Virtual execution of AADL models via a

translation into synchronous programs. In: Proceedings of the 7th ACM&IEEE
ICESS, pp 134–143. ACM, NY (2007)

14. de Niz, D., Rajkumar, R.: Partitioning Bin-Packing Algorithms for Distributed
Real-Time Systems. I. J. of Embedded Systems 2 No.3/4, 196–208 (2006)

15. de Niz, D., Bhatia, G., Rajkumar, R.: Model-Based Development of Embedded
Systems: The SysWeaver Approach. In: 12th IEEE RTAS, pp. 231–242. IEEE Com-
puter Society, San Jose (2006)

16. Delanote, D., Van Baelen, S., Joosen, W., Berbers, Y.: Using AADL in Model
Driven Development. UML&AADL’2007, ICECCS07. IEEE, Auckland (2007)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 85

Model-Based Codesign of Critical Embedded
Systems�

Marco Bozzano1, Alessandro Cimatti1, Joost-Pieter Katoen2,
Viet Yen Nguyen2, Thomas Noll2, and Marco Roveri1

1 Fondazione Bruno Kessler, Italy
{bozzano,cimatti,roveri}@fbk.eu

2 RWTH Aachen University, Germany
{katoen,nguyen,noll}@cs.rwth-aachen.de

Abstract. We present a comprehensive methodology for the specifica-
tion and analysis of critical embedded systems. The methodology is based
on an architectural design language that enables modeling of both soft-
ware and hardware components, timed and hybrid behavior, faulty be-
havior and degraded modes of operation, error propagation and recovery.
The methodology is supported by an integrated platform, implemented
on top of state-of-the-art tools, that provides verification capabilities
ranging from requirements analysis to functional verification, safety as-
sessment, performability evaluation, diagnosis and diagnosability.

1 Introduction

The design of critical embedded systems is a very complex and highly challenging
task, for a number of reasons. First, it requires designing and assembling hetero-
geneous components, implemented either in hardware or in software, and their
interactions. Secondly, it has to take into account functional requirements as well
as several sorts of non-functional requirements, such as (real-)time constraints,
performability and safety requirements.

In this paper we present a comprehensive and tool-supported methodol-
ogy for the design of critical systems, following the component-based paradigm.
Component-based design helps to master design complexity while, at the same
time, allowing for reusability. The key principle is a clear distinction between
component behavior (implementation) and the interactions between the individ-
ual components (interfacing). The internal structure of a component implemen-
tation is specified by its decomposition into subcomponents, together with their
hardware/software bindings and their interaction via connections over ports.

The design methodology is built on top of the SLIM modeling language, an
architectural language inspired by SAE’s AADL [9] (Architecture Analysis and
Design Language) and the related Error Model Annex [10]. SLIM inherits the
most important features of AADL, such as multiway communication, dynamic

� Funded by ESA/ESTEC under Contract No. 21171/07/NL/JD

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 87

reconfiguration of components and port connections, and probabilistic error be-
havior and propagation, while enriching it with constructs to express timed and
hybrid behavior. Moreover, the SLIM language is endowed with a formal seman-
tics that cover all of its aspects in a clear and unambiguous way [3].

The methodology proposed in this work is targeted at the architectural design
of critical embedded systems, and in particular it covers modeling and verifica-
tion of the following aspects: requirements analysis, verification of functional
correctness, safety assessment and fault tolerance measures, quantitative and
performability analysis, and partial observability analysis, including effective-
ness of the FDIR (Fault Detection, Identification and Recovery) components.

The proposed approach is being investigated in the COMPASS project3 (Cor-
rectness, Modeling, and Performance of Aerospace Systems) in the aerospace
domain, and results as a response to an invitation to tender by the European
Space Agency. The techniques described in this work, however, are applicable in
general to every domain where design of critical embedded systems is involved.

The paper is structured as follows. In Section 2 we describe the main features
of the SLIM language; in Section 3 we give an overview of the methodology; in
Section 4 we discuss the COMPASS tool, implementing the methodology, and
finally we draw some conclusions and discuss future directions in Section 5.

2 The SLIM Language

The SLIM language follows the component-based paradigm. In SLIM, it is pos-
sible to refer to both software (e.g. threads and processes) and hardware com-
ponents (e.g. memories and processors) as first-class objects. Each component
is given via its type, describing the interface, and its implementation, describ-
ing the interactions via a finite state automaton. Sets of interacting components
can be grouped into composite components, enabling the modeler to manage
the system’s complexity by introducing a component hierarchy. Communication
is achieved via exchange of messages on event ports, in a rendez-vous manner.
Moreover, components may exchange data through typed data ports (e.g. bool,
integer and real data types). Timed and hybrid behavior can be expressed by
means of real-valued variables with (linear) time-dependent dynamics.

The resulting hierarchical system model, also referred to as nominal model,
describes the system behavior under normal operation. This is complemented
by an error model which expresses how the system can fail. Moreover, a subset
of the nominal components may be designated as dealing with error diagnosis
and recovery; they are referred to as FDIR (Fault Detection, Identification and
Recovery). The error model expresses how faults may affect normal operation
and may lead the system into a degraded mode of operation. It is modeled as
a probabilistic finite state automaton, where transitions may occur due to error
events which may be annotated with a rate that indicates the expected number
of occurrences per time unit. Transitions can also occur because of error propaga-
tions from other components. The nominal and error models are linked through
3 http://compass.informatik.rwth-aachen.de

2

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 88

stefanv
Rectangle

a so-called fault injection. A fault injection expresses the effect of the occurrence
of the corresponding error on the nominal model. Multiple fault injections are
possible. The process of integrating the nominal models with the error models
and the fault injections, is called model extension [4]. Finally, in order to enable
modeling of partial observability and analysis of FDIR components, the SLIM
language allows the modeler to explicitly define a set of observables.

We refer to [3] for a more detailed description of the language, a discussion
of the similarities and extensions with respect to AADL, and a simple example
(a processor failover system). Moreover, [3] presents a formal semantics for all
the language constructs, based on networks of event-data automata (NEDA).

3 Methodology

The methodology discussed in this paper is inspired by the framework described
in [1], which provides a unifying view of different aspects of system engineer-
ing, within the context of model checking. In order of increasing complexity, the
first problem that we consider is system functional correctness. Functional re-
quirements are traditionally expressed in temporal logic, e.g. Computation Tree
Logic (CTL) or Linear Temporal Logic (LTL). Technologically, model check-
ing techniques are used to exhaustively explore every possible system behavior,
providing a formal guarantee that a given requirement is obeyed.

Safety analysis investigates the behavior of a system in degraded conditions,
that is, when some parts of the system are not working properly due to mal-
functions. It includes hazard analysis, whose goal is to identify all the hazards
of the system and ensure that the system meets the safety requirements that
are required for its deployment and use. Examples of hazard analysis techniques
are Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA).
Model-based safety analysis is in turn based on model checking techniques [4].

Quantitative analysis and performability aim at evaluating system perfor-
mance with respect to timed and probabilistic requirements. They also include
probabilistic versions of safety and diagnosability measures. The related require-
ments can be expressed in Continuous Stochastic Logic (CSL). The implemen-
tation of these analyses is based on probabilistic model checking techniques.

Diagnosis can be seen as the problem of safety analysis carried out at run-
time. It is usually performed on systems which provide limited run-time sensing,
and under the hypothesis of partial observability. Diagnosis starts from the ob-
served run time behavior of a system, and tries to provide an explanation (in
terms of hidden states). In particular, diagnosis is often the problem of iden-
tifying the set of possible causes of a specific unexpected or faulty behavior.
Probabilistic information can be taken into account, in order to search for the
most likely explanation. Another related problem is diagnosability, i.e., the anal-
ysis, at design time, of diagnosis capabilities. Finally, the problem of synthesis
consists in the automatic generation of controllers from specifications. The latter
problem has been tackled by planning techniques based on model checking.

3

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 89

stefanv
Rectangle

Finally, requirements validation is used to check correctness and completeness
of a set of properties. Requirements validation is performed before the system
architectural design starts, and has the goal of ensuring the quality of system re-
quirements. In particular, our approach enables checking for logical consistency,
i.e., freedom from contradictions. Moreover, it is possible to check whether a
given set of properties is strict enough to rule out unwanted behavior, and not
too strict to disallow for certain desirable behavior.

4 Tool Support

The methodology is supported by an integrated toolset, which is built on top of
existing state-of-the-art tools for formal verification, based on model checking. In
particular, the toolset builds upon the NuSMV [7] symbolic model checker, the
MRMC [6] probabilistic model checker, and the RAT [8] requirements analysis
tool. The architecture of the tool set is shown in Fig. 1. The toolset takes as
input a model written in the SLIM language, and a set of property patterns,
used to instantiate formal requirements. Depending on the context, instantiated
properties are expressed in CTL, LTL or CSL temporal logics.
A few building blocks

− FMEA Tables

Extension
Model

SAFETY
ANALYSIS
− Dynamic Fault Trees

Slim2SMV

Instantiator
Slim Property

Table
Symbol

Sigref2MRMCSMV2SigrefNuSMV MRMC

RAT

Instantiator
Property

REQUIREMENTS
VALIDATION
− Property Assurance
− Property Simulation

CORRECTNESS
VERIFICATION
− Property verification
− Simulation

DIAGNOSABILITY
ANALYSIS
− FDIR effectiveness measures
− Synthesis of Observability Requirements

SMV2Slim

Viewer
Fault Tree

Viewer
Trace

SigRef

PERFORMABILITY
ANALYSIS
− Performability measures
− Probabilistic fault trees

Slim

Model

Property

Pattern

Fig. 1. Architecture of the toolset.

take care of perform-
ing model extension, trans-
lating the SLIM input
model into NuSMV and
MRMC formats when
needed, and visualize
traces and fault trees.

The following anal-
yses are supported. Re-
quirements validation
is used to analyse the
quality (correctness and
completeness) of the
requirements, and is car-
ried out by the RAT
tool. Correctness ver-
ification focuses on ver-
ification of functional
requirements, and is im-
plemented on top of
NuSMV; NuSMV implements standard symbolic model checking techniques such
as BDD-based and SAT-based (bounded) model checking, as well as SMT (Sat-
isfiability Modulo Theory)-based techniques to deal with hybrid models. Safety
analysis supports two of the most popular hazard analysis techniques, namely
FTA and FMEA, that are carried out by FSAP [5], a plugin of NuSMV. Di-
agnosability analysis focuses on the evaluation of the effectiveness of the FDIR

4

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 90

stefanv
Rectangle

sub-system; these functionalities are built on top of NuSMV and FSAP. Finally,
performability analysis evaluates a SLIM model with respect to probabilistic re-
quirements; it is implemented on top of MRMC. For more information on the
toolset, its architecture, and the analyses that are supported, we refer to [2].

5 Conclusions

In this paper we have presented a comprehensive methodology and a toolset
for the specification and analysis of critical embedded systems, that focuses on
system features such as (real-)time and faulty behavior, degraded modes of oper-
ation, diagnosis and performability. The methodology and toolset are currently
being evaluated on industrial-size case studies from the aerospace domain, that
will provide a substantial insight into their applicability and effectiveness.

Our methodology is applicable to any domain where, e.g., timing, system
performance and safety are at stake. Examples are avionics, transportation, in-
cluding railways and automotive, power plants, and the medical domain. Our
approach is based on a general purpose architectural language, and it is espe-
cially targeted at modeling and analyzing systems designs at the architectural
level. It can be complemented by specific implementation-level languages to deal
with the most implementation-oriented features of system design.

The toolset is under active development and evaluation. A thorough experi-
mental evaluation is planned, based on a comprehensive set of case studies.

Finally, some of the modifications to the AADL language that have been in-
corporated into SLIM, have been brought into the AADL standardization bodies
for evaluation and proposed as a possible extension of the standard.

References

1. P. Bertoli, M. Bozzano, and A. Cimatti. A Symbolic Model Checking Framework
for Safety Analysis, Diagnosis, and Synthesis. In Model Checking and Artificial
Intelligence, volume 4428 of LNCS, pages 1–18. Springer, 2007.

2. M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri.
The COMPASS Approach: Correctness, Modelling and Performability of Aerospace
Systems. In Proc. SAFECOMP’09. Springer, 2009.

3. M. Bozzano, A. Cimatti, V. Y. Nguyen, T. Noll, J. P. Katoen, and M. Roveri.
Codesign of Dependable Systems: A Component-Based Modeling Language. In
Proc. MEMOCODE ’09, 2009.

4. M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform.
International Journal on Software Tools for Technology Transfer, 9(1):5–24, 2007.

