
The 5th International Workshop on
Scalable Semantic Web Knowledge Base

Systems (SSWS2009)

At the 8th International Semantic Web Conference
(ISWC2009), Washington DC, USA, October 26, 2009

SSWS 2009 PC Co-chairs’ Message

SSWS 2009 was the fifth instance in the sequence of successful Scalable Semantic
Web Knowledge Base Systems workshops. This workshop focused on addressing
scalability issues with respect to the development and deployment of knowledge
base systems on the Semantic Web. Typically, such systems deal with informa-
tion described in Semantic Web languages like OWL and RDF(S), and provide
services such as storing, reasoning, querying and debugging. There are two ba-
sic requirements for these systems. First, they have to satisfy the application’s
semantic requirements by providing sufficient reasoning support. Second, they
must scale well in order to be of practical use. Given the sheer size and distributed
nature of the Semantic Web, these requirements impose additional challenges be-
yond those addressed by earlier knowledge base systems. This workshop brought
together researchers and practitioners to share their ideas regarding building and
evaluating scalable knowledge base systems for the Semantic Web.

This year we received 15 submissions. Each paper was carefully evaluated by
two or three workshop Program Committee members. Based on these reviews,
we accepted ten papers, seven for full length oral presentation and three for short
presentation. The topics of the selected papers span the areas of benchmarking,
large scale data stores, optimized representation mechanisms, data integration,
and query processing. We sincerely thank the authors for all the submissions
and are grateful for the excellent work by the Program Committee members.

October 2009 Achile Fokoue
Yuanbo Guo

Thorsten Liebig

Program Commitee

Achile Fokoue
IBM Watson Research Center, USA

Yuanbo Guo
Microsoft, USA

Thorsten Liebig
Ulm University, Germany

Ian Horrocks
University of Oxford, UK

Kavitha Srinivas
IBM Watson Research Center, USA

Takahira Yamaguchi
Keio University, Japan

Raúl Garćıa Castro
Univ. Politecnica de Madrid, Spain

Aditya Kalyanpur
IBM Watson Research Center, USA

Boris Motik
University of Oxford, UK

Oscar Corcho
University of Manchester, UK

Ralf Möller
Hamburg Univ. of Techn., Germany

Marko Luther
DoCoMo Eurolabs Munich, Germany

Andy Seaborne
Hewlett-Packard, UK

Jan Wielemaker
Univ. of Amsterdam, The Netherlands

Volker Haarslev
Condordia University, Canada

Jie Bao
Rensselaer Polytechnic Institute, USA

Additional Reviewers

Sebastian Wandelt
Hamburg Univ. of Techn., Germany

Takeshi Morita
Keio University, Japan

Table of Contents

Semantic Web Reasoning by Swarm Intelligence . 1
Kathrin Dentler, Christophe Gueret and Stefan Schlobach

Efficient Linked-List RDF Indexing in Parliament . 17
Dave Kolas, Ian Emmons and Mike Dean

BitMat: A Main Memory Bit-matrix of RDF Triples 33
Medha Atre and James Hendler

On-disk storage techniques for Semantic Web data – Are B-Trees
always the optimal solution? . 49

Cathrin Weiss and Abraham Bernstein

OneQL: An Ontology-based Architecture to Efficiently Query Resources
on the Semantic Web . 65

Maria Esther Vidal, Tomas Lampo, Edna Ruckhaus, Javier Sierra
and Amadis Martinez

Scalable RDF Query Processing on Clusters and Supercomputers 81
Jesse Weaver and Gregory Todd Williams

4store: The Design and Implementation of a Clustered RDF Store 94
Steve Harris, Nicholas Lamb and Nigel Shadbol

Efficient reasoning on large SHIN Aboxes in relational databases 110
Julian Dolby, Achille Fokoue, Aditya Kalyanpur, Edith Schonberg
and Kavitha Srinivas

A Semantic Web Knowledge Base System that Supports Large Scale
Data Integration . 125

Zhengxiang Pan, Yingjie Li and Jeff Heflin

Representing and Integrating Light-weight Semantic Web Models in
the Large . 141

Matteo Palmonari and Carlo Batini

Semantic Web Reasoning by Swarm Intelligence

Kathrin Dentler, Christophe Guéret, and Stefan Schlobach

Department of Artificial Intelligence, Vrije Universiteit Amsterdam, de Boelelaan
1081a, 1081HV Amsterdam, The Netherlands

Abstract. Semantic Web reasoning systems are confronted with the
task to process growing amounts of distributed, dynamic resources. This
paper presents a novel way of approaching the challenge by RDF graph
traversal, exploiting the advantages of swarm intelligence. The nature-
inspired and index-free methodology is realised by self-organising swarms
of autonomous, light-weight entities that traverse RDF graphs by fol-
lowing paths, aiming to instantiate pattern-based inference rules. The
method is evaluated on the basis of a series of simulation experiments
with regard to desirable properties of Semantic Web reasoning, focussing
on anytime behaviour, adaptiveness and scalability.

1 Introduction

Motivation It is widely recognised that new adaptive approaches towards robust
and scalable reasoning are required to exploit the full value of ever growing
amounts of dynamic Semantic Web data.[8] Storing all relevant data on only one
machine is unrealistic due to hardware-limitations, which can be overcome by
distributed approaches. The proposed framework employs twofold distribution:
the reasoning task is distributed on a number of agents, i.e. autonomous micro-
reasoning processes that are referred to as beasts in the remainder, and data
can be distributed on physically distinct locations. This makes reasoning fully
parallelisable and thus scalable whenever beasts do not depend on results of
other beasts or data on other locations. In most use-cases, co-ordination between
reasoning beasts is required, and this paper explores the application of swarm
intelligence to achieve optimised reasoning performance.

A second problem of current reasoning methods that focus on batch-pro-
cessing where all available information is loaded into and dealt within one central
location, is that the provenance of the data is often neglected and privacy-issues
are risen. An interesting alternative is local reasoning that supports decentralised
publishing as envisioned in [19], allowing users to keep control over their privacy
and the ownership and dissemination of their information. Another advantage
of decentralised reasoning compared to centralised methods is that it has the
potential to naturally support reasoning on constantly changing data.

Adaptiveness, robustness and scalability are characteristic properties of swarm
intelligence, so that its combination with reasoning can be a promising approach.
The aim of this paper is to introduce a swarm-based reasoning method and to
provide an initial evaluation of its feasibility and major characteristics. A model

1

of a decentralised, self-organising system is presented, which allows autonomous,
light-weight beasts to traverse RDF graphs and thereby instantiate pattern-
based inference rules, in order to calculate the deductive closure of these graphs
w.r.t. the semantics of the rules. It will be investigated whether swarm intelli-
gence can contribute to reduce the computational costs that the model implies,
and make this new reasoning paradigm a real alternative to current approaches.

Method In order to calculate the RDFS or OWL closure over an RDF graph, a
set of entailment rules has to be applied repeatedly to the triples in the graph.
These rules consist of a precondition, usually containing one or more triples as
arguments, and an action, typically to add a triple to the graph. This process is
usually done by indexing all triples and joining the results of separate queries.
Swarm-based reasoning is an index-free alternative for reasoning over large dis-
tributed dynamic networks of RDF graphs.

The idea is simple: an RDF graph is seen as a network, where each subject
and each object is a node and each property an edge. A path is composed
of several nodes that are connected by properties, i.e. edges. The beasts, each
representing an active reasoning rule, which might be (partially) instantiated,
move through the graph by following its paths. Swarms of independent light-
weight beasts travel from RDF node to RDF node and from location to location,
checking whether they can derive new information according to the information
that they find on the way. Whenever a beast traverses a path that matches the
conditions of its rule, it locally adds a new derived triple to the graph. Given
an added transition capability between (sub-)graphs, it can be shown that the
method converges towards closure.

Research questions The price for our approach is redundancy: the beasts have
to traverse parts of the graph which would otherwise never be searched. It is
obvious that repeated random graph traversal of independent beasts will be
highly inefficient. The trade-off that needs to be investigated is thus, whether the
overhead can be reduced so that the method offers both adaptive and flexible, as
well as sufficiently efficient reasoning. The main research question of this paper is
whether Swarm Intelligence can help to guide the beasts more efficiently, so that
the additional costs are out-balanced by a gain in adaptiveness. More specifically,
the following research questions are going to be answered:

1. Does a swarm of beasts that is co-ordinated by stigmergic communication
perform better than the same number of independent beasts?

2. Does adaptive behaviour of the population lead to increased reasoning per-
formance?

3. How does the reasoning framework react to a higher number of locations?

Implementation and Experiments To prove the concept, a prototypic system
has been implemented based on AgentScape[15]. Each beast is an autonomous
reasoning agent, and each distributed graph administered by an agent that is
referred to as dataprovider and linked to a number of other dataproviders. Based

2

on this implementation, the feasibility and major characteristics of the approach
are evaluated on the basis of simulation experiments in which beasts calculate
the deductive closure of RDF graphs[2] w.r.t. RDFS Semantics[11]. To study the
properties of the approach in its purest form, the focus is explicitly restricted
to the most simple instantiation of the model of swarm-based reasoning. This
means that the answers to the research questions are preliminary.

Findings The experiments described in this paper have two goals: proof of con-
cept and to obtain a better understanding of the intrinsic potential and chal-
lenges of the new method. For the former, fully decentralised beasts calculate
the semantic closure of a number of distributed RDF datasets. From the latter
perspective, the lessons learned are less clear-cut, as the results confirm that
tuning a system based on computational intelligence is a highly complex prob-
lem. However, the experiments give crucial insights in how to proceed in future
work; most importantly on how to improve attract/repulse methods for guiding
swarms to interesting locations within the graph.

What to expect from this paper This paper introduces a new swarm-based para-
digm for reasoning on the Semantic Web. The main focus is to introduce the
general reasoning framework to a wider audience and to study its weakness and
potential on the most general level.

We will provide background information and discuss related work in the next
section 2, before we define our method in section 3. We present our implemen-
tation in section 4 and some initial experiments in section 5, before we discuss
some ideas for future research and conclude in section 6.

2 Background and Related Work

In this section, we provide a brief overview of RDFS reasoning and Swarm In-
telligence and discuss existing approaches towards distributed reasoning.

The challenge we want to address is to deal with truly decentralised data,
that each user keeps locally. Bibliographic data is an example that would ideally
be maintained by its authors and directly reasoned over. We will use this scenario
throughout the paper to introduce our new Semantic Web reasoning paradigm.

2.1 Semantic Web Reasoning

To simplify the argument and evaluation, we focus on RDF and RDFS (RDF
Schema), the two most widely used Semantic Web languages.1

Listing 1.1 shows two simple RDF graphs in Turtle notation about two pub-
lications cg:ISWC08 and fvh:SWP of members of our Department, maintained
1 It is relatively straightforward to extend our framework to other rule-based frame-

works, such as OWL-Horst reasoning, which is currently the most widely imple-
mented form of Semantic Web reasoning.

3

separately by respective authors and linked to public ontologies pub and people
about publications and people2, and reasoned and queried over directly.

cg:ISWC08
pub:title "Anytime Query Answering in RDF through Evolutionary Algorithms" ;
pub:publishedAs pub:InProceedings ;
pub:author people:Gueret ;
pub:author people:Oren ;
pub:author people:Schlobach ;
pub:cites fvh:SWP .

fvh:SWP
pub:title "Semantic Web Primer" ;
pub:publishedAs pub:Book ;
pub:author people:Antoniou ;
pub:author people:vanHarmelen .

Listing 1.1. Two RDF graphs about publications

These two graphs describe two publications cg:ISWC08 and fvh:SWP by dif-
ferent sets of authors and are physically distributed over the network. The state-
ments contained in the graphs are extended with schema-information as shown
in listing 1.2 and defined in the two respective ontologies, for example with the
information that pub:InProceedings are pub:Publications, people:Persons
are people:Agents, or that pub:author has the range people:Person.

pub:InProceedings rdfs:subClassOf pub:Publication
people:Person rdfs:subClassOf people:Agent
pub:author rdfs:range people:Person

Listing 1.2. Some RDFS statements

Given the standard RDFS semantics, one can derive that cg:ISWC08 is a
publication, and that authors are also instances of class people:Person, and thus
people:Agent. The formal semantics of RDFS and OWL enable the automation
of such reasoning. The task addressed in the experiments is to calculate the
RDF(S) deductive closure, i.e. all possible triples that follow implicitly from the
RDF(S) semantics[11]. Table 1 lists some examples of these entailment rules,
where the second column contains the condition for a rule to be applied, and the
third column the action that is to be performed.3

2.2 Swarm Intelligence

As our alternative reasoning method is swarm-based, let us give a short high-
level introduction to the field of Swarm Intelligence. Inspired by the collective
behaviour of flocks of birds, schools of fish or social insects such as ants or bees,
Swarm Intelligence investigates self-optimising, complex and highly structured
systems. Members of a swarm perform tasks in co-operation that go beyond the
2 In the experiments, SWRC and FOAF are used, but to simplify the presentation of

the example, ontology names are generic.
3 The rules follow the conventions: p denotes a predicate, i.e. a URI reference, s a

subject, i.e. a URI reference or a blank node, and o refers to an object (which might
also be a subject for an ongoing triple), i.e. a URI reference, a blank node or a literal.

4

Rule If graph contains Then add

rdfs2
p rdfs:domain o1 . and
s p o2 .

s rdf:type o1 .

rdfs3
p rdfs:range o . and
s1 p s2 .

s2 rdf:type o .

rdfs4a s p o . s rdf:type rdfs:Resource .

rdfs7
p1 rdfs:subPropertyOf p2 . and
s p1 o .

s p2 o .

rdfs9
s1 rdfs:subClassOf o . and
s2 rdf:type s1 .

s2 rdf:type o .

Table 1. RDFS entailment rules

capabilities of single individuals, which function by basic stimulus → response
decision rules. Swarms are characterised by a number of properties, most im-
portantly lack of central control, enormous sizes, locality and simplicity. Those
properties result in advantageous characteristics of swarms, such as adaptive-
ness, flexibility, robustness, scalability, decentralisation, parallelism and intel-
ligent system behaviour. These are also desirable in distributed applications,
making swarms an attractive model for bottom-up reverse engineering.

Formicidae Ant (Formicidae) colonies appear as super-organisms because co-
operating individuals with tiny and short-lived minds operate as a unified en-
tity. Large colonies are efficient due to the self-organisation and functional spe-
cialisation of their members. Another characteristic property of ant colonies is
their ability to find shortest paths by indirect communication based on chem-
ical pheromones that they drop in the environment. The pheromones act as a
shared extended memory and enable the co-ordination of co-operating insects.
This mechanism is known as stigmergy[4].