5. The FSAP/NuSMV-SA platform. http://sra.fbk.eu/tools/FSAP.
6. The MRMC model checker. http://wwwhome.cs.utwente.nl/ zapreevis/mrmc/.
7. The NuSMV model checker. http://nusmv.fbk.eu.
8. RAT: Requirements Analysis Tool. http://rat.fbk.eu.
9. Architecture Analysis and Design Language (AADL) V2. SAE Draft Standard

AS5506 V2, International Society of Automotive Engineers, Mar. 2008.
10. Architecture Analysis and Design Language Annex (AADL), Volume 1, Annex E:

Error Model Annex. SAE Standard AS5506/1, SAE International, June 2006.

5

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 91

stefanv
Rectangle

Design Complexity Management in Embedded System
Design

Johan Ersfolk1,2, Johan Lilius2, Jari Muurinen3, Ari Salomäki3, Niklas Fors2, and

Johnny Nylund2

1 Turku Centre for Computer Science, Turku, Finland
2 Department of Information Technologies

Åbo Akademi University, Turku, Finland

FirstName.LastName@abo.fi
3 Nokia Devices, Finland

FirstName.LastName@nokia.com

Abstract. Research on embedded system design typically focus on design space

exploration in the architecture platform space and the goal is to obtain an optimal

implementation of the system. In the mobile phone industry the design problem is

often quite different. The goal is not to design a new system but to add a use case

to an existing product or to a family of products. In this case it is important to be

able to quickly find possible performance problems caused by the simultaneous

use of the new use case in conjunction with existing use cases on all platforms.

In this paper we address this problem by 1. proposing a structure for the design

space, 2. an automated algorithm that generates performance models by combin-

ing use case models, and 3. an approach for performance optimization by adding

flow control elements into the system design.

1 Introduction

Existing embedded system design methodologies focus on design space exploration in

the architecture platform space. That is to say, they assume that the set of applications

is fixed and a suitable architecture for this set of applications needs to be explored. In

the mobile phone industry the design problem is often quite different and the situation

is usually that there is a number of fixed platforms for which new applications are being

developed using libraries of existing software components. This often leads to a situa-

tion where the concurrent execution of a set of applications needs to be simulated on a

number of architecture platforms in order to analyse the resource sharing between the

applications. In order to make the evaluation of such designs efficient there is a need for

exploring how existing design methodologies and tools can be extended with function-

ality that addresses the problem of efficiently combining software components. In this

paper we approach this issue with a model driven approach using our metamodeling

tool Coral [1].

The design flow depicted in figure 1 highlights the communication between a sys-

tem architect and the teams working on the different subsystems. The typical scenario

in which this design flow is instantiated is when a set of new use cases needs to be

implemented. This would involve for example adding video playback (a use case) and

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 93

Estimation/

 Prediction

Component

Implementat

ion

Component

 verification
 &

Optimize

Integration
e
s
ti
m

a
te

s

Learn Learn Learn

D
e
c
o
m

o
s
itio

n

B
u
d
g
e
t

e
n
h
a
n
c
e

a
s
s
e
t

Architect/ system design

Fig. 1. A design flow and its feedback loops

video recording capabilities (a second use case) to a phone. The design will not proceed

by trying to build a new system from scratch, but instead the goal is to find the minimal

changes to an existing architecture to implement the new use cases.

The design would proceed approximately like this. The system architect takes the

new use case and decomposes the system into subsystems. For the existing system the

subsystems are available as assets in a library, from which relevant performance data

can be obtained. For the required new subsystems, the system architect requests esti-

mates from the designer team responsible for the technical subsystem (e.g. for the video

encoding from the media subsystem team). Using these estimates the system architect

can start evaluating the system model for its performance. At this point in the design

flow it is important to obtain quick results. Therefore the individual elements in the sys-

tem model are often quite abstract and focus only on the performance characteristics.

It is a key requirement to be able to evaluate different use case combinations quickly.
Most often all use cases are not used at the same time, e.g. video playback might not

be used at the same time with a voice call, if the phone does not support video calls,

but video playback might happen at the same time as a file download. Therefore, it

is important to know which use cases can be used in combination and to analyze the

combinations for potential performance bottlenecks. The performance bottlenecks are

typically caused by use cases sharing resources. In some cases it is not possible to run

a specific use case combination on a platform which means that the platform needs to

be modified. More often the problem of sharing a resource is due to stochastic behavior

of data streams and badly tuned mechanisms for handling the resource contentions. In

order to resolve resource conflicts and find the optimal parameters for the system the

system architect can use different flow control mechanisms. In section 5 we describe

different techniques and how these can be used.

When the system architect has found parameters that fullfill the performance re-

quirements the design flow continues based on this validated information. The obtained

values are given back to the designers as a budget, to use in the implementation of

the subsystem. The verification of the implementation will give some feedback to the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 94

system architect, which may lead him to make changes to the design. Once the compo-

nent is deemed ready it is integrated into the final product. At this stage the component

becomes an asset, which means that the component has been deployed in a finished

product, and proven to work in conjunction with the other components in the use cases.

Since the system architect has an overall responsibility over the design process,

he needs powerful and efficient (i.e. rapid) tools, based on dedicated analysis models,

to support him in his design work. In section 4 we explain how such models can be

obtained automatically. The requirement for the automatic use case combination is that

the models have a specific structure, and such structuring mechanisms will be presented

in section 3. In section 6 we shortly present a front-end tool (EFCO Tool) to CoFluent

Studio [2].

Due to space limitations many pictures and details have to be omitted. A more

thorough description of the approach can be found in [3, 4].

2 Related Work

There is a large number of tools and methods for design space exploration and it is not

possible to mention all of them here. We will focus on the most relevant approaches

and we will also describe the approach used in CoFluent Studio and compare it to our.

In [5] several different methodologies intended to be used in the field of system-level

design are discussed and compared.

The Y-chart approach [6] separates the application models from the architecture

instance models. A set of architecture instance models can be evaluated against a set

of application models and the models can be reused separately in other projects. For

a given architecture instance a performance model needs to be created. Performance

analysis for a specific architecture instance can then be done after the set of applica-

tions have been mapped to the architecture instance. The results from this performance

analysis can be used to make improvements on the architecture instance, the appli-

cations themselves or on the mapping between application and architecture instance.

This process can then be repeated until an architecture that satisfies all constraints is

found. The Y-chart approach does not specifically deal with software reuse in any way.

If effectively separates architecture design from application design, but it does not guar-

antee that the applications can be reused easily for architectures or combined with other

applications. What the Y-chart approach does for software reuse is that it specifies a

structured method to map a set of applications to an architecture and simulate the re-

sults.

Another approach that focus even more on component reuse in the hardware part

of the system is Platform-based design [7]. Platform-based design is an approach to

embedded system design where refined specifications meet with abstractions of possible

architecture implementations [7]. Platform-based design identifies well defined layers

in the design process where the abstractions and refinements are done. Each abstraction

layer must give enough information about lower levels of abstraction upwards, so that

design space exploration can take place. Furthermore, constraints from higher levels of

abstraction need to be passed down to lower levels of abstraction so that the refinement

process can take place between layers. The difference to our aproach is that the set

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 95

of applications is assumed to be fixed and that a suitable architecture for this set of

applications needs to be explored.

CoFluent Studio [2, 8] is an embedded system design tool that enables performance

analysis of hardware/software systems, by using the Y-chart approach. Consistent with

the Y-chart approach, CoFluent Studio separates the functional model of the system

from the architectural model of the system. By separately describing an application

model and a platform model, and then mapping the two models together, an architecture

model can be obtained. CoFluent Studio supports simulation of these models through

automatically generating a SystemC test bench for performance analysis.

Functional design in CoFluent Studio is done by specifying a functional model of

the complete system using a combination of a graphical notations and C code. The

functional model can graphically be represented using structural and behavioral com-

ponents called “functions”. Structural functions can contain other structural functions

as well as behavioral functions. Behavioral functions specify a set of operations and

their temporal ordering for a specific functional behavior. Communication between dif-

ferent functions is described using different communication components, which include

communication channels, shared variables and events. The CoFluent functional model

describes the systems behavior and timing without platform constraints and can be used

to simulate the system without a platform. This can be used to analyze shared resources

without being distracted by problems related to mapping. Our approach makes use of

the methodology in CoFluent Studio but refines it by hiding details from the designer

and by providing tools for use case combination and flow control.

The Architecture Analysis and Design Language (AADL) [9] is used to model the

software and hardware architecture of embedded real-time systems. It contains con-

structs for modeling both software and hardware components and is used for analysis

such as schedulability and flow control. Compared to our approach, our models could

be exported to AADL and be used for analysis instead of the simulator generated by

CoFluent Studio.

Real Time Calculus (RTC) [10] is an interesting approach to investigate schedula-

bility and resource usage of real-time systems. RTC could be used instead of simulation

to analyse our models. Multi-mode RTC could be used to analyse flow control. RTC is

used to get similar information about the system as we are interested in.

In general, the difference between our approach and other related approaches is that

our model describes and focus on the use cases of the system as the main modelling

concept. Our model is also designed to allow easy combination and evaluation of use

cases and provides an automated method to do this. Another difference is that we are

not searching for an optimal platform for the system but investigating how to enable

new use cases on an existing platform.

3 Asset management

In order to make the design phase efficient we need support for managing reusable

assets and methods for combining these with new components that make up the new

system. The goal with asset management is to provide a better way to support the life-

cycle management of product families and the strategic decision making by enabling

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 96

Fig. 2. The structural metamodel (left), the behavioral metamodel (middle) and the platformmeta-

model (right). The metamodel has been simplified in order to increase readability.

quick evaluation of new product features in order to give feedback for the business

decisions.

We provide a set of structuring concepts encoded into a metamodel. The metamodel

can be split into 3 parts. The Structural Model is used to delineate parts of the system

according to particular responsibilities (e.g. the multimedia subsystem), the Behavioral
Model is used to describe the functionality of the system and the Platform Model de-
scribes the hardware architecture of the system. These can also be seen as a hierarchy,

where the structural model is at the highest level and the platform model at the bottom,

but note that a structural relationship of inclusion does not necessarily imply a corre-

sponding relationship on the platform level, since the same subsystem can be mapped

onto different platform elements. In this paper we concentrate on describing the behav-

ioral model as it is central to our modeling approach. More detailed information about

the models can be found in [3, 4].

Although we use the term behavioral to characterize the part of the metamodel

used to structure the functionality of the design, we do not propose a new approach to

describe the functionality of atomic elements, but rely on the approach of the underlying

simulation tool for this (e.g. the Timed-Functional approach of CoFluent studio is used

in our tool).

The behavioral metamodel (c.f. Figure 2) supports a use case driven decomposition

approach. The decomposition has as a starting point a use case. A use case describes a

general functional scenario of a system, it looks at the system from the point of view

of the end-user. Thus a use case is very generic like “video playback”. Typically this

is too generic and the use case has to be refined into use case modes. A use case mode

describes a specific way the use case will be implemented. For the video playback we

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 97

could have 3 modes: video playback from internal memory, over 3G or over Wire-

less Lan. Typically a phone might support internal memory and 3G, and the Wireless

streaming would be an option for a more high-end phone, depending on which Features
the radio subsystem contains. The use case mode is decomposed into Features and Ser-
vices. Services act as the elements at the lowest level of granularity and are used to

compose features. A Feature can then be composed of other Features and Services.

It could be argued that this distinction is ad-hoc and driven by what is possible to

do in the CoFluent Studio tool, but there is a however a more abstract characterization

of the concepts by looking at the communication characteristics of the concepts.

– A use case defines the structure and the dynamics of the communication with ex-

ternal actors.

– A use case mode defines a particular instance of a use case, and fixes the communi-

cation network topology. A use case mode can contain detailed descriptions of the

internal structure of the network.

– A feature describes dynamic communication aspects between nodes.

– A service defines the node level routing.

We still need 3 other concepts into our meta-model:

DataLinks represent functional communication elements. The types of communi-

cation elemenents we use exactly corresponds to the elements in CoFluent Studio. A

channel is a communication channel which must have a specific type. A variable is a

shared variable between Features or Services, and it must also have a specific type. An

event is a trigger for a communication element and has no type definition.

Parameters are values that have to be specified in the use case, but usually are given

concrete meaning on the level of feature or service. Typical example parameters would

be the frame-size of a picture, frame-rate. Parameters are not separately represented as

an entity in the metamodel, but are instead given as attributes.

Actors are used to create external inputs for the simulation model. Currently the

tool implements very simple actors, like a file-reader, and random number generators.

In the future we plan to include network simulators for TCP/IP and other protocols. A

more detailed description of the actor mechanism can be found in [4].

4 Use-case based evaluation

Under the assumption that the design of all systems is structured according to the meta-

model presented in the previous section, the design of a new system can now proceed

as follows. The new system will consist of an old system structured as a set of use cases

and a set of new uses cases. Then the first questions to be answered is whether the new

use cases can be run on the given platform. This is standard fare. However the challenge

comes when there is a need to support new use cases concurrently with the old ones.