2.3 Related Work

Scalability issues that are risen by the growing amount of Semantic Web data
are addressed by projects such as the Large Knowledge Collider[9], a platform
for massive distributed incomplete reasoning systems. Calculating the deductive
closure with respect to RDFS entailment rules is a standard problem on the
Semantic Web and has been addressed extensively. Relevant is the recent work
on distributed reasoning. The most prominent paradigms are based on various
techniques to distribute data [14,12,1,6] towards several standard reasoners and
to combine the results. This is different to the swarm-based methodology, where
reasoning is distributed over data that remains local at distributed hosts, so
that only small bits of information are moved in the network. Probably closest
to this methodology is the distributed resolution approach proposed in [16], but
it requires more data to be exchanged than our light-weight swarm-approach.

Biologically inspired forms of reasoning are an emerging research area that
aims at modelling systems with intelligent properties as observed in nature.
Semantic Web reasoning by Swarm Intelligence has been suggested in [3], that
proposes the realisation of “knowledge in the cloud” by the combination of mod-
ern “data in the cloud” approaches and Triplespace Computing. Triplespace

5

Computing[7] is a communication and co-ordination paradigm that combines
Web Service technologies and semantic tuplespaces, i.e. associative memories as
embodied in Linda[10]. This combination allows for the persistent publication of
knowledge and the co-ordination of services which use that knowledge. The envi-
sioned system includes support for collaboration, self-organisation and semantic
data that can be reasoned over by a swarm which consists of micro-reasoning
individuals that are able to move in and manipulate their environment. The
authors suggest to divide the reasoning task among co-operating members of a
semantic swarm. Limited reasoning capabilities of individuals and the accord-
ing reduction of required schema information result in the optimisation of the
reasoning task for large-scale knowledge clouds.

3 Semantic Web Reasoning as Graph Traversal

In this section, we introduce our new reasoning methodology, which is based on
autonomous beasts that perform reasoning by graph traversal. Given a possibly
distributed RDF graph and corresponding schemata, beasts expand the graph
by applying basic inference rules on the paths they visit.

3.1 Reasoning as Graph Traversal

When a beast reaches a node, it chooses an ongoing path that starts at the
current node. This decision can be taken based on pheromones that have been
dropped by previous beasts, or based on the elements of the triples, preferring
triples which correspond to the pattern of the inference rule (best-first or hit-
detection). If the chosen triple matches the beast’s pattern, the rule will be fired
and the new inferred triple added to the graph.

Given three infinite sets I, B and L respectively called URI references, blank
nodes and literals, an RDF triple (s, p, o) is an element of (I∪B)×I×(I∪B∪L).
Here, s is called the subject, p the predicate, and o the object of the triple. An
RDF graph G (or graph or dataset) is then a set of RDF triples.

Definition 1 (Reasoning as Graph Traversal). Let G be an RDF graph,
NG the set of all nodes in G and MG = (L ∪ I) × . . . × (L ∪ I) the memory
that each beast is associated with. RDF graph traversal reasoning is defined as
a triple (G, BG, MG), where each b ∈ BG is a transition function, referring to
a (reasoning) beast rb : MG × G × NG → MG × G × NG that takes as input a
triple of the graph, moves to an adjacent node in the graph, and depending on
its memory, possibly adds a new RDF triple to the graph.

RDFS reasoning can naturally be decomposed by distributing complemen-
tary entailment rules on the members of the swarm, so that each individual is
responsible for the application of only one rule. Therefore, we introduce differ-
ent types of beasts, one type per RDF(S) entailment rule containing schema
information. If a concrete schema triple of a certain pattern is found, a cor-
responding reasoning beast is generated. Regarding for example the rule rdfs3

6

from Table 1, which deals with range restrictions: whenever in the schema an
axiom p rdfs:range x is encountered, which denotes that every resource in the
range of the property p must be of type x, a beast responsible for this bit of
schema information is initialised as a function rb3 that is associated to memory
{p, x}. Table 2 lists the RDFS entailment rules, omitting blank node closure
rules rdf2 and rdfs1, with the pattern that is to be recognised in column 2 and
the reasoning beast with its memory requirement in column 3.

Entailment rule Pattern of schema triple Beast: memory
rdfs2 p rdfs:domain x . rb2: p x
rdfs3 p rdfs:range x . rb3: p x
rdfs5 p1 rdfs:subPropertyOf p .

p rdfs:subPropertyOf p2 .
rb7: p1 p2

rdfs6 p rdf:type rdf:Property . rb7: p p
rdfs7 p1 rdfs:subPropertyOf p2 . rb7: p1 p2

rdfs8 c rdf:type rdfs:Class . rb9: c rdfs:Resource
rdfs9 c1 rdfs:subClassOf c2 . rb9: c1 c2
rdfs10 c rdf:type rdfs:Class . rb9: c c
rdfs11 c1 rdfs:subClassOf c .

c rdfs:subClassOf c2 .
rb9: c1 c2

rdfs12 p rdf:type
rdfs:ContainerMembershipProperty .

rb7: p rdfs:member

rdfs13 s rdf:type rdfs:Datatype . rb9: s rdfs:Literal

Table 2. Schema-based instantiation of reasoning beasts

Table 3 shows the beasts needed for RDFS reasoning with their pattern-
based inference rules. Underlined elements correspond to the memory. Reason-
ing beasts rdf1b, rb4a and rb4b are schema-independent and do not require any
memory. They infer for each predicate that it is of rdf:type rdf:Property
and for each subject and object that it is of rdf:type rdfs:Resource. Reason-
ing beasts rb2 and rb3 apply the semantics of rdfs:domain and rdfs:range,
while beasts rb7 and rb9 generate the inferences of rdfs:subPropertyOf and
rdfs:subClassOf. From now on, they are being referred to as domain-beast,
range-beast, subproperty-beast and subclass-beast.

Beast : memory If pattern Then add
rdf1b : ∅ s p o . p rdf:type rdf:Property .
rb2 : {p,x} s p o . s rdf:type x .
rb3 : {p,x} s p o . o rdf:type x .
rb4a : ∅ s p o . s rdf:type rdfs:Resource .
rb4b : ∅ s p o . o rdf:type rdfs:Resource .
rb7 : {p1,p2} s p1 o . s p2 o .
rb9 : {c1,c2} s rdf:type c1 . s rdf:type c2 .

Table 3. Inference patterns of reasoning beasts

Let us assume that a range-beast arrives at node o from a node s via an edge
(s, p, o). Because p corresponds to its remembered property, it writes the triple
(o, rdf:type, x) to the graph. As it can walk both directions of the directed

7

graph, it will output the same triple when it arrives at node s from node o via
edge (o, p, s). Finally, it moves on to a new destination n via a property pi, where
(o, pi, n) ∈ G.

There are many design decisions in the creation of beasts: in our prototypical
implementation, all schema triples are retrieved and pre-processed, calculating
the subclass and subproperty closure, before the beasts are created. For this
reason, there is no one-to-one mapping between RDFS rules and beasts. For
example, the transitivity of rdfs:subClassOf is first exhausted, so that rule
rdfs11 is encoded with several beasts of type rb9. The more generic approach
would have been to introduce a special transitivity-beast, which also writes new
subclass triples to the graph and then to have beasts picking up the schema-
information that they are to apply. This option is to be investigated in future
work. An advantage of the proposed mechanism is that all reasoning patterns
require only one matching triple for the rule to be fired, so that inferences do
not depend on remote data.

Example Let us consider again the two RDF graphs from our previous example.
Fig. 1 shows the RDF graph for the first publication. Dashed arrows denote
implicit links derived by reasoning.

ISWC08

Oren

Guéret

Schlobach

pub:inProceedings

SWP

Anytime Query...

people:Person

pub:Publication

SW Primer

people:Agent

pub:author

pub:au
thorpu

b:
au

th
or

pub:publishedAs

pub:citespub:title

rdfs:subClassOf

pub:title

rdf:type

rdf:type

rdf:type

rdfs:su
bClassO

f

rdf:type

rdf:type

rdf:type

Fig. 1. An exemplary RDF graph

For the three schema axioms of the previous example, beasts are created. For
the range-triple pub:author rdfs:range people:Person, a range-beast rb31 is
created with memory pub:author and people:Person. For the subclass triple
people:Person rdfs:subClassOf people:Agent, a beast rb91 is created which
is instantiated with the memory bits people:Person and people:Agent (the
other subclass-beast is generated accordingly). In this example, only one beast
per instantiated type is created, in practise there will be more. The beasts are
randomly distributed over the graph, say rb31 to node fvh:SWP, and similarly
the other two beasts. Beast rb31 has now two options to walk. Moving to “SW
Primer” will lead it to a cul-de-sac, which means it needs to walk back via

8

cg:ISWC08 towards, e.g. person:Oren. At node person:Oren, the walked path is
cg:ISWC08 pub:author person:Oren which means rb31’s pattern matches the
walked triple, and it will add a triple person:Oren rdf:type people:Person to
the graph. When, after walking other parts of the graph, the subclass beast rb91

chooses to follow the new rdf:type link from person:Oren to people:Person,
it finds its memory condition matched, and will add the triple person:Oren
rdf:type people:Agent to the graph, and so forth. This example highlights the
obvious challenges faced by the approach, most importantly, that unnecessary
paths need to be investigated and that the order of visiting beasts is important
(rb31 had to be at person:Oren first, before rb91 could find anything).

Completeness The closure C∗ over a dataset G contains all triples that follow
from the RDF(S) semantics. In our framework, entailment rules are instantiated
by the schemata and embodied by beasts. Let b1, . . . bn be a swarm with at least
one individual per type. The complete closure C∗ is derived when the union of
the beast-outputs b1(c1) ∪ · · · ∪ bn(cn) ≡ C∗.

Proposition 1 (Completeness). Reasoning as graph traversal converges to-
wards completeness.

Proof. Sketch: To prove that the method converges towards completeness, it has
to be shown that all elements of C∗ are inferred eventually, i.e. that each beast
bm infers the complete closure bm(c∗m) of the rule it incorporates. Given the
beast-function as defined above, a beast infers c∗m when it visits all triples of
the graph that match its inference-pattern. This can be achieved by complete
graph traversal, which is trivially possible and can be performed according to
different strategies, such as random walk, breadth- or depth- first. It has to be
performed repeatedly, as other beasts can add relevant triples. C∗ is reached
when the swarm performed a complete graph traversal without adding a new
inference to the graph. Given random jumps to other nodes within the graph,
which also prevents beasts from getting stuck in local maxima, the same holds
for unconnected (sub-)graphs. When a swarm consists of s members b1

m, . . . bs
m

per type, the individuals of one type can infer bm(c∗m) collectively.

The proposed method is sound but redundant, as two beasts can derive
the same inference by the application of different rules and superfluous schema
information can lead to inferences that are already present in the data. Beasts
produce new inferences gradually, and as those are added to the corresponding
graph and not deleted, the degree of completeness increases monotonically over
time, so that our methodology shows typical anytime behaviour.

Jumping distributed graphs For the time being, our examples were not dis-
tributed. Our framework is more general as beasts can easily move to other
locations in the network to apply their inference rules there. Challenging is the
case when reasoning requires statements of two unconnected (sub-)graphs that
are physically distributed over a network (which is not the case for the proposed

9

RDFS reasoning method but would be for distributed OWL-Horst[17] reason-
ing). In our current implementation, this case is covered by a simple routing
strategy using Bloom filters [1].

Movement Control The reasoning beasts operate on an energy metaphor: moving
in the graph costs energy and finding new inferences, which can be interpreted as
food, is rewarding. This is modelled via a happiness-function. When the beasts
are created, they have an initial happiness-value. Then, at each step from RDF
node to RDF node, one happiness-point is subtracted. When a beast receives a
reward due to an inference that is new (not-new inferences are worthless), its
happiness increases. With this simple mechanism, a beast adapts to its envi-
ronment: while it is successful and thus happy, it will probably find even more
applications of its rule, whereas for a beast that did not find a new triple for a
long time, it might be little reasonable to continue the search. When a beast is
unhappy or unsuccessful (i.e. it did not find anything new for a given number of
node-hops), it can change its rule instantiation, its type, the location or die.

3.2 Distributed Reasoning by Beasts in a Swarm

An advantageous property of populations that are organised in swarms is their
ability to find shortest paths to local areas of points of interest. Inspired by ant
colonies that lay pheromone-paths to food sources, beasts choose ongoing paths
based on pheromones. The environment provides beasts with the information
who has been at their current location before, which can be utilised by the
swarm to act as a whole, to avoid loops and to spread out evenly, which is useful
because the swarm has no gain if members of the same rule-instantiation traverse
the same path more than once.

When a beast reaches a node and chooses the next ongoing edge, it parses
its options, and while no application of its inference-pattern is found, which
would cause it to choose the corresponding path and fire its rule, it applies a
pheromone-based heuristic. It categorizes the options into sets of triples: the ones
which are promising because no individual of its rule-instantiation has walked
them before and the ones that already have been visited. If promising options are
available, one of them is chosen at random, otherwise the ongoing path is chosen
probabilistically, preferring less visited triples. Only pheromones of beasts with
the same rule-instantiation are considered, other possibilities, such as preferring
pheromones of other beasts to follow them, are subject to further research. Let τj

denote the pheromones on a path j and n the number of paths. The probability
pi to choose path i is determined by equation 1. It is between 0 and 1 and higher
for paths that have been walked less in the past. This formula has been inspired
by Ant Colony Optimization[5], where the probability to choose a path i is τi,
i.e. the pheromones on that path, divided by the sum of the pheromones on all
options.

pi =

Pn
j=0 τj−τi

n−1∑n
j=0 τj

. (1)

10

4 Implementation

The implementation of our model is based on AgentScape [15], a middleware
layer that supports large-scale agent systems. Relevant concepts are locations,
where agents can reside, and agents as active entities that are defined according
to the weak notion of agency [18], which includes autonomy, social ability, re-
activeness and pro-activeness. Agents can communicate by messages and migrate
from one location to another.