It is therefore important to be able to analyze use case combinations using different

parameters rapidly. To this end we have developed a simple graph merging algorithm

that given two use case modes (or features) creates a new model, that contains the be-

havior of both use case modes. The new model will contain shared elements and can

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 98

Fig. 3. Video playback use case

Fig. 4. Voice call use case

therefore be analyzed for problems in resource contention. The detailed description of

the algorithm can be found in [3].

As a simple example we use two use cases: video playback and voice call. Figures 3

and 4 show the separate use cases using the notation in the EFCO tool and figure 5

shows the combined use case. The evaluation problem comes down to the sharing of

the TCP/IP and WLAN features. This model can now be used to evaluate how the

combined use cases can coexist on the given platforms.

As we combine use cases such that common functionality is merged there is a need

to add mechanisms for routing messages through the system. This is done by adding a

header to messages and adding routers to the design before the simulation use cases are

generated and exported to CoFluent Studio. We need routers in two different situations,

1) for sending data through the choosen use case mode, e.g. transmit over WLAN or

GSM and 2) for deciding to which use case a message belongs, e.g. if the message

from the WLAN feature belongs to the video decoder or audio decoder use case. The

routers analyse the headers and sends the messages in the correct direction without

modifying the messages or adding delay. The routers abstract away the implementation

of routing messages through the use case as the architect is only interested in analyzing

the performance.

Fig. 5. Combined voice call and video playback use case

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 99

5 Flow control

A central observation that can be made is that in the presented approach the traditional

distinction between a platform independent and a platform dependent model does not

properly exist. Indeed the goal is that all the assets used in the models contain as much

platform dependent information as possible. The reason why this is possible is because

the hardware dependent values are going to remain stable throughout the life-time of a

product family, or their changes can be predicted through discussions with the silicon

vendors. The advantage of this is that a single use case can be verified very much on its

own. The only real issue that is left and that needs the platformmapping is the resolution

of resource contention. This is the topic of this section of the paper.

When several use cases are running concurrently there is often a need to control the

resource usage of some critical parts of the system. Problems with resource sharing are

typically a result from a task using a resource, such as a processor or a communication

channel, for long time intervals or of high buffer levels which lead to long message

delays. Buffer delays can be a problem when the buffer is shared between use cases,

it is then possible that a critical message gets stuck in the back of the message queue.

Such problems could be solved by giving some messages higher priority but this would

be a static solution and it would not take the state of the system into account.

In the example use case in the previous section components such as the video de-

coder might need control mechanisms that prevent its buffers from overflowing or un-

derflowing. This kind of control is needed as most systems contain components with

stochastic behavior and therefore adds burstiness or jitter to the system. Examples of

such components are communication networks, DMAs, storage systems etc. In the ex-

ample use case the TCP/IP and WLAN components will shape the data flow and it is

essential for the simulation results that the behavior of such components can be modeled

and that the impact of these is considered in the simulation.

Furthermore, two use cases might also share a resource such as a processor due to

the mapping. In this case flow control can be used to restrict the processor usage of

one or both of the tasks, the desition of which tasks are allowed to use the processor

can be made based on such properties as buffer level. As an example consider a task

with bursty input, the task will alternate between periods of high activity and periods of

being idle, this will in turn affect the execution of the other tasks running concurrently

on the processor. The other tasks will experience periods when these get more or less

processor time. Depending on the length of the periods and on the execution times of

the tasks, some tasks might miss deadlines during the periods when the first task is

active. This problem can be solved by restricting the processor usage of the first task,

e.g. by suspending the task when its output buffer has reached a certain level, as a result

the execution of the task will not follow the burstiness of the input stream anymore but

instead the periods can be made shorter and the processor usage more even. In order to

find the optimal parameters for the system the designer can try different flow control

mechanisms.

In our approach the designer can add flow control constructs to the system in order

to balance the resource contention. In its simplest form flow control is a sender and

a receiver feature where the receiver monitors a buffer and sends feedback messages

to the sender when the buffer has reached one of the defined levels. The sender then

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 100

Fig. 6. An example of flow control

suspends or resumes its services depending on the content of the feedback message.

Except for tuning the buffer levels, such constructs affect the resource contention as it

can give the resource to a task that really needs it at the moment. In general the desision

to add flow control to the design is based on the designers experience, therefore, the

proposed approach does not consider how to get the optimal system but describes a

methodology how to design a system and what kind of tools the designer needs. By

using different types of flow control the designer can solve problems related to shared

resources which in some cases means that he can avoid to make modifications to the

platform.

In figure 6 a system running an audio and a video decoder is presented, the system

has a general purpose processor (PE1) which in this case handles the network interface

and feeds the streams to the decoders, the general purpose processor also runs the op-

erating system. The actual decoding is performed on a digital signal processor (PE2).

As the input streams are received over a network and because the sender serves sev-

eral client simultaneously, the input streams are bursty. The resource sharing we need

to simulate is 1) the sharing of the network and 2) sharing of the processor used for

decoding the audio and video streams.

The goal of the system architect is to find the parameters that ensure that the playout

buffers of the audio and video decoders does not underflow. If either decoder process is

late, i.e. the level of the playout buffer is low, it should get more processor time than the

other tasks. For this purpose the buffers are controlled using a flow control mechanism

which changes execution rate of the tasks depending on the level of the playout buffer. In

figure 6 the feedback channels are illustrated with dashed arrows. What can be ensured

with this type of simulation is that if we add a specific flow control, the system will work

as long as the input streams are within the limits we have specified regarding burstiness

and jitter.

In this example the flow control is simple in that sense that it directly controlls

the output buffer of the sender feature. Often this is not the case, in many applica-

tions control messages travel in the same channels as other messages and the messages

might pass through several features, as an example consider a sender and receiver com-

municating through a network. This will affect such aspects as the delay of feedback

messages and the delay before the impact can be measured after changing the state of

a feature. If there are several buffers between a sender and a receiver, the level of the

receivers input buffer might continue to rise for some time after the sender has been

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 101

suspended. Such properties can be analyzed when simulating the system with different

parameters and by monitoring buffer levels and message delays.

During the simulation stage buffer levels and message delays at different parameter

settings can be measured for the use case combinations. The designer obtains useful

information about the control mechanisms needed for specific use case combinations.

It is essential that flow control parameters can be easily modified and that the structure

of the flow control mechanisms are general enough that the design does not need to be

changed when changing type of flow control. This enables the designer to try several

setups rapidly and find a solution that satisfies the requirements.

In our metamodel flow control controlls the features by suspending and resuming

the services in these. In the generated CoFluent project a controller is added to the

output of a feature and the services of the feature is connected to the controller by sus-

pend/resume control signals. A controller is a service that forwards data in zero time if

the output channel is not full and it has no buffer space on its input. This is important

as adding a controller should not add buffer space or delay to the system. Further, the

controller has an input port for feedback messages and an output port for setting the

state of the other services of the feature. The feedback messages are produced by an ob-

server located in the receiver feature. The observer records buffer levels and number of

messages received and sends feedback messages according to the flow control protocol

choosen. The observer has similar features as the controller as it does not add delay of

buffer space to the system. Feedback messages are handled as any other message and

can in some cases travel on the same channels as the data, it is only at the sender or

receiver features where the messages need to be routed to the corrects data source/sink.

This simple structure of flow control allows different feedback based flow control types

without changing the structure of the model.

The basic flow control types we have implemented in the EFCO-tool are Water-

mark based flow control, Xon/Xoff, Window based flow control and Credit based flow

control. These basic flow control mechanisms are based on existing protocols used in

computer communication.

Watermark based flow control The Watermark based flow control makes its deci-

sions based on available buffer space at the receiver. The sender can decrease/increase

its transmission rate depending on if the buffer has reached its low or high water marks.

The transmit rate can be changed for example by changing the priority of the sending

process.

The Xon/Xoff protocol is similar to watermark based flow control but is simpler as

it either signals the sender to stop or continue sending jobs based on the input buffer

size of the receiver. The controller in the sender feature receives the feedback message

and suspends/resumes its services depending on the content of the message.

A different type of flow control is Window based flow control. In this type of flow

control the senders is allowed to transmit a given number (window size) of messages

before acknowledgments are needed. This means that it is the number of messages

between the sender and the receiver that is controlled and not the number of elements

in a specific buffer. Window flow control is widely used; one example of a refinement

of it is the sliding window protocol used in TCP.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 102

Fig. 7. Overview of the EFCO tool

A similar protocol is the Credit based flow control. Here the receiver gives credit

to the sender which indicates the number of messages the sender is allowed to send, the

sender consumes this credit while sending messages.

The flow control protocols described here are abstract simulation tools that gives

the designer guidelines to how parts of the system needs to be controlled in order to

make the whole system stable. The approach does not specify how the flow control

should be implemented in a real system, instead this is left to the designer. In real

systems flow control could be implemented within a single application be having the

application suspend/resume itself depending on some criteria, in this case adding flow

control would only make local changes to the application and not to the system. Another

solution is to implement flow control support in the operating system, it would then be

possible to have the scheduler make its decitions based the state of the use cases.

6 EFCO Tool

The EFCO tool is built on the Coral framework [1]. Figure 7 gives an overview of the

tool, and shows the three most important parts of the tool. These are all part of the Coral

modeler, and only support for the EFCO modeling language was needed to implement

in them. The outline editor (to the left) shows the current loaded models in a tree-like hi-

erarchy, both libraries and projects are loaded and shown in this editor. Elements in this

tree-view can be selected, copied and pasted, and also dragged and dropped into other

parts of the tool. The diagram editor (right top) shows a diagrammatic representation of

different parts of the models loaded in the outline editor. Elements from one model in

the outline editor can be dragged and dropped into the diagram editor of another model.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 103

For example, a library element can be dragged from a library in the outline editor into

a diagram of a project, which effectively combines the instantiated library element into

the project. The property editor (right bottom) presents different editable properties of

the currently selected element.

The EFCO tool implements the use case based metamodel and provides a set of tools

for manipulating it. It supports import from and export to CoFluent Studio projects, this

is important as services are the lowest level of detail handled in the EFCO tool and the

implementation of these must be done in CoFluent Studio. The EFCO tool does not

include any simulation tools and therefore the projects must be exported to CoFluent

Studio, this because EFCO tool has only been implemented as a tool for reusing and

combining components in an efficient way. What EFCO tool provides to the design is

tools for managing use cases. It provides the nodes as a tree which enables easy reuse

on any level of the design. It is possible to reuse whole use cases but also features and

services. The tool also implements use case combination tools, the combining of com-

ponents should be done in such a way that common smaller components are recognized

and not duplicated, and mappings to architecture elements should also be reused if they

have already been created. If a design already contain platform mapping the tool also

keeps the mapping as it is usually only new use cases that should be mapped and the

existing use cases will not be modified if not neccessary.

Before exporting the project to a CoFluent Project the use case is translated in to

a SimulationUseCase. A SimulationUseCase contains everything needed to simulate

different modes and combinations of the system, compared to a UseCase it breaks the

structure suitable for reuse and implements components needed for simulating the sys-

tem. To be able to simulate a UseCase created in EFCOTool it needs to be exported back

to CoFluent Studio, before the exporting of the new UseCase can be done, it needs to

be transformed into a SimulationUseCase. When transforming a UseCase into a Simu-
lationUseCase, all routers needed for simulating the UseCase are automatically added

to the model. Additional generic parameters are also added, one for every SubUseCase
and one for choosing between different UseCaseModes in a SubUseCase or UseCase.
Information regarding the architecture part of the model is also gathered to make the

exporting mechanism easier.

There are currently two different types of routers, namely UseCaseRouters and Use-
CaseModeRouters. An UseCaseRouter is needed if, for example, a project element has

more than one connection from the same output to project elements in different Sub-
UseCases. The generic parameter that is automatically created for each SubUseCase,
can be used to enable or disable SubUseCases when simulating the model. When dis-

abling a SubUseCase, all data to that SubUseCase is routed to a discard channel in

the UseCaseRouter. An UseCaseModeRouter, on the other hand, is needed if there are

more than one connection from the same output in a project element to other project

elements in the same UseCase or SubUseCase. Choosing the active UseCaseMode in

a simulation is done via a generic parameter, which is automatically created when the

UseCaseModeRouter is created.

The EFCOTool also supports the ability to automatically run several executable

CoFluent Studio simulation models, with certain specific parameter values. This is

called a BatchMode run, and it is located in the BatchMode tab in the property edi-

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 104

tor area of the EFCOTool. To be able to run a BatchMode in EFCOTool, a XML-file

(that follows a XML-schema) needs to be created. This XML-file contains all infor-

mation describing the different simulations, along with their parameter and simulation

configurations. The batchmode tool is important for the design space exploration as the

designer can analyse a large number of parameters and use case modes and combination

without interacting with the tools. The designer can then after the batchmode run check

the simulation results for feasible solutions.

7 Conclusions and Future Work

In this paper we have introduced an approach that uses a hierarchy of concepts that

help structure the components/assets that are needed for composing the new product

and map these to requirements on the business level. This approach uses the use case as

the fundamental high-level design concept and structures the design so that it is easy to

store design assets into libraries. This also enables use of the automated algorithm for

creating new performance analysis models based on a set of use cases which allows for

automatic combination of features and their evaluation of different platforms. Further,

an approach for finding parameters to control the resource contention in the system by

allowing features to have flow control constructs was also introduced. Such properties

are important for exploring what kind of control a set of use cases need in order to

work properly. Except from optimizing performance such construct can solve resource

sharing problems and it might be possible to avoid to modify a platform.

Currently the approach is tied to the CoFluent Studio tool, but in principle any

SystemC evaluation framework can be used, since the algorithms are all implemented

on the level of the meta-model. As future work we will experiment with how real-time

calculus [10] could be used to calculate bounds of the system. This is useful in case

of realtime systems as the simulation can never show every possible special case; if

the bound can be calculated it is possible to show that no task will miss a dealine.

Simulation will still be useful for studying the performance of the system. Flow control

can also be studied using RTC, one suitable method that can be used is multimode

RTC [11]. It is also possible to directly describe the flow control mechanisms using

RTC as long as we are only interested in the best case or the worst case, examples of

this can be found in literature concerning network calculus [12] which has been used to

analyze networks that are based on window buffer protocols.

References

1. Lundkvist, T., Porres, I.: Coordination of Model Transformation Engines and Visual Editors.

In Peltonen, J., ed.: Proceedings of NW-MODE’09. (2009) 269–283

2. Cofluent design homepage, available at http://www.cofluentdesign.com (2009)

3. Fors, N.: Efficient combination of reusable components in embedded system de-

sign. Master’s thesis, Åbo Akademi University, Faculty of Technology (2008)

http://research.it.abo.fi/research/ese/projects/efco/fors.pdf.

4. Nylund, J.: Efcotool - a tool to efficiently combine and reuse components in embedded

system design. Master’s thesis, Åbo Akademi University, Faculty of Technology (2008)

http://research.it.abo.fi/research/ese/projects/efco/nylund.pdf.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 105

5. Živković, V.D., Lieverse, P.: An overview of methodologies and tools in the field of system-

level design. In: Embedded processor design challenges: systems, architectures, modeling,

and simulation-SAMOS, New York, NY, USA, Springer-Verlag New York, Inc. (2002) 74–

88

6. Kienhuis, B., Deprettere, E.F., van der Wolf, P., Vissers, K.A.: A methodology to design

programmable embedded systems - the y-chart approach. In: Embedded Processor De-

sign Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS, London, UK,

Springer-Verlag (2002) 18–37

7. Sangiovanni-Vincentelli, A.: Defining platform-based design. EE Design (2002)

8. Calvez, J.P.: Embedded Real-Time Systems. A Specification and Design Methodology. John

Wiley and Sons (1993)

9. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis and design language (aadl):

An introduction. Technical report, CMU/SEI (2006)

10. Chakraborty, S., Kunzli, S., Thiele, L.: A general framework for analysing system properties

in platform-based embedded system designs. In: DATE ’03: Proceedings of the conference

on Design, Automation and Test in Europe, Washington, DC, USA, IEEE Computer Society

(2003) 10190

11. Phan, L.T.X., Chakraborty, S., Thiagarajan, P.S.: A multi-mode real-time calculus. In: RTSS

’08: Proceedings of the 2008 Real-Time Systems Symposium, Washington, DC, USA, IEEE

Computer Society (2008) 59–69

12. Le Boudec, J.Y., Thiran, P.: Network calculus: a theory of deterministic queuing systems for

the internet. Springer-Verlag New York, Inc., New York, NY, USA (2001)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 106

Using Higher-order Transformations to Derive
Variability Mechanism for Embedded Systems

Goetz Botterweck1, Andreas Polzer2, and Stefan Kowalewski2

1 Lero, University of Limerick

Limerick, Ireland

goetz.botterweck@lero.ie
2 Embedded Software Laboratory

RWTH Aachen University

Aachen, Germany

{polzer∣kowalewski}@embedded.rwth-aachen.de

Abstract. One approach to handle the complexity of embedded systems is the

use of models and domain-specific languages (DSLs) like Matlab / Simulink. If

we want to apply such techniques to families of similar systems we have to de-

scribe their variability, i.e., commonalities and differences between the similar

systems. Here, approaches from Software Product Lines (SPL) and variability

modeling might be helpful. In this paper, we discuss three challenges which arise

in this context: (1) We have to integrate mechanisms for describing variability

into the DSL. (2) To efficiently derive products, we require techniques and tool-

support that allow us to configure a particular product and resolve variability in

the DSL. (3) When resolving variability, we have to take into account depen-

dencies between elements, e.g., when removing Simulink blocks we have to re-

move the signals between these blocks as well. The approach presented here uses

higher-order transformations (HOT), which derive the variability mechanisms (as

a generated model transformation) from the meta-model of the DSL.

1 Introduction

Embedded systems are present in our everyday life. For instance, they are integrated

into washing machines (to save energy and water), mobile devices (to simplify our

lives) and in cars (to guarantee our safety).

In many cases, the engineering of embedded systems has to fulfill conflicting goals,

such as reliability and safety on the one hand and the need for cost reductions and

economic efficiency on the other hand. Moreover, the complexity of such systems is

increasing due to the extension of functionality and increased communication with the

environment. One possibility to deal with the complexity, requirements and the cost

pressure is to use model-based development techniques like Matlab / Simulink. The ad-

vantages of such an approach are that connections between system components are

expressed in an intuitive way on a higher abstraction level, which hides implementa-

tion details. Other benefits are support for simulation and increased reuse due to the

component-oriented approach.

In the context of this paper we regard a “system” as a Matlab / Simulink model that

contains components (Blocks) and provides a certain functionality. Nowadays, such

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 107

systems are reused with small, but significant changes between different applications.

Such variability causes additional complexity, which has to be handled. Some well-

known techniques for this are suggested by Software Product Lines (SPL) [1,2]. In

the research presented here, we discuss how these SPL techniques can be applied and

adapted for the domain of model-based development of embedded systems.

The main contributions of this paper are (1) an analysis of Matlab / Simulink mech-

anism for variability, (2) concepts for managing realizing this variability with model

transformations, (3) a mapping mechanism which adjusts the model according to con-

figuration decisions (extension of [3]), and (4) concepts for “pruning”, i.e., the cleanup

of components that are indirectly influenced by configuration decisions.

The remainder of the paper is structured as follows: First, we will give an overview

of our approach (in Section 2). After this we will explain methods of modeling variabil-

ity with Matlab / Simulink (Section 3) and how the suggested variability concepts are

managed (Section 4). Subsequently, we explain the additional pruning methods (Sec-

tion 5) and the implementation with model transformations (Section 6).

2 Overview of the Approach

We address the challenges described in the introduction with a model-driven approach

that relies on higher-order transformations. Before we go into more details, we will

give a first overview of our approach (see Figure 1). The approach is structured into

two levels (1) Domain Engineering and Application Engineering, similar to other SPL

frameworks [2,1]. Please note that we mark processes with numbers (to) and arte-

facts with uppercase letters (and , will be used in later figures). In addition, we

use indexes (e.g., d and a) to distinguish artefacts on Domain Engineering and Appli-

cation Engineering level.

2.1 Domain Engineering

Domain Engineering starts with the consideration of the context and requirements of

the product line during Feature Analysis leading to the creation of a Domain Feature
Model d, which defines the scope and available configuration options of the product

line. Subsequently, in Feature Implementation a corresponding implementation is

created. Initially, this implementation is given in the native Simulink format (*.mdl
files). To access this native implementation in our model-based approach, we have to

convert it into a model. For this we use techniques based on Xtext [4]. (see [5,6] for

more details). As a result we get the corresponding Domain Implementation Model Cd.

To prepare the derivation of products a higher-order transformation (HOT) is exe-

cuted, which reads the DSL meta-model and generates the derivation transformation ,

which will later be used during Application Engineering.

2.2 Application Engineering

The first step in Application Engineering is Product Configuration , where, based

on the constraints given by the Domain Feature Model d, configuration decisions are

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 108

Feature

Metamodel

Implementation

DSL

Metamodel

generates

ImplementationFeatures

Domain

Feature

Model

Generate

Derivation

Configuration

Processing
Derivation

Application

Implementation

Model

Domain

Implementation

Model

Application

Feature

Model

Ad
Cd

Aa Ca

3

65

Feature Analysis
Feature

Implementation

Additional

Pruning

Operations

7

1 2

Product

Configuration

4

Meta-model

Model

Process

Generated

Process

Legend

D
o

m
a

in
 E

n
g

in
e

e
ri
n

g

Product Line

Requirements

Product

Requirements

Requirements

A
p

p
lic

a
ti
o

n
 E

n
g

in
e

e
ri
n

g
L

a
n
g
u

a
g
e
 E

n
g
.

Requirements

Metamodel

Fig. 1. Overview of the approach.

made, which defines the particular product in terms of selected or eliminated features.

This results in a product-specific configuration which is saved in the Application Fea-
ture Model a. After some further processing , this configuration is used in the Product
Derivation transformation generated earlier by the HOT. This derivation reads the

Domain Implementation Model Cd and – based on the product-specific configuration –

derives a product-specific implementation. After additional pruning operations , the

result is saved as the Application Implementation Model Ca , which can be used in further

processing steps (e.g., Simulink code generation) to create the final executable product.

We will now describe these processes in more detail. We start with the process of

Feature Implementation (in Section 3). We will then explain the required adaptation

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 109

Fig. 2. Implementing Variability within a Matlab / Simulink model.

techniques including the Derivation (Section 4) and the subsequent Pruning Opera-
tions (Section 5).

3 Variability with Matlab / Simulink

Matlab / Simulink is a modeling and simulation tool provided by Mathworks. The tool

provides Blocks which can be represented graphically and Lines which indicate com-

munication. Blocks can contain other blocks, which allows to abstract functionality in

special blocks called Subsystems. A similar technique is used by summarizing multiple

lines into Buses.

In many cases, a feature can be implemented in Matlab / Simulink by a subsystem

which contains the functionality for this particular feature. All necessary information

consumed by the subsystem has to be provided by an interface, called Input ports.

These input ports are normally buses. The information provided by a component are

made available via Output ports, which are again organized buses and some additional

signals.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 110

We identified different possibilities to introduce variability in Matlab / Simulink for

the required Feature Implementation . Predominantly, we use the technique called

negative variability. When applying this technique a model is created, which contains

the union of all features across all possible configurations. When deriving a product-

specific model this “union” model is modified such that features that were selected are

activated and features that were not selected are deactivated or deleted.

To realize such a model in Simulink we can use two different approaches: (1) em-

bedding the variability mechanisms internally (i.e., within the Simulink model) or (2)

manipulating the model, based on variability information described externally (i.e., out-

side of the model).

We will now describe these two different techniques by explaining how common

structures of feature models (Optional feature, Or Group, Alternative Group) can be

implemented. For more information on these structures and feature models see [7,8].

An overview of feature diagram techniques and their formal semantics can be found in

[9].

3.1 Variability mechanisms within the Simulink model

The first option is to realize variability by inserting artificial elements into the Simulink

model. See the example model in Figure 2 where the blocks that implement features

(Feature A, Feature B, Feature C, . . .) have been augmented with additional elements

for variability (Feature A active, Integration, Variant, VP)

Mandatory features are – by definition – present in all variants. Hence, there is

nothing to do for the implementation of mandatory features when deriving a product.

There is no mandatory feature in the example.

Optional features can be realized in Matlab / Simulink models as a triggered subsys-
tem, which is a special block that can be activated using a boolean signal (see Feature A
in Figure 2). By using these mechanisms we are able to activate or deactivate a feature

implementation.

When modelling Alternative (XOR) group and Or group we have to realize similar

variability mechanisms. However, in addition we have to take care of the resulting sig-

nals and how they are fed into subsequent blocks. For alternative features we apply a

Switch block (see the block VPin Figure 2) to choose the right output signal.

For OR-related features the integration of the results cannot be described for the

general case, but has to be implemented depending on the particular case. In particular

we have to take into the account the case when more than one feature of the group is

selected and present in the implementation. We can implement an integration block for

such cases in different ways. One example, is the case where limit is calculated for a

certain dimension. Then the integration can be done by using a minimum (or maximum)

function. In doing so, the lowest (highest) value is used by the system. As an example

for this see Feature D and Feature E which are combined using an Integration block.

3.2 Variability mechanisms outside of the Simulink model

A second possibility, besides variability within the model, is the direct manipulation of

the model with an external tool. To this end, during product derivation it is necessary

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 111

to analyze the structure of a model file and delete the blocks representing deactivated

features in such a way that a desired configuration is obtained.