Both the environment and the reasoning beasts of our model are implemented
as AgentScape agents. The environment consists of a number of agents that hold
RDF (sub-)graphs in Jena [13] models and are called dataprovider. We assume
that each dataprovider resides on a distinct location and does not migrate. Beasts
do migrate and communicate directly with the dataprovider that resides on their
current location. Reasoning beasts migrate to the data, perform local calcula-
tions and move on to the next location, so that only the code of the beasts
and results that can lead to inferences on other locations are moved in the net-
work and not the data. Other set-ups would be possible, such as beasts querying
dataproviders from the distance, without being physically on the same location.
Beasts communicate indirectly with each other by leaving pheromone-traces4 in
the environment. They operate on a plain N3 text representation.

5 Research Questions and Corresponding Experiments

This section presents a series of experiments. The focus is not on fine-tuning
parameters, but on testing basic strategies to generate first answers to the re-
search questions, and to provide a clear baseline for further experiments. The
experiments are based on a number of publication.bib files of members of our
Department. The files have been converted to RDF, following the FOAF and
the SWRC ontologies.

Beasts are instantiated by our beast-creation mechanism as presented above.5
Ignoring schema-triples that contain blank nodes, 195 beasts are generated from
the employed FOAF and SWRC schemata: 11 subproperty-beasts, 87 subclass-
beasts, 48 domain-beasts and 49 range-beasts, each of them with a unique rule-
instantiation. In all experiments, swarms of 5 beasts per rule-instantiation are
traversing the graphs. Each beast starts at a random node at one of the locations.

Each dataset is administered by a dataprovider that is residing on a distinct
location, which is named after the corresponding graph. The initial happiness on
each dataset and the maximum number of requests that do not lead to any new
4 Pheromones are stored as reified triples.
5 For the sake of simplicity, the experiments are restricted to RDFS simple reason-

ing. This means that RDFS entailment rules which have only one single schema-
independent triple-pattern in the precedent (rdf1, rdfs4a and rdfs4b, rdfs6, rdfs8,
rdfs10, rdfs12 and rdfs13) and blank node closure rules are deliberately omitted.
These inferences are trivial and can be drawn after the RDFS simple closure has
been derived, in case they are required.

11

inference, is set to 100 and the maximum number of migrations between locations
and their corresponding dataproviders is set to 10. A beast’s happiness increases
by 100 when it inferred a triple that was new indeed. In all experiments, beasts
ideally die when the closure is deduced. Then, they cannot find new inferences
any more and eventually reach their maximum unhappiness after a number of
unsuccessful node- and location-hops.

To evaluate the obtained results, the inferences of the beasts are compared
to the output of Jena’s RDFS simple reasoner.6 All graphs show how the degree
of completeness (i.e. the percentage of found inferences) per dataset is rising
in relation to the number of sent messages. A message is a request for ongoing
options from a beast to the dataprovider.

5.1 Baseline: random walk

To generate a baseline for the comparison of different strategies, the beasts in
the first experiment choose between their options randomly, even if one of the
options contains a triple that leads to an inference.

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000

p
e

rc
e

n
ta

g
e

 i
n

fe
re

n
c
e

s

number of sent messages

inferences per dataprovider in relation to message count
 5 beasts per rule-instantiation, random walk without hit-detection,

 10 runs

aisaac
frankh
ronny

schlobac
swang

Fig. 2. Random walk without hit-detection

Fig. 2 visualizes the percentage of found inferences over time for each of the
datasets. At the end of the experiment, 75.59% of the complete closure have
been reached. The results demonstrate typical anytime behaviour: for longer
computation times, more inferences are generated.

5.2 Does a swarm of beasts that employs stigmergic communication
outperform the same number of independent beasts?

To investigate the question whether stigmergic communication accelerates con-
vergence, a random walk strategy with hit-detection (so that the beasts prefer
6 In contrast to the beasts, Jena did not generate any inference stating that a resource

is of type Literal, so those triples have been added to the output of Jena.

12

triples that match their reasoning pattern) is compared to a strategy that em-
ploys indirect communication by repulsing pheromones, as described in section
3.2. Fig. 3(a) and Fig. 3(b) visualize the results.

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000

p
e

rc
e

n
ta

g
e

 i
n

fe
re

n
c
e

s

number of sent messages

inferences per dataprovider in relation to message count
 5 beasts per rule-instantiation, random walk with hit-detection

 10 runs

aisaac
frankh
ronny

schlobac
swang

(a) Random walk with hit-detection

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000

p
e

rc
e

n
ta

g
e

 i
n

fe
re

n
c
e

s

number of sent messages

inferences per dataprovider in relation to message count
 5 beasts per rule-instantiation, indirect communication,

 10 runs

aisaac
frankh
ronny

schlobac
swang

(b) Indirect communication

Fig. 3. Random walk with hit-detection compared to stigmergic communication

A first result is that compared to the random walk without hit-detection, both
methods have a positive impact on the reasoning performance of the beasts. Sec-
ondly, in contrast to the hypothesis that stigmergic communication would lead to
a faster convergence, the graphs are almost alike in the number of sent messages
and also in their convergence-behaviour and reached percentage of the closure
(94.52% for the random walk and 92.85% for the stigmergic communication).

In the start-phase of the experiments, new inferences are found easily, the
difficult task is to detect the last remaining inferences. The assumption was
that repulsing pheromones would guide the beasts to the unvisited sub-graphs
where the remaining inferences are found. These experiments provide interesting
insights into how to proceed in tuning the swarm behaviour: especially by the
employment of attracting pheromones to lead fellow beasts to regions with food.

5.3 Does adaptive behaviour of the population increase the
reasoning-performance?

To answer the question whether adaptive behaviour of the individuals is bene-
ficial, a dynamic adaption of rule-instantiations in case of unsuccessfulness is
tested. Note that this is only one possibility out of many for the beasts to
adapt to their environment. Here, each beast is provided with a set of possible
rule-instantiations instead of remembering only two arguments. For example,
a subclass-beast does not only receive one subclass and one superclass to in-
stantiate its rule, but several subclasses with the same superclass. The beasts
switch their rule-instantiation to another random instantiation after each 50th

unsuccessful message-exchange. Fig. 4 shows the results of the adaptive beasts:

13

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000
p

e
rc

e
n

ta
g

e
 i
n

fe
re

n
c
e

s
number of sent messages

inferences per dataprovider in relation to message count
 5 beasts per rule-instantiation, changing rule-instantiation,

 10 runs

aisaac
frankh
ronny

schlobac
swang

Fig. 4. Beasts that change their rule instantiation

The resulting graph shows clearly that the intuition that dynamic adaptions
should lead to increased reasoning-performance did not apply to this experiment.
On average, the swarms found 80.67% of the complete closure. In the future, more
intelligent approaches have to be investigated, replacing e.g. the randomness in
the changes, so that beasts change into successful rule-instantiations. Care has
to be taken that not all beasts change to the most successful instantiations,
because inferences that occur seldom also need to be found.

5.4 How does the reasoning framework react to a higher number of
locations?

An important question regarding the potential scalability of our model is to
study what happens when more datasets are added, so we compared the set-up
with 5 datasets as shown in figure 3(b) to the same set-up with 10 datasets. We
employed the same number of beasts as in the previous experiments.

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000

p
e

rc
e

n
ta

g
e

 i
n

fe
re

n
c
e

s

number of sent messages

inferences per dataprovider in relation to message count
 5 beasts per rule-instantiation, 10 dataprovider,

 10 runs

aisaac
frankh
ronny

schlobac
swang
huang

kot
laurah
pmika

wrvhage

Fig. 5. 10 datasets

Fig. 5 demonstrates that the percentage of the complete closure (93.2%) per
dataset is nearly as high as for a set-up with 5 datasets. This is because beasts

14

that can infer more new triples are increasingly happy and thus can send more
messages to the dataproviders. The figure clearly indicates that more data on
distributed locations lead to more activity, resulting in more inferences. This is,
although not unexpected, a nice result.