When creating the union model it might be necessary to create a model, which

could not be executed as-is within Simulink since the execution semantics of the created

structure is undefined. This is because the variability decisions are still to be made and

we have not yet removed certain elements.

As an example consider the case when we want to combine signals of two alternative

features in an XOR group. In the union model, we might create the blocks for these two

features side-by-side and feed their results into the same inport of the next block. As

long as we configure this model (i.e., when the variability is applied), some parts will

be removed, such that we get a valid and executable Simulink model. However, if we

leave the union model (i.e., no variability applied) we do not realize the exclusion of the

two features (“the X in XOR”). This leads to two signals feeding into on inport, which

is an invalid Simulink model with undefined execution semantics.

In the example in figure Figure 2 this would correspond to connecting the F B Bus
outport of Block Feature B directly to the port F bus of the bus Output Signals, while at

the same time connecting the F C Bus outport of Block Feature C directly to the same

port F bus. If we would try to execute such a model, Simulink would respond with an

error message.

The advantage of this kind of external method is that we do not have to pollute the

domain model with artificial variability mechanisms.

Analyzing both possibilities, we came to the conclusion that a combination of both

is an appropriate way of introducing variability. There are two major requirements

which have to be fulfilled introducing variability methods. On the one hand we have

to keep the characteristics of model based development (e.g., easy testing and simula-

tion, capturing of dependencies possible), on the other hand the derived product should

no longer contain any variability mechanisms. The mechanisms, which we introduced

to realize this are explained in the next section.

4 Managing Variability

In this section we introduce the variability mechanisms we used in Simulink mod-

els and how they are influenced by configuring a corresponding feature tree. For in-

stance the feature tree shown in Figure 3. This feature tree has an optional Feature
A, XOR-grouped Feature B and Feature C, and OR-grouped Feature D and

Feature E. Additionally the requires relation indicates that Feature B needs

Feature A, i.e., whenever 𝐵 is selected 𝐴 has to be selected as well. This struc-

ture defines a set of legal configurations. Each of these configurations contains a list of

selected features.

The mechanism that implements the structure of the feature tree has to fulfill certain

requirements. In particular, it is important to keep the ability of simulating and testing

the model. Therefore, it is necessary to build a model which has correct syntax, even

after the variability mechanisms have been introduced. Additionally, the developer must

have the possibility to introduce new features directly in the model. But due to the fact

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 112

Fig. 3. Feature Tree for the variant Matlab / Simulink model shown in Figure 2.

that there are space and performance requirements the mechanisms have to be removed

if the model is converted into a program executable on an embedded hardware.

To this end we used in general the approach of modeling variability within Simulink

but with blocks which are specially marked as variability blocks. These special blocks

are adopted afterwards according to the desired configuration. This means for obtaining

a configuration, features which are not necessary will be deleted. Additionally signals

between blocks are rerouted to be able to eliminate the variability blocks, which are

not necessary in the derived product. The exact methods for a switch-block, triggered
subsystem and, arbitrary integration mechanism is given in the following paragraphs.

The switch-block is used to express the relation between alternative grouped fea-

tures. Therefore only one of them will give their contribution to the system. Using this,

the developer of the implementation is able to simulate all features simply by choosing

a configuration of the switch which selects to corresponding feature implementation

block.

When deriving the executable product, it is necessary to delete those features that

are not selected in the feature configuration. The output of each selected feature has to

be connected with the port the switch block points to. All other corresponding signals

have to be removed. In the end, no variability mechanism should be left in the model.

The situation is a bit simpler for triggered subsystems, which implement optional

features. During simulation these blocks can be selected easily using trigger-signals.

This will take effect on the simulation. If the corresponding feature is selected then the

trigger-port has to be activated. When deriving an executable program, whenever the

corresponding feature is deactivated, the subsystem has to be deleted. If it is activated

nothing has to be done.

The mechanism to join the signals of OR-grouped features are not so easy to adopt.

In the case of simulating the system the developer has to activate the desired features.

This can be done either by using triggered subsystems to implement the features or just

by disconnecting their signals with the block which joins the signals.

In case of deriving a real product two cases have to be distinguished. If only one

feature is selected the other feature and the block joining the signals can be deleted. If

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 113

more than one feature is selected the feature which are not selected can be deleted. But

in this case the integration mechanism is still necessary.

5 Pruning

Dealing with blocks implementing features and the mechanisms to express variability

is not the only adaptation which has to be done. There are additional components in

the Simulink model which have to be changed as well, depending on the choices in the

configuration

Especially, the interfaces for input or output signals which provide the information

and supply the result from and to other systems have to be considered here. These

blocks are interrelated with the configuration. They are necessary to define access to

the signals. Therefore all signals provided from other systems are listed and treated in a

way that the information is available in a common way. For instance the information for

an input port is stored, renamed and mapped to internal representations which realizes

the concrete representation.

Most of the signals, which are provided in the interface blocks are only needed for

one feature. If this feature is not present the corresponding signals can be cleared out to

optimize the implementation.

Buses that contains more than one signal have to be adopted in a similar fashion,

i.e., only the required signals should remain within the buses. Hence, we have to prune

out signals which are no longer needed because the corresponding features are to be

removed.

These adoptions are not only necessary on the highest level of the model but also

for subsystems. In general, it is possible that features are not visible at the highest level,

for instance when subsystems are used to implement features. Since these subsystems

use the same techniques as the main model of the whole system, it is necessary to adopt

their interfaces and buses recursively in a similar fashion.

6 Implementation

The implementation discussed here (see Figure 4) is a technical realization of the ap-

proach shown earlier (see Figure 1).

The technical implementation follows the same structure, with Domain Engineering

(Processes to) and Application Engineering (processes to). We will now

discuss the model transformations in more detail.

6.1 Generating the derivation transformation

The higher-order transformation (HOT) Metamodel2Derivation.atl reads

the meta-model of the DSL and generates a model transformation , which is able to

copy instances of this DSL.

Some excerpts of Metamodel2Derivation.atl are shown in Listing 1. The

transformation is generated as an ATL query which concatenates the output as one

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 114

Feature

Metamodel

Implementation

DSL

Metamodel

generates

D
o
m

a
in

 E
n
g
in

e
e
ri
n
g

ImplementationFeatures

Domain

Feature

Model

Metamodel2De-

rivation.atl

Derive-

Implementation-

Visibility.atl

DeriveImple-

mentation.atl

Application

Implementation

Model

Domain

Implementation

Model

Application

Feature

Model

Ad

M
a
p
p
in

g
s

Bd Cd

Ai Ci

3

65

Product Line

Requirements

Product

Requirements

Feature Analysis
Feature

Implementation

Requirements

A
p
p
lic

a
ti
o
n
 E

n
g
in

e
e
ri
n
g

L
a
n
g
u
a
g
e
 E

n
g
.

Requirements

Metamodel

Additional

Pruning

Operations

7

1 2

Product

Configuration

4

Meta-model

Model

Process

Generated

Process

Legend

Fig. 4. Technical model workflow.

large string. For instance, the helper function generateCopyRules() (see List-

ing 1, lines 4–8) generates copy rules for all meta-classes in the meta-model. Details

of each copy rule (e.g., the rule, from and to part) are generated by the function

Class.toRuleString() (see Listing 1, lines 10–21) and other functions which

were omitted for space reasons.

Examples of how the resulting transformation looks like, will be discussed in the

next section.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 115

1 query Metamodel2Derivation =

2 [. .]

3

4 helper def : generateCopyRules () : String =

5 ECORE !EClass
6 −>allInstancesFrom (’IN’)

7 −>sortedBy (o ∣o .cname ())

8 −>iterate (e ; acc : String = ’’ ∣ acc + e .toRuleString ()) ;

9

10 helper context ECORE !EClass def : toRuleString () : String =

11 if not self . ”abstract” and self−>inclusionCondition () then
12 ’rule ’ + self−>cname () + ’ {\n’ +

13 ’ from s : SOURCEMETA!’ + self−>cname () +

14 self−>inputConstraint () + ’\n’ +

15 ’ to t : TARGETMETA!’ + self−>cname () +

16 ’ mapsTo s (’ +

17 self−>contentsToString () + ’)\n’ +

18 ’}\n\n’
19 else
20 ’’
21 endif ;

22 [. .]

Listing 1. Metamodel2Derivation.atl, transformation (3), excerpt.

6.2 Executing the derivation transformation

The generated derivation transformation DeriveImplementation.atl realizes a

principle called “negative variability” [10] (also known as a “150% model”). With neg-

ative variability the domain model, here the Domain Implementation Model Cd contains

the union of all potential product-specific models.

Hence, the derivation transformation has to selectively copy the elements, filtering

out those that should not be included, copying only those which will become part of the

product-specific model, here the Application Implementation Model Cd.

This selective copying is realized using the following mechanisms:

– For each meta-class in the DSL there is one copy rule. For instance, the rule Block
(see Listing 2, lines 9–19) will copy instances of the meta-class Block.

– Each copy rule contains a condition that refers to an .isVisible() helper func-

tion, which controls whether an element is “visible” for the particular product and,

hence, is copied or not. For instance, when processing the source element s the rule

Block checks whether s.isVisible() (see Listing 2, line 12).

– To avoid inconsistent references, the following check is performed: Whenever

references are processed, it is checked if the referenced elements are visi-

ble, as well. For instance, when copying references to .generalization,

.ownedAttribute, and .ownedOperation the visibility is checked (see

Listing 2, lines 16–18).

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 116

1 module DeriveImplementation ;

2

3 create TARGET : TARGETMETA from SOURCE : SOURCEMETA , CONFIG :

CONFIGMETA ;

4

5 helper context SOURCEMETA !Block def : isVisible () : Boolean =

6 true ;

7 [. .]

8

9 rule Block {
10 from s : SOURCEMETA !Block (

11 thisModule .inElements−>includes (s) and
12 s .isVisible ()

13)

14 to t : TARGETMETA !Block mapsTo s (

15 name <− s .name ,

16 subsystemblockbody <− s .subsystemblockbody−>
select (o ∣o .isVisible ()) ,

17 normalblockbody <− s .normalblockbody−>
select (o ∣o .isVisible ()) ,

18 scopeblockbody <− s .scopeblockbody−>
select (o ∣o .isVisible ())

19)

20 }
21 [. .]

Listing 2. DeriveImplementation.atl, transformation (6), excerpt.

– The visibility functions determine whether instances of a certain meta-class

will be copied. For instance, Block.isVisible() (see Listing 2, lines 5–

6) calculates this for each instance of Block. In the initial version of

DeriveImplementation.atl which is automatically generated from the

meta-model all visibility functions default to true.

– In a second transformation, DeriveImplementationVisibility.atl
Listing 3 these visibility functions are manually redefined. These functions access

the product configuration and determine, which elements go into the product and

which do not. Later on, these will be overloaded over the default visibility func-

tions, by using ATL’s superimpose mechanisms.

The selective copying is controlled by the function s.isVisible() de-

fined in DeriveImplementationVisibility.atl . This function reads the

Application Feature Model a and decides how this influences the filtering of

elements in the Domain Implementation Model.

For this decision to be made, it is necessary to know how the various features in

the feature model (d and a) are related to the corresponding elements in the Mat-

lab / Simulink implementation model.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 117

1 module DeriveArchitectureDetermineVisibility ;

2

3 create TARGET : TARGETMETA from SOURCE : SOURCEMETA , CONFIG :

CONFIGMETA ;

4

5 −− t r u e i f B lock i s r e f e r e n c e d by a s e l e c t e d f e a t u r e
6 helper context SOURCEMETA !Block def : isSelected () : Boolean =

7 [. .]

8

9 −− t r u e i f B lock i s r e f e r e n c e d by an e l i m i n a t e d f e a t u r e
10 helper context SOURCEMETA !Block def : isDeselected () : Boolean =

11 [. .]

12

13 helper context SOURCEMETA !Block def : isVisible () : Boolean =

14 if self .isSelected () then
15 if self .isDeselected () then
16 true .debug (’feature conflict for block’ + self .name)

17 else
18 true
19 endif
20 else
21 if self .isDeselected () then
22 false
23 else
24 true −− d e f a u l t t o v i s i b l e
25 endif
26 endif ;

27 [. .]

Listing 3. DeriveImplementationVisibility.atl, transformation (5), excerpt.

This is represented by the Mapping d between the Domain Feature Model d and the

Domain Implementation Model Cd implemented as a model which contains as elements

dependencies. These dependencies relate features and the corresponding implementa-

tion, with a link mechanisms available from the meta-model. Using this meta-model

we are able to map a feature given in the configuration model to a block given in the

implementation model.

To implement pruning operations we are currently experimenting with and imple-

menting new user-defined methods. These methods will adopt the copy rules in such a

way that the methods given in Section 5 are realized. These pruning operations are in-

fluenced by the configuration and the mapping of features. However, they affect model

components which are only indirectly referenced by the mapping model.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 118

7 Related Work

Several projects deal with Product Derivation. The ConIPF project provides a methodol-

ogy for product derivation [11]. ConIPF concentrates on the formalization of derivation

knowledge into a configuration model. Deelstra et al. provide a conceptual framework

for product derivation [12].