6 Conclusion

We have presented a radically new method for Semantic Web reasoning based on
Swarm Intelligence. The major feature of this idea is that many light-weight au-
tonomous agents collectively calculate the semantic closure of RDF(S) graphs by
traversing the graphs, and apply reasoning rules to the nodes they are currently
located on. The advantage of this approach is its adaptiveness and its capability
to deal with distributed data from dynamic sources. Such a reasoning procedure
seems ideal for the Semantic Web and might help in setting up a decentralised
publishing model that allows users to keep control over their personal data.

A metaphor for the way that the proposed paradigm envisages future Se-
mantic Web reasoning is the eternal adaptive anthill, the Web of Data as de-
centralised accessible graphs, which are constantly traversed and updated by
micro-reasoning beasts. Based on this vision it can be claimed that swarm-based
reasoning is in principle more adaptive and robust than other Semantic Web
reasoning approaches, as recurrently revisiting beasts can more easily deal with
added (and even deleted) information than index-based approaches.

Our experiments show a proof of concept: over an (admittedly small) decen-
tralised environment of our departmental publications we show that this idea
works in principle, which gives us motivation to continue to improve the current
framework in future research. Furthermore, first experiments have given clear
guidelines for where more research is needed: first, the implementation framework
based on AgentScape and Jena might not be ideal, as the dataprovider might
be too central to the current implementation and thus become a bottleneck.
However, through distribution of the reasoning, scaling is in principle straight-
forward. As usual, scaling comes at a price, in our case that the distribution
will make it difficult for the beasts to find triples they can reason on. Initial
experiments with Swarm Intelligence indicate that this might be a way forward,
although it is well known that tuning such highly complex systems is very diffi-
cult (as our experiments confirm).

Ideas for future work are abundant: improving the implementation of the
general model, routing strategies, security issues, dealing with added and deleted
statements, trust etc. All these issues can relatively elegantly be represented in
our framework, and some solutions are straightforward. Most interesting at the
current stage will be to investigate more swarm strategies, such as scout models
to guide beasts of similar types towards areas of interest, cloning successful
beasts and much more. This paper is a first step.

15

References

1. M. Cai and M. Frank. RDFPeers: a scalable distributed RDF repository based
on a structured peer-to-peer network. In Proceedings of the 13th international
conference on World Wide Web, pages 650–657, 2004.

2. J. J. Carroll and G. Klyne. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C recommendation, 2004.

3. D. Cerri, E. Della Valle, D. De Francisco Marcos, F. Giunchiglia, D. Naor, L. Nixon,
D. Rebholz-Schuhmann, R. Krummenacher, and E. Simperl. Towards Knowledge
in the Cloud. Proceedings of the OTM Confederated International Workshops and
Posters on On the Move to Meaningful Internet Systems: 2008 Workshops: ADI,
AWeSoMe, COMBEK, EI2N, IWSSA, MONET, OnToContent+ QSI, ORM, Per-
Sys, RDDS, SEMELS, and SWWS, pages 986–995, 2008.

4. M. Dorigo, E. Bonabeau, G. Theraulaz, et al. Ant algorithms and stigmergy.
Future Generation Computer Systems, 16(9):851–871, 2000.

5. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT press, Cambridge, MA,
2004.

6. Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable Distributed Ontology Rea-
soning Using DHT-Based Partitioning. In The Semantic Web, volume 5367, pages
91–105. Springer, 2008.

7. D. Fensel. Triple-space computing: Semantic Web Services based on persistent
publication of information. LNCS, 3283:43–53, 2004.

8. D. Fensel and F. van Harmelen. Unifying Reasoning and Search to Web Scale.
IEEE Internet Computing, 11(2):96–95, 2007.

9. D. Fensel, F. van Harmelen, Andersson, and et al. Towards LarKC: a platform for
web-scale reasoning. In Proceedings of the International Conference on Semantic
Computing, pages 524–529, 2008.

10. D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

11. P. Hayes and B. McBride. RDF semantics. W3C recommendation, 2004.
12. Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS Reasoning and Query Answer-

ing on Top of DHTs. In LNCS, volume 5318, pages 499–516, 2008.
13. B. McBride. Jena: Implementing the rdf model and syntax specification. In Proc.

of the 2001 Semantic Web Workshop, 2001.
14. E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, , and F. van Harmelen.

Marvin: A platform for large-scale analysis of Semantic Web data. In Proceedings
of the International Web Science conference, 2009.

15. B. J. Overeinder and F. M. T. Brazier. Scalable Middleware Environment for
Agent-Based Internet Applications. LNCS, 3732:675–679, 2006.

16. A. Schlicht and H. Stuckenschmidt. Distributed Resolution for ALC. In Description
Logics, 2008.

17. H. J. ter Horst. Combining RDF and part of OWL with rules: Semantics, decid-
ability, complexity. In Proc. of ISWC, pages 6–10. Springer, 2005.

18. M. Wooldridge and N. R. Jennings. Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 10(2):115–152, 1995.

19. C. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-Lee. De-
centralization: The Future of Online Social Networking. Available at: http:
//www.w3.org/2008/09/msnws/papers/decentralization.pdf, 2008.

16

http://www.w3.org/2008/09/msnws/papers/decentralization.pdf
http://www.w3.org/2008/09/msnws/papers/decentralization.pdf

Efficient Linked-List RDF Indexing in
Parliament

Dave Kolas, Ian Emmons, and Mike Dean

BBN Technologies, Arlington, VA 22209, USA
{dkolas,iemmons,mdean}@bbn.com

Abstract. As the number and scale of Semantic Web applications in
use increases, so does the need to efficiently store and retrieve RDF
data. Current published schemes for RDF data management either fail
to embrace the schema flexibility inherent in RDF or make restrictive as-
sumptions about application usage models. This paper describes a stor-
age and indexing scheme based on linked lists and memory-mapped files,
and presents theoretical and empirical analysis of its strengths and weak-
nesses versus other techniques. This scheme is currently used in Parlia-
ment (formerly DAML DB), a triple store with rule support that has
recently been released as open source.

1 Introduction

As the number and scale of Semantic Web applications in use increases, so does
the need to efficiently store and retrieve RDF [1] data. A wide variety of RDF and
OWL [2] applications are currently being developed, and each application’s sce-
nario may demand prioritization of one performance metric or another. Current
published schemes for RDF data management either fail to embrace the schema
flexibility inherent in RDF or make restrictive assumptions about application
usage models.

Despite the fact that RDF’s graph-based data model is inherently different
than relational data models, many published schemes for RDF data storage
involve reductions to a traditional RDBMS [3–7]. This results in the deficiencies
of RDBMS’s (inflexible schemas, inability to efficiently query variable predicates)
being propagated to RDF storage; arguably, avoiding these deficiencies is one of
the major reasons for adopting an RDF data model. Other published approaches
eschew the mapping to an RDBMS, but suffer either inadequate load or query
performance for many applications. In this paper, we argue that the storage
approach in Parliament provides excellent load and query performance with low
space consumption and avoids the pitfalls of many other specialized RDF storage
systems.