When dealing with variability in domain-specific languages a typical challenge is

the mapping of features to their implementations. Here, Czarnecki and Antkiewicz [13]

used a template-based approach where visibility conditions for model elements are de-

scribed in OCL. In earlier work [14,15], we used mapping models and model transfor-

mations in ATL [16] to implement similar mappings. Heidenreich et al. [17] present

FeatureMapper, a tool-supported approach which can map features to arbitrary EMF-

based models [18].

Voelter and Groher [10] used aspect-oriented and model-driven techniques to im-

plement product lines. Their approach is based on variability mechanisms in openAr-

chitectureWare [19] (e.g., XVar and XWeave) and demonstrated with a sample SPL of

home automation applications.

In earlier work [20,5], the authors have experimented with other mechanisms

for negative variability (pure::variants Simulink connector [21] and openArchitecture-

Ware’s Xvar mechanism [19]) to realize variability in Embedded Systems. The mecha-

nisms were applied to microcontroller-based control systems and evaluated with a prod-

uct line based on the Vemac Rapid Control Prototyping (RCP) system.

The approach presented here can be seen as an integration and extension of

work from Weiland [22] and Kubica [23]. Both presented mechanisms to adopt Mat-

lab / Simulink-models based on feature trees. Weiland implemented a tool which influ-

ences certain variability points in a Simulink model. However, variability mechanisms

are not removed during variability resolution. The approach given by Kubica constructs

a new Simulink model for a derived product.

Tisi et al. provide an literature review on higher-order transformations [24] includ-

ing a classification of different types of HOT. Oldevik and Haugen [25] use higher-

order transformations to implement variability in product lines. Wagelaar [26] reports

on composition techniques for model transformations.

8 Conclusion

In this paper we presented an approach to introduce and adopt variability in a model-

based domain specific language (Matlab / Simulink) for developing embedded systems.

With our approach we are able to simulate and test variable Simulink-models by

introducing mechanisms to manage variability and additionally derive models which

contains only the product specific components. This provides us with memory and com-

putation time efficient models.

All model transformations were implemented in the ATLAS Transformation Lan-

guage (ATL) [16]. The original version was developed with ATL 2.0. We are currently

experimenting with ATL 3.0 and its improved support for higher-order transformations.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 119

Using this technique we are able to reuse previous work which implements the trans-

formation from a domain specific language and a abstract variability mechanism. This

approach is expanded by new methods to decided whether a feature is active and new

domain specific methods are needed to adopt the implementation model.

9 Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant 03/CE2/I303 1

to Lero – the Irish Software Engineering Research Centre, http://www.lero.ie/.

The higher-order transformation (in the overview) was inspired by an ATL case study

by Dennis Wagelaar.

References

1. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns. The SEI series

in software engineering. Addison-Wesley, Boston, MA, USA (2002)

2. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering : Foundations,

Principles, and Techniques. Springer, New York, NY (2005)

3. Beuche, D., Weiland, J.: Managing flexibility: Modeling binding-times in simulink. [27]

289–300

4. Eclipse-Foundation: Xtext http://www.eclipse.org/Xtext/.

5. Polzer, A., Botterweck, G., Wangerin, I., Kowalewski, S.: Variabilitt im modellbasierten

engineering von eingebetteten systemen. In: 7. Workshop Automotive Software Engineering,

collocated with Informatik 2009, Luebeck, Germany (September 2009)

6. Botterweck, G., Polzer, A., Kowalewski, S.: Interactive configuration of embedded systems

product lines. In: International Workshop on Model-driven Approaches in Product Line

Engineering (MAPLE 2009), colocated with the 12th International Software Product Line

Conference (SPLC 2008). (2009)

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature oriented domain analysis

(FODA) feasibility study. SEI Technical Report CMU/SEI-90-TR-21, ADA 235785, Soft-

ware Engineering Institute (1990)

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming. Addison Wesley, Reading, MA,

USA (2000)

9. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a formal se-

mantics. In: Requirements Engineering Conference, 2006. RE 2006. 14th IEEE Interna-

tional. (2006) 136–145

10. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and model-driven

software development. In: 11th International Software Product Line Conference (SPLC

2007), Kyoto, Japan (September 2007)

11. Hotz, L., Wolter, K., Krebs, T., Nijhuis, J., Deelstra, S., Sinnema, M., MacGregor, J.: Con-

figuration in Industrial Product Families - The ConIPF Methodology. IOS Press (2006)

12. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a case

study. The Journal of Systems and Software 74 (2005) 173–194

13. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based on

superimposed variants. In: GPCE’05, Tallinn, Estonia (September 29 - October 1 2005)

14. Botterweck, G., Lee, K., Thiel, S.: Automating product derivation in software product line

engineering. In: Proceedings of Software Engineering 2009 (SE09), Kaiserslautern, Ger-

many (March 2009)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 120

15. Botterweck, G., O’Brien, L., Thiel, S.: Model-driven derivation of product architectures.

In: Proceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering (ASE 2007), Atlanta, GA, USA (2007) 469–472

16. Eclipse-Foundation: ATL (ATLAS Transformation Language) http://www.eclipse.
org/m2m/atl/.

17. Heidenreich, F., Kopcsek, J., Wende, C.: Featuremapper: Mapping features to models. In:

ICSE Companion ’08: Companion of the 13th international conference on Software engi-

neering, New York, NY, USA, ACM (2008) 943–944

18. Eclipse-Foundation: EMF - Eclipse Modelling Framework http://www.eclipse.
org/modeling/emf/.

19. openarchitectureware.org: Official open architecture ware homepage http://www.
openarchitectureware.org/.

20. Polzer, A., Kowalewski, S., Botterweck, G.: Applying software product line techniques in

model-based embedded systems engineering. In: 6th International Workshop on Model-

based Methodologies for Pervasive and Embedded Software (MOMPES 2009), Workshop at

the 31st International Conference on Software Engineering (ICSE 2009), Vancouver, Canada

(May 2009)

21. Pure::systems: pure::variants Connector for Simulink http://www.mathworks.com/
products/connections/product_main.html?prod_id=732.

22. Weiland, J., Richter, E.: Konfigurationsmanagement variantenreicher simulink-modelle. In:

Informatik 2005 - Informatik LIVE!, Band 2, Koellen Druck+Verlag GmbH, Bonn (Septem-

ber 2005)

23. Kubica, S.: Variantenmanagement modellbasierter Funktionssoftware mit Software-

Produktlinien. PhD thesis, Universität Erlangen-Nürnberg, Institut für Informatik (2007)

Arbeitsberichte des Instituts für Informatik, Friedrich-Alexander-Universität Erlangen

Nürnberg.

24. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model

transformations. [27] 18–33

25. Oldevik, J., Haugen, O.: Higher-order transformations for product lines. In: 11th Interna-

tional Software Product Line Conference (SPLC 2007), Washington, DC, USA, IEEE Com-

puter Society (2007) 243–254

26. Wagelaar, D.: Composition techniques for rule-based model transformation languages. In

Vallecillo, A., Gray, J., Pierantonio, A., eds.: ICMT. Volume 5063 of Lecture Notes in Com-

puter Science., Springer (2008) 152–167

27. Paige, R.F., Hartman, A., Rensink, A., eds.: Model Driven Architecture - Foundations and

Applications, 5th European Conference, ECMDA-FA 2009, Enschede, The Netherlands,

June 23-26, 2009. Proceedings. In Paige, R.F., Hartman, A., Rensink, A., eds.: ECMDA-

FA. Volume 5562 of Lecture Notes in Computer Science., Springer (2009)

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 121

Model-Based Extension of AUTOSAR for
Architectural Online Reconfiguration

Basil Becker1, Holger Giese1, Stefan Neumann1,
Martin Schenck2 and Arian Treffer2

Hasso-Plattner-Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

1forename.surname@hpi.uni-potsdam.de
2forename.surname@student.hpi.uni-potsdam.de

Abstract. In the last years innovations in the automotive domain have
more and more been realized by software leading to a dramatically in-
creased complexity of such systems. Additionally automotive systems
have to be flexible and robust, e.g., to be able to deal with failures of
sensors, actuators or other constituents of an automotive system. One
possibility to achieve robustness and flexibility in automotive systems is
the usage of reconfiguration capabilities. However, adding such capabili-
ties introduces even higher degree of complexity. To avoid this drawback
we propose to integrate reconfiguration capabilities into AUTOSAR, an
existing framework supporting the management of such complex system
at the architectural level. Elaborated and expensive tools and toolchains
assist during the development of automotive systems. Hence we present
how our reconfiguration solution has been seamlessly integrated into such
a toolchain.

1 Introduction

Today most innovations in the automotive domain are realized by software.
This results in a dramatically increasing complexity of the developed software
systems1. The objective of the AUTOSAR framework is to deal with this com-
plexity at the architectural level. Additionally these systems need to deal with
diverse situations concerning the context in which the software is operating.
Such systems and especially the software, which is realizing essential functional-
ities of the overall system, need to be flexible to react on changes of its context.
Regardless if such a system need to react on failures or on other contextual situ-
ations2, flexibility and robustness plays an important role in today’s automotive
applications.

1 The complexity concerning the size of the developed software, the functionality re-
alized by the software system and so on.

2 An example for such a situation, which is not related to a failure is in case the car
is connected to diagnostic devices.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 123

Reconfiguration is one possibility to facilitate the flexibility and robustness of
such systems. There exist different possibilities to realize reconfiguration within
automotive software. One is to realize reconfiguration mechanisms at the func-
tional level. Because the AUTOSAR framework primarily provides mechanisms
to deal with the complexity at the architectural level also the reconfiguration
aspects should be available at the same level. Because deriving architectural
information from the functional level could be difficult or even impossible we
propose to specify reconfiguration aspects at the architectural level and to auto-
matically derive the needed functionality based on the architectural information.

Further in a typical development scenario one has to deal with black-box
components provided by third parties and elaborated information about the
included functionality is not available, what also hampers the management of
reconfiguration aspects at the functional level. Another possible solution is to
introduce a new approach inherently facilitating reconfiguration aspects in the
context of automotive systems. Today standard methods and tools already exist
for supporting the development process of AUTOSAR. Because adapting exist-
ing tools or developing new once is very costly the propagation of such a new
approach would be hardly suitable in practice. Summarizing we have identified
the need for an development approach that is able to provide reconfiguration
capabilities at the architectural level, can be seamlessly integrated into an exit-
ing development solution and can also include third party components into the
reconfigurable architecture. In this work we show how reconfiguration capabili-
ties, which are currently not included in the existing AUTOSAR approach can
be supported at the architectural level without degrading existing development
solutions, tools or the standard itself. We further show how the needed func-
tionality for realizing the reconfiguration logic can be automatically generated
based on the architectural information describing the reconfiguration. The used
application example for our evaluation is related to the field of fault tolerant
systems and from our perspective such systems are one possible field to which
reconfiguration like discussed in the remainder of this work can be applied.

The remainder of this paper is organized as follows. In Section 2 we discuss
existing approaches supporting reconfiguration relevant for automotive systems
and especially those approaches providing reconfiguration capabilities at the ar-
chitectural level. In Section 3 we briefly introduce the existing toolchain, which
builds the technological foundation for our investigation concerning the devel-
oped extension for on-line reconfiguration within the AUTOSAR framework.
Subsequently in Section 4 we show how such a system is usually modeled with
the given tools and how the additional reconfiguration aspects could be formu-
lated based on the input/output of the existing toolchain. In Section 5 we show
how these created additional reconfiguration aspects are automatically merged
back into the original architecture and how the merged result fits into the exist-
ing tools without discarding or degrading parts of the original toolchain. Finally
we give short discussion concerning the current results of our work in Section 6.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 124

2 Related Work

In several different areas of computer science ideas have been presented, which
are related to the approach we are going to present in this paper. In the field of
software product lines and especially dynamic software product lines the topic of
variable software has been addressed. The software architecture community has
presented some work on the reconfigurability of robotic systems. Work, tailored
to the automotive domain, has been done in the DySCAS project. We did some
research on self-optimizing mechatronic systems.

In previous work we have presented a modeling technique called Mecha-
tronic UML (mUML), which is suitable for the modeling of reconfigurable and
self-optimizing mechatronic systems [1, 2]. However, the mUML approach differs
from the one, which will be presented in this paper, in the fact that mUML uses
an own code generation mechanisms and thus could hardly be integrated into
existing development tool chains.

In the DySCAS3 project dynamically self-configuring automotive systems
have been studied [3, 4]. DySCAS does not provide a model based development
approach, tailored to the specification of reconfiguration. Reconfiguration is spec-
ified with policy scripts, which are then evaluated by an engine at run-time
(cf. [5]).

Software Product Line Engineering (SPLE) [6] aims at bringing the assembly
line paradigm to software engineering. Typically a software product line is used
to develop multiple variants of the same product. However, as the classical SPLE
approach targets the design-time variability of software it is not comparable to
the approach we are going to present in this paper. Recently a new research
branch has emerged from SPLE called Dynamic Software Product Line Engi-
neering [7]. In Dynamic Software Product Lines the decision, which variant to
run, has moved from design- to run-time. Such an approach is presented in [8],
where the authors describe a dynamic software product line, which is suitable
for the reconfiguration of embedded systems. In contrast to our approach this
one is restricted to the reconfiguration of pipe-and-filter architectures and the
reconfiguration has to be given in a textual form.

In [9] a framework for the development of a reconfigurable robotic system
has been presented. But the presented approach does in contrast to ours not
support the model-driven development of reconfiguration. A policy-based recon-
figuration mechanism is described in [10]. The authors present a powerful and
expressive modeling notation for the specification of self-adaptive (i.e. reconfig-
urable) systems but their approach requires too much computational power and
is thus only remotely applicable to embedded systems. In [11] an approach based
on mode automata has been presented. However, mode automata only support
switching between different behaviors internal to a component and do not cover
architectural reconfiguration.

3 http://www.dyscas.org

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 125

3 Existing Development Approach

For the development of embedded systems – especially in the automotive domain
– several tools exist that provide capabilities for model-based development of
such systems. Tools used by companies typically are mature, provide reliable and
optimized code generation mechanisms and are as expensive as complex. Hence,
any technique that claims being usable in the domain of embedded / automotive
systems must be integrated into the existing toolchain. We will use this section
to exemplary describe a toolchain, which might be used in the context of the
AUTOSAR domain specific language.

3.1 AUTOSAR

The AUtomotive Open System ARchitecture (AUTOSAR) is a framework for
the development of complex electronic automotive systems. AUTOSAR provides
a layered software architecture consisting of the Application layer, the Run-
time Environment and the Basic Software layer. Figure 14 shows the different
layer of the architecture. The Basic Software layer provides services concerning
HW access, communication and Operating System (OS) functionality (cf. [12]).
The Basic Software provides several interfaces in a standardized form to al-
low the interaction between the Basic Software layer and the application layer
routed through the Runtime Environment. The Runtime Environment handles
the communication between different constituents of the application layer and
between the application layer and the Basic Software layer (e.g., for accessing
Hardware via the Basic Software, cf. [13]). The Application layer consists of
Software Components, which can be hierarchically structured and composed to
so called Compositions. Software Components and Compositions can have ports
and these ports can be connected via Connectors (see [14] for more details).
The real communication is realized through the Runtime Environment in case
of local communication between Software Components (Compositions) on the
same node (Electronic Control Unit) or through the Runtime Environment in
combination with the Basic Software in case of communication between different
nodes.

The main focus of AUTOSAR is the modeling of architectural aspects and
of structural aspects. The behavior modeling (e.g., needed control functionality
for reading sensor values and setting actuators) is not the main focus of the AU-
TOSAR framework. For modeling such behavior existing approaches and tools
can be integrated into the development process of AUTOSAR. One commonly
used tool for the model based development of behavior is MATLAB/Simulink
(like described in Section 3.2). For executing such functionality AUTOSAR pro-
vides the concept of Runnables, which are added as a part of the internal be-
havior of a Software Component. Developed functionality could be mapped to
Runnables and these Runnables are mapped to OS tasks. Additionally events

4 Picture taken from http://www.autosar.org/gfx/media pictures/AUTOSAR-
components-and-inte.jpg.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 126

can be used to decide inside an OS task if specific runnables are executed at run-
time (e.g., runnables could be triggered by events if new data has been received
via a port of the surrounding Software Component). For more details about the
OS provided by the AUTOSAR framework see [15].

Once the modeling and configuration is done, in the current release version
of AUTOSAR5 changes at run-time concerning the structure of the application
layer (e.g., restructuring connectors) are not facilitated by the framework.

Fig. 1. The AUTOSAR layered architecture

3.2 Existing Toolchain

The scheme in Figure 2(a) shows one possible toolchain for the development
of AUTOSAR systems. Rectangles with rounded corners represent programs,
rectangles with cogwheels stand for processes. The arrows indicate exchange
of documents, the type of the document (i.e. models, C-code or parameters)
is annotated to the arrows. The system’s architecture (i.e. components, ports
and connectors) is modeled in SystemDesk6. Together with the architecture Sys-
temDesk also supports the modeling of the system’s deployment to several ECUs.
The components behavior is specified using Matlab with the extension Simulink.
For Matlab/Simulink (ML/SL) special AUTOSAR block sets exist, which allow
the import of components specified in SystemDesk into Matlab and following
the development of the component’s functionality.

Further SystemDesk supports the generation of optimized C-Code, which
conforms to the AUTOSAR standard concerning the Runtime Environment (cf.
Subsection 3.1). Together with the C implementation of the software components
modeled in SystemDesk the generated output also contains a configuration for
the basic software layer. This layer is generated from specialized tools (e.g. Tresos

5 Release 3.1
6 http://www.dspace.de

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 127

(a) Exemplary toolchain for development
with AUTOSAR

(b) Tool chain for modeling reconfigurable
AUTOSAR architectures

Fig. 2. The current and the extended toolchain for the development with AUTOSAR

by ElectroBit, abbreviated as BSW-C/G in Figure 2) and is specific to the system
modeled in SystemDesk and the available hardware.

At the integration step a build environment compiles the generated C-Code
and builds the software running on each ECU.

3.3 Evaluation Example

The used application example for showing the reconfiguration capabilities that
are supplemented to the existing AUTOSAR framework in our approach is the
reconfiguration of a set of adjacent aligned distance sensors. The discussed eval-
uation example allows reacting on sensor failures in the manner that the failure
of individual sensor instances is compensated.7

Such adjacent aligned sensors are commonly used in a modern car, e.g., in
case of a parking distance control. Such a parking distance control uses sensors
(e.g., ultrasonic sensors) embedded in the front or rear bumper for measuring
the distance to nearby obstacles.

Additionally in Section 5.3 we discuss the evaluation results of experiments
we have made on an evaluation platform using the techniques described in Sec-
tion 4.

4 Modeling Reconfiguration

In order to make an AUTOSAR system architecture reconfigurable, some addi-
tional concepts are needed. The toolchain needs to be extended in a certain way
that extensions do not make the existing toolchain invalid. From our perspective
the best way is to integrate an optional tool that can be plugged into the existing
toolchain.

7 For our application example we assume that a sensor failure can be observed at the
level of Software Components.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 128

4.1 Extended Toolchain

Our modeling approach is currently restricted to the modeling of AUTOSAR
software architectures. The toolchain in Figure 2(b) shows our approach of ex-
tending the existing toolchain by another tool without degrading existing ones.
By using this proposal the developer is free to choose, whether he wants to use
our given enhancement or not. He can either model an architecture, that does
not provide any reconfiguration or he can use our tool in addition and empower
himself to specify and realize reconfiguration aspects. The advantages are obvi-
ous: better control and overview due to the diagrammatic depiction.

SystemDesk SystemDesk is a tool provided by dSPACE 8 supporting the mod-
eling of AUTOSAR conform systems. Among other things it supports the mod-
eling of the AUTOSAR HW and SW architectures. For modeling the SW ar-
chitecture Software Components, compositions as well as ports, interfaces and
connectors are provided as modeling artifacts. These artifacts can be used to
describe the architectural aspects of a concrete SW architecture for a specific
system like shown in Figure 3.9 Besides modeling the architecture in SystemDesk,
the tool also allows the linking of the Software Components to their behavior,
written in C-Code or given in form of MATLAB/Simulink models.

Additionally the HW architecture including the used types of ECUs (Elec-
tronic Control Unit), the deployment of Software Components to these ECUs as
well as additional information concerning the configuration (e.g., configuration
concerning communication and the OS) can be specified. Based on this informa-
tion SystemDesk automatically generates code, which can be compiled for the
specified platform. Besides the code for the application layer SystemDesk also
generates source code realizing the Runtime Environment functionality.

Figure 3 shows the relevant part of the SW architecture concerning our ap-
plication example modeled in SystemDesk. Like depicted on the right side of
Figure 3 the composition consists of four Software Components representing the
distance sensors10 connected to another composition SensorLogic evaluating the
sensor values to a single value provided by the port ShowDistanceOut.11

The above mentioned elements (Software Components, ports and connectors)
are used to describe the software when no reconfiguration is intended. Some ad-
ditional elements shown in Figure 3 are described in more detail in the following
section. These elements (Interpolation, Reconfiguration and the unused ports of
the sensors) are used later to realize the reconfiguration functionality.

8 www.dspace.de
9 For the realization of control functionality other constituents can be imported into

SystemDesk, e.g. in form of C-Code or Matlab/Simulink models, to realize the im-
plementation of internal behavior of Software Components.

10 The ports accessing the HW via the Runtime Environment and Basic Software are
not shown here because they are not object of reconfiguration.

11 To allow a better understanding SensorLogic calculates a single output value based
on the different input values. Potentially also several output values can be computed.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 129

Fig. 3. Configuration in SystemDesk

dTool The usual modeling procedure is not altered until the modeling in Sys-
temDesk12 is initially done like described above. After the model from Sys-
temDesk is exported in form of an XML file13 and loaded into the dTool the
constituents concerning the reconfiguration could be specified. Using the dTool
we are now able to model two different aspects, relevant for the reconfiguration.
On the one hand our tool allows creating new configurations, which differ from
the initial one. Such differences are alternative connections (in form of connec-
tors) between components and/or compositions. Which parts of the architecture
are relevant concerning reconfiguration is indicated by the Software Component
Reconfiguration included in the original SystemDesk model. Alternatively the
dTool allows to manually choosing relevant parts of the imported architecture.
On the other hand our dTool allows to model an automaton, which specifies how
to switch between the modeled configurations.

Figure 4(a) depicts the configuration (modeled in the dTool) associated with
the state that sensor two is broken. In the shown configuration the value of
the port DistanceOut from the broken sensor Sensor 2 is not available. Conse-
quently the value sent to the port Distance 2 In of the composition SensorLogic
is interpolated from the to sensor values of the first and the third sensor via the
additional composition Interpolation.

Figure 4(b) shows the configuration associated with the state that sensor
four is broken and the value sent to the port Distance 3 In of the composition
SensorLogic is interpolated based on the sensor values of the second and the
fourth sensor.

12 http://www.dspace.de/ww/en/ltd/home/products/sw/system architecture
software/systemdesk.cfm

13 The AUTOSAR framework specifies XML-Schemes for exchanging AUTOSAR mod-
els in a standardized form.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 130

(a) Configuration in case Sensor 2 is bro-
ken

(b) Configuration in case Sensor 3 is bro-
ken

Fig. 4. Two configurations of the architecture for two different scenarios

The composition Interpolation used here provides some functionality for in-
terpolating two different sensor values. This functionality has been added specif-
ically for our application example.14 This interpolation functionality is used to
approximate the value of a broken sensor based on the values of two adjacent
sensors. It is potentially possible to integrate this functionality into an existing
Software Component, but for a better understanding, we decided to introduce a
new Software Component for this purpose.

The second part, which could be modeled in the dTool relevant for the recon-
figuration is the automaton shown in Figure 5 specifying how to switch between
different configurations. The automaton consist of the initial state initial, where
all four sensors work correctly, the state sensor2broke where the second sensor is
broken, the state sensor3broke where the third sensor is broken and state allfail
where the first or the fourth sensor or more than one sensor is broken. Transi-
tions between these states specify which reconfiguration is applied at runtime.
The transitions are further augmented with guards. These guards are expressions
over the values provided by components within the reconfigurable composition,
which provide information relevant for the reconfiguration (in our case these
information are provided via the Status-ports of the four Sensor-Software Com-
ponents). An example for such a guard is shown at the transition from state
initial to state sensor2broke requiring that the status port of the Software Com-
ponent Sensor 2 provides the value 0 (indicating a broken sensor).

For the application example we assume that such status ports of the Software
Components representing the sensors exist as we otherwise were not able to
observe each sensors’ status.15

14 In our application example this functionality has been realized using Mat-
lab/Simulink.

15 Alternatively an observer could be realized in form of an additional Software Com-
ponent evaluating the sensor values over time and providing the status ports. If the

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 131

Fig. 5. Reconfiguration automaton in the dTool

5 Merge

In its current version the AUTOSAR standard does not support reconfiguration
as a first class modeling element. Thus, SystemDesk also does not support model-
ing of diagrams that represent different variations of one composition. Hence the
direct import of the reconfiguration, we have modeled in the dTool, is impossible.
Nevertheless we want to make use of SystemDesk’s elaborated and AUTOSAR
standard conform code generation capabilities. We had to find a way to translate
the reconfiguration behavior into a SystemDesk/AUTOSAR model. This is done
by merging all configurations to one final model. In the final model, the reconfig-
uration logic will be encapsulated by two components, the RoutingComponent
and the StateManager.