Parliament [8] (formerly DAML-DB [9]) is a triple store developed by BBN
that has been in use since 2001. During that time, Parliament has been used for
a number of applications from basic research to production. We have found that
it offers an excellent tradeoff between load and query performance, and compares
favorably to commercial RDF data management systems [10].

17

2

Recently, BBN has decided to release Parliament as an open source project.
Parliament provides the underlying storage mechanism, while using Jena [11] or
Sesame [12] as an external API. This paper explains in detail the underlying
index structure of Parliament, and compares it to other published approaches.
Our hope is that open-sourced Parliament will provide a fast storage alternative
for RDF applications, create a platform upon which storage mechanism and
query optimizer research can be built, and generally advance the state of the art
in RDF data management.

The remainder of this paper is structured as follows. Section 2 addresses
related work. Section 3 describes the index structure within Parliament. Sec-
tion 4 explains how the operations on the structure are performed. Section 5
provides both worst case and average case analysis of the indexing mechanism,
and Section 6 provides a small empirical comparison to supplement [10].

2 Related Work

The related work on RDF data management systems falls into two major cate-
gories: solutions that involve a mapping to a relational database, and those that
do not.

2.1 RDBMS Based Approaches

A large proportion of the previously published approaches involve a mapping of
the RDF data model into some form of relational storage. These include triples-
table approaches, property tables, and vertical partitioning. There is a strong
temptation to use relational systems to store RDF data since such a great amount
of research has been done on making relational systems efficient. Moreover, ex-
isting RDBMS systems are extremely scalable and robust. Unfortunately, each
of the proposed ways of doing this mapping has deficiencies.

The triples-table approach has been employed in 3store [3], and is perhaps
the most straightforward mapping of RDF into a relational database system.
Each triple given by (s, p, o) is added to one large table of triples with a column
for the subject, predicate, and object respectively. Indexes are then added for
each of the columns. While this approach is straightforward to implement, it
is not particularly efficient, as noted in later work [4, 5, 13, 14, 10]. The primary
problem is that queries with multiple triple patterns result in self-joins on this
one large table, and are inefficient.

Property tables were introduced later, and allowed multiple triple patterns
referencing the same subject to be retrieved without an expensive join. This
approach has been used in Jena 2 [4]. A similar approach is used in [6]. In this
approach, each database table includes a column for a subject and several fixed
properties. The intent is that these properties often appear together on the same
subject. While this approach does eliminate many of the expensive self-joins in
a triples table, it still has deficiencies leading to limited scalability. Queries with
triple patterns that span multiple property tables are still expensive. Depending

18

3

on the level of correlation between the properties chosen for a particular property
table, the table may be very sparse and thus be less space-efficient than other
approaches. Also, it may be complex to determine which sets of properties are
best joined within the same property table. Multi-valued properties are problem-
atic in this approach as well. Furthermore, queries with unbound variables in the
property position are very inefficient and may require dynamic table creation.
In a data model without a fixed schema, it is common to ask for all present
properties for a particular subject. In the property table approach, this type of
query requires scanning all tables. With property tables, adding new properties
also requires adding new tables, a consideration for applications dealing with
arbitrary RDF content. It is the flexibility in schema that differentiates RDF
from relational approaches, and thus this approach limits the benefit of using
RDF.

The vertical partitioning approach suggested in [5] may be viewed as a spe-
cialization of the property table approach, where each property table supports
exactly one property. This approach has several advantages over the general
property table approach. It better supports multi-valued properties, which are
common in Semantic Web data, and does not sacrifice the space taken by NULL’s
in a sparsely populated property table. It also does not require the property-
clustering algorithms for the general property tables. However, like the property
table approach, it fails to efficiently handle queries with variables in the property
position.

2.2 Other Indexing Approaches

The other primary approaches to RDF data storage eliminate the need for a
standard RDBMS and focus instead on indexing specific to the RDF data model.
This set of approaches tends to better address the query models of the semantic
web, but each suffers its own set of weaknesses.

The RDF store YARS [15] uses six B+ tree indices to store RDF quads
of a subject, predicate, object, and a “context”. In each B+ tree, the key is
a concatenation of the subject, predicate, object, and context, each dictionary
encoded. This allows fast lookup of all possible triple access patterns. Unlike the
RDBMS approaches discussed above, this method does not place any particu-
lar preference on the subject, predicate, or object, meaning that queries with
variable predicates are no different than those with variable subjects or objects.
This structure sacrifices space for query performance, repeating each dictionary
encoded triple six times. The design also favors query performance to insertion
speed, a tradeoff not necessarily appropriate for all Semantic Web applications.
Our approach is more efficient both in insertion time and space usage, as will
be demonstrated. Other commercial applications use this method as well [16].
Kowari [14] is designed similarly, but uses a hybrid of AVL and B trees instead
of B+ trees for indexing.

The commercial quad store Virtuoso [7] adds a graph g element to a triple,
and conceptually stores the quads in a triples table expanded by one column.
While technically rooted in a RDBMS, it closely follows the model of YARS [15],

19

4

but with fewer indices. The quads are stored in two covering indices, g, s, p, o
and o, g, p, s, where the IRI’s are dictionary encoded. Several further optimiza-
tions are added, including bitmap indexing and inlining of short literal values.
Thus this approach, like YARS, avoids the pitfalls of other RDBMS based work,
including efficient variable-predicate queries. The pattern of fewer indices tips
the balance slightly towards insertion performance from query performance, but
still favors query performance.

Hexastore [13], one of the most recently published approaches, takes a similar
approach to YARS. While it also uses the dictionary encoding of resources, it
uses a series of sorted pointer lists instead of B+ trees of concatenated keys.
Again, this better supports the usage pattern of Semantic Web applications and
does not force them into a RDBMS query model. Hexastore not only provides
efficient single triple pattern lookups as in YARS, but also allows fast merge-
joins for any pair of two triple patterns. Again, however, it suffers a five-fold
increase in space for storing statements over a dictionary encoded triples table,
and favors query performance over insertion times. It is our experience that
applications often do require efficient statement insertion, and thus our approach
seeks to balance query performance and insertion time. Since this approach was
published most recently and compares favorably to previous approaches, we will
focus our empirical comparison evaluation on Hexastore.

Other commercial triple stores such as OWLIM [17] have been empirically
shown to perform well, but their indexing structure is proprietary and thus no
theoretical comparison can be made.

3 Index Structure

This section explains the three parts of the storage structure of Parliament: the
resource table, the statement table, and the resource dictionary. This description
is simplified for the sake of clarity; it does not discuss using quads instead of
triples, optimizations for blank nodes, the rule engine, or some small implemen-
tation details. Parliament can be compiled in either 32 or 64 bit modes, and the
width of the fields described varies accordingly.

3.1 Resource Table

The Resource Table is a single file of fixed-length records, each of which rep-
resents a single resource or literal. The records are sequentially numbered, and
this number serves as the ID of the corresponding resource. This allows direct
access to a record given its ID via simple array indexing. Each record has eight
components:

– Three statement ID fields representing the first statements that contain this
resource as a subject, predicate, and object, respectively

– Three count fields containing the number of statements using this resource
as a subject, predicate, and object, respectively

20

5

– An offset into the string representations file described below, used to retrieve
the string representation of the resource

– Bit-field flags encoding various attributes of the resource

The first subject, first predicate, and first object statement identifiers pro-
vide pointers into the statement table, which is described below. The subject,
predicate, and object counts benefit the find operations and query optimization,
discussed in Section 4. For the remainder of the paper, these counts will be
referred to as count(resource, pos) for the count of a resource in the given posi-
tion. The usage of the offset into the string representations file will be explained
below.