5.1 Merging configurations

Our modeling approach only allows the reconfiguration of connections between
components but is not suitable for the addition and removal of components at
run-time16. Hence, a merged configuration consists of all components, which
have been modeled in SystemDesk at the early stages (cf. Subsection 4.1). Con-
nections, which do not exist in all configurations, are redirected via a special
component, called RoutingComponent. Therefore, the first step is to build the
intersection of all configurations. Connections found here are directly inserted
into the merged model. Next the RoutingComponent is added.

Generating the RoutingComponent The RoutingComponent intersects ev-
ery connection, which is not invariant to the reconfigurable composition. Follow-

measured values of consecutive points in time repeatedly have improper values (too
big differences) a malfunction can be deduced.

16 Please note that the dTool allows to modeling configurations, which do not contain
all components. The semantic is that the components are hidden, a dynamic loading
of components is not supported by AUTOSAR.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 132

ing the RoutingComponent has to know at each point in time, which configura-
tion is currently the active one. Which configuration is active, is determined by
the evaluation of the current configuration and the valuation of the variables used
in the guards of the reconfiguration automaton (cf. Figure 5). As an evaluation
of the automaton at each point in time a value is sent to the RoutingComponent,
is much too expensive we have implemented a different strategy.

38 switch (c on f i g u r a t i o n 0) {
39 // Routing f o r c on f i g u ra t i on i n i t i a l :
40 case 0 :
41 Rte IWr i t e D i s t anc e 2 In 0 1 snd r D i s t anc e (d i s t anc e 1) ;
42 break ;
43 // Routing f o r c on f i g u ra t i on a l l f a i l :
44 case 3 :
45 break ;
46 // Routing f o r c on f i g u ra t i on sensor2broke :
47 case 1 :
48 break ;
49 // Routing f o r c on f i g u ra t i on sensor3broke :
50 case 2 :
51 Rte IWr i t e D i s t anc e 2 In 0 1 snd r D i s t anc e (d i s t anc e 1) ;
52 Rte IWr i t e F i r s t I n 1 0 snd r D i s t an c e (d i s t an c e 1) ;
53 break ;
54 }

Listing 1. Excerpt of the RoutingComponent’s code

The configurations modeled in the dTool get a unique number each. The
RoutingComponent receives the number of the currently active configuration
via a special input port. Using this information the RoutingComponent can be
implemented as a sequence of switch statements. The computation of the cur-
rent active configuration is done in a second component – the StateManager. The
dTool automatically generates a runnable for the RoutingComponent containing
the described behavior. An excerpt of the RoutingComponent’s implementation
is shown in Listing 1. The variables configuration 0 and distance 1 hold the val-
ues of the current configuration and the second sensor’s distance respectively.
The excerpt is responsible for routing the value provided by the second distance
sensor. In configuration allfail (cf. line 44) and sensor2broke (cf. line 47) no rout-
ing takes place. In the initial configuration the sensor’s distance value is simply
forwarded (cf. line 41) and in case the third distance sensor broke down, the
value is forwarded as in initial (cf. line 51) but it is also sent to the Interpolation
component (cf. line 52).

StateManager The StateManager – as briefly mentioned above – is responsible
for the computation of the currently active configuration. Therefore, it has to
be connected with all ports that provide values, which are used in the guards
of reconfiguration automaton. Each time the StateManager receives an update
on its ports, it has to evaluate the automaton again and change the value of the
currently active configuration accordingly.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 133

49 c on f i g u r a t i o n 0 = Rte I rvRead con f i gu ra t i on () ;
50 switch (c on f i g u r a t i o n 0) {
51 // S ta t e change l o g i c f o r c on f i g u r a t i on
52 // i n i t i a l
53 case 0 :
54 // Trans i t ion to CGConfiguration#sensor2broke (id : 1 ,

name : sensor2broke)
55 i f (StatusSensor2 10 == 0) {
56 c on f i g u r a t i o n 0 = 1 ;
57 Rte I rvWr i t e con f i gu ra t i on (c on f i g u r a t i o n 0) ;
58 Rte IWr i t e c on f ou t c on f i gu r a t i on (c on f i g u r a t i o n 0) ;
59 }
60 break ;

Listing 2. Excerpt from the StateManager’s implementation

Updates to the StateManager’s ports are signaled by events, which then
trigger the StateManager’s evaluation function.17 A small part of this evaluation
function is shown in Listing 2. At line 49 of the listing the currently active
configuration is read, which then is used as input for the switch statement in
the following line. In case the second distance sensor is broken (identified by
StatusSensor2 10 equals zero) the configuration is changed (cf. line 56). Then
the changed configuration is written to the StateManager’s internal configuration
variable (cf. line 57) and provided to other components through the conf out port
(cf. line 58).18

5.2 Final SystemDesk project

Figure 6 shows the Sensor-Composition after exporting the merged model to
SystemDesk again. The components for the distance sensors are all connected
to the RoutingComponent, which is named Reconf in this diagram. The sys-
tem modeled in our application example does not allow an interpolation for
the sensor components one and four. Following these components are always
directly connected with the SensorLogic component and are not handled by the
RoutingComponent. Nevertheless they also have to be connected to the Rout-
ingComponent as the sensor values are used to interpolate the second respective
third sensor in case of a failure.

The StateManager is depicted below the RoutingComponent and is con-
nected to the RoutingComponent through the Conf ports, which provide infor-
mation about the currently active configuration. As defined in the reconfigura-
tion automaton (cf. Figure 5) the decision which configuration to use, depends
on the values of the sensor components’ status ports. Following the StateMan-
ager is connected to those ports. As the reconfiguration automaton does not
17 Event mechanisms in form Runtime Environment events provided by the AUTOSAR

framework have been used to trigger the runnable realizing the functionality of the
StateManager. More information about Runtime Environment events can be found
in [13].

18 E.g., provided to the RoutingComponent.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 134

Fig. 6. Resulting merged SW Architecture in SystemDesk

rely on any values provided by the Interpolation or SensorLogic component the
StateManager is not connected with them.

5.3 Evaluation Results

The above described approach for the modeling and realization of reconfiguration
aspects has been evaluated within a project arranged at Hasso-Plattner-Institute
in collaboration with the dSPACE GmbH.

As an evaluation platform for the shown approach the Robotino robot19

has been used, which provides an open platform for running C/C++ programs
(among others) on a Real-Time Operating System (RTOS). The RTOS is pro-
vided in form of RTAI20, which is a real-time extension for the Linux operating
system. To be able to evaluate the developed concepts on this platform an exe-
cution environment has been realized based on the existing RTAI Linux, which
allows to compile and execute the outcome of the above described extended
toolchain including the resulting parts of the reconfiguration functionality.

The robot provides nine distance sensors uniformly distributed around its
chassis. In the context of our evaluation experiments we modeled the reconfig-
19 http://www.festo-didactic.com/int-en/news/learning-with-robots.htm
20 For more details see https://www.rtai.org.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 135

uration of distance sensors accordingly to the above used evaluation example
using nine instead of four sensors.21

The generated source code of the different tools has been compiled and ex-
ecuted on the platform to show the applicability of our approach. In addition
we analyzed the overhead resulting from the reconfiguration functionality added
by our approach in comparison to the original functionality without any recon-
figuration capabilities. For this purpose we measured the execution time of the
generated reconfiguration automaton included in the added StateManager in
combination with the parts resulting from the routing functionality realized in
the additional RoutingComponent (both components are shown in Figure 6).

In case of the nine sensors provided by the robot we measured execution
times of the relevant parts concerning the reconfiguration functionality between
20 and 100 microseconds depending on the type of reconfiguration (react on the
defect of one or several sensors at the same point in time). The tests have been
realized on the equivalent execution platform on which the real functionality
has been executed when running the application example on the robot.22 While
the robot provides a more powerful processor like it is the case for the most
Electronic-Control-Units (ECUs) used within a modern car, even by using a
platform or processor, which has only a tenth of the computation power we will
not reach an overhead concerning the reconfiguration leading to an execution
time much greater than one millisecond.

6 Conclusion

In this paper we have presented an approach to extend AUTOSAR architectures
with reconfiguration capabilities. The approach fits into existing toolchains for
the development of AUTOSAR systems and allows reusing tools, which where
currently used. The overhead added to the resulting reconfigurable architecture
has been shown to be minimal but the developer rewards an easier development
of reconfiguration logic, which otherwise has to be done manually at the func-
tional / implementation level. We have successfully shown that it is possible
to use high-level architectural modeling techniques without generating massive
run-time overhead.

Although our approach has only been evaluated in the context of AUTOSAR
it should be applicable to almost any component based development approach.

For the future we plan to also support the reconfiguration of distributed com-
positions. From an architectural point of view a distributed composition does
not differ from a local one, as AUTOSAR completely hides the communication
details in the Runtime Environment-layer from perspective of the application
layer. Anyway, a distributed scenario contains enough challenges such as timing
delays, Basic Software configuration, deployment decisions concerning Routing-
Components, just to name a few. Further the high-level architectural modeling
21 For a better understanding we decided to only show four sensors in the previous

sections.
22 The robot is equipped with 300 MHz processor.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 136

we have introduced in this paper also allows the verification of the modeled sys-
tems. First attempts in these directions have been very promising and we are
looking forward to look into the details.

Acknowledgment We thank the dSPACE GmbH and especially Dirk Stichling
and Petra Nawratil for their support in setting up the project. We want to
thank the participants of the student project “A run-time environment for re-
configurable automotive software” : Christian Lück, Johannnes Dyck, Matthias
Richly, Nico Rehwaldt, Thomas Beyhl, Thomas Schulz and Robert Gurol.

References

1. Burmester, S., Giese, H., Münch, E., Oberschelp, O., Klein, F., Scheideler, P.:
Tool Support for the Design of Self-Optimizing Mechatronic Multi-Agent Systems.
International Journal on Software Tools for Technology Transfer 10(3) (2008) 207–
222

2. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular design and veri-
fication of component-based mechatronic systems with online-reconfiguration. In:
Proc. SIGSOFT ’04/FSE-12, New York, NY, USA, ACM Press (2004) 179–188

3. Feng, L., Chen, D., Törngren, M.: Self configuration of dependent tasks for dy-
namically reconfigurable automotive embedded systems. In: Proc. of 47th IEEE
Conference on Decision and Control. (2008) 3737–3742

4. Anthony, R., Ekeling, C.: Policy-driven self-management for an automotive mid-
dleware. In: HotAC II: Hot Topics in Autonomic Computing on Hot Topics in
Autonomic Computing, Berkeley, CA, USA, USENIX Association (2007)

5. DySCAS Project: Guidelines and Examples on Algorithm and Policy Design in the
DySCAS Middleware System, Deliverable D2.3 Part III. (February 2009) Available
online: http://www.dyscas.org/doc/DySCAS D2.3 part III.pdf.

6. Pohl, K., Böckl, G., van der Linden, F.: Software Product Line Engineering. Foun-
dations, Principles, and Techniques. Springer, Berlin Heidelberg New York (2005)

7. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product
Lines. Computer 41(4) (2008) 93–95

8. Kim, M., Jeong, J., Park, S.: From product lines to self-managed systems: an
architecture-based runtime reconfiguration framework. In: DEAS ””05: Proc. of
the 2005 workshop on Design and evolution of autonomic application software,
New York, NY, USA, ACM (2005) 1–7

9. Kim, D., Park, S., Jin, Y., Chang, H., Park, Y.S., Ko, I.Y., Lee, K., Lee, J., Park,
Y.C., Lee, S.: SHAGE: a framework for self-managed robot software. In: Proc.
SEAMS ’06, Shanghai, China, ACM (2006) 79–85

10. Georgas, J.C., Taylor, R.N.: Policy-based self-adaptive architectures: a feasibility
study in the robotics domain. In: Proc. SEAMS ’08, New York, NY, USA, ACM
(2008) 105–112

11. Talpin, J.P., Brunette, C., Gautier, T., Gamatié, A.: Polychronous mode automata.
In: EMSOFT ’06: Proc. of the 6th ACM & IEEE International conference on
Embedded software, New York, NY, USA, ACM (2006) 83–92

12. AUTOSAR GbR: List of Basic Software Modules. Version 1.3.0.
13. AUTOSAR GbR: Specification of RTE. Version 2.1.0.
14. AUTOSAR GbR: Specification of the Virtual Functional Bus. (2008) Version 1.0.2.
15. AUTOSAR GbR: Specification of Operating System. (2009) Version 3.1.1.

MoDELS'09 ACES-MB Workshop Proceedings

Denver, CO, USA, October 6, 2009 137