3.2 Statement Table

The Statement Table is the most important part of Parliament’s storage ap-
proach. It is similar to the resource table in that it is a single file of fixed-length
records, each of which represents a single statement. The records are sequentially
numbered, and this number serves as the ID of the corresponding statement.
Each record has seven components:

– Three resource ID fields representing the subject, predicate, and object of
the statement, respectively

– Three statement ID fields representing the next statements that use the same
resource as a subject, predicate, and object, respectively

– Bit-field flags encoding various attributes of the statement

The three resource ID fields allow a statement ID to be translated into the
triple of resources that represent that statement. The three next statement point-
ers allow fast traversal of the statements that share either a subject, predicate,
or object, while still storing each statement only once.

Figure 1 shows an example knowledge base consisting of five triples. Each
triple row in the statement list table shows its resource identifier as a number and
the pointers to the next statements as arrows. Omitted arrows indicate pointers
to a special statement identifier, the null statement identifier, which indicates
the end of the linked list.

3.3 Resource Dictionary

Like many other triple stores [13, 5, 6, 12], Parliament uses a dictionary encoding
for its resources. This dictionary provides a one-to-one, bidirectional mapping
between a resource and its resource ID. The first component of this dictionary
is the mapping from a resource to its associated identifier. This portion of the
dictionary uses Berkeley DB [18] to implement a B-tree whose keys are the
resources’ string representations and whose values are the corresponding resource
ID’s. This means that inserts and lookups require logarithmic time.

21

6

Fig. 1. Example Statement List and Resource Table

The second half of the dictionary is the reverse lookup from a resource ID to
a string representation. This is implemented in a memory-mapped file contain-
ing sequential, variable-length, and null-terminated string representations of re-
sources. A resource ID is translated into the corresponding string representation
by using the resource ID to index into the resource table, retrieving the string
representation offset, and using this to index into the string representations file
to retrieve the associated string. Thus, looking up a string representation from
a resource identifier is a constant time operation.

The current approach stores each string representation twice. Future imple-
mentations may eliminate this redundancy.

3.4 Memory-Mapped Files

Three of the four files that comprise a Parliament triple store (the resource
table, the statement table, and the string representations file) are stored and
accessed via a common operating system facility called “memory mapping”.
This is independent of the index structure of the store, but is worth mentioning
because it confers a significant performance advantage. Most modern operating
systems use memory mapping to implement their own demand-paged virtual
memory subsystem, and so this mechanism for accessing files tends to be highly
optimized and keeps frequently accessed pages in memory.

4 Triple Store Operations

The three fundamental operations that a triple store can perform are query,
insertion (assertion), and deletion (retraction). These are discussed below.

22

7

4.1 Query

Parliament performs a lookup of a single triple pattern according to the following
algorithm:

1. If any of the triple pattern elements are bound, Parliament uses the B-tree
to translate the string representations of these resources into resource ID’s.

2. If any bound elements are not found in the B-tree, then the query result is
the empty set, and the query algorithm terminates.

3. If none of the elements are bound, then the query result is the entire state-
ment list. Parliament enumerates this by iterating across all of the records in
the statement table and retrieving the string representations of the elements.

4. If exactly one element is bound, then Parliament looks in the resource table
for the resource table the ID of the first statement using that resource in the
position the resource appears in the given triple pattern.

5. If two or three elements are bound, then Parliament looks in the resource
table for those resource ID’s to retrieve count(resource, pos) for each. Par-
liament selects the resource whose count is smallest, and retrieves from the
resource table the ID of the first statement using that resource in the position
the resource appears in the given triple pattern.

6. Starting with that statement ID, Parliament traverses the linked list of state-
ment records corresponding to the position of the minimal count resource.

7. If the triple pattern contains exactly one bound resource, then this list of
statements is exactly the answer to the query, and again Parliament retrieves
the string representations of the elements as it enumerates the list to form
the query result.

8. If two or three elements are bound, then as Parliament enumerates the linked
list of statements, it checks whether the resources in the positions of the
non-minimal count resources are the same as the bindings in the given triple
pattern. Whenever a match is found, Parliament retrieves the string repre-
sentations of the elements and adds that triple to the query result.

Whenever Parliament is enumerating statements, it skips over statements
whose “deleted” flag has been set. See Section 4.3 below for details.

Parliament is designed as an embedded triple store and does not include a
SPARQL or other query language processor. Such queries are supported by ac-
cessing Parliament as a storage model from higher-level frameworks such as Jena
or Sesame. Single find operations (as discussed above) are combined together by
the higher-level framework, with Parliament-specific extensions for optimization.
In particular, when using Parliament with Jena’s query processors [11], we have
used several different algorithms for query planning and execution, which will
be detailed in subsequent publications. The basis of these optimizations is the
ability to quickly access the counts of the resources in the given positions.

4.2 Insertion

To insert a triple (s, p, o), Parliament executes the following algorithm:

23

8

1. Parliament uses the B-tree to translate the string representations of the three
resources into resource ID’s.

2. If all three elements are found in the B-tree, then Parliament performs a
query for the triple pattern (s, p, o). Note that this is necessarily a fully
bound query pattern. If the triple is found, then no insertion is required,
and the algorithm terminates.

3. If any elements are not found in the B-tree, then Parliament creates new
resources for each of them as follows:
(a) Parliament appends the string representation of the resource to the end

of the string representations file. If the file is not large enough to contain
the string, then the file is enlarged first. The offset of the beginning of
the string is noted for use in the next step.

(b) Parliament appends a new record to the end of the resource table. If
the file is not large enough to contain the new record, then the file is
enlarged first. The number of the record is saved as the new resource ID
for use in the steps below, and the offset from the string representations
file is written to the appropriate field in this record. The record’s counts
are initialized to zero, and the first statement ID’s are set to null.

(c) Parliament inserts a new entry into the B-tree. The entry contains the
resource’s string representation as its key and the new resource ID as its
value.

4. Parliament now has three valid resource ID’s representing the triple, and
knows that the triple is not present in the statement table.

5. Parliament appends a new record to the end of the statement table. If the
file is not large enough to contain the new record, then the file is enlarged
first. The number of the record is saved as the new statement ID for use in
the steps below, and the three resource ID’s obtained above are written to
the appropriate fields in this record. The record’s next statement ID’s are
all set to null.

6. For each of the three resources, Parliament inserts the new statement record
at the head of that resource’s linked list for the corresponding triple position
as follows:
(a) The resource record’s first statement ID for the resource’s position is

written into the corresponding next statement ID field in the new state-
ment record. Note that if this resource was newly inserted for this state-
ment, then this step will write a null into the next statement ID field.

(b) The ID of the new statement is written into the resource record’s first
statement ID for the resource’s position.

4.3 Deletion

The index structure of Parliament’s statement table is not conducive to the
efficient removal of a statement record from the three linked lists of which it is
a member. These linked lists are singly linked, and so there is no way to remove
a record except to traverse all three lists from the beginning.

24

9

Due to these difficulties, Parliament “deletes” statements by marking them
with a flag in the bit field portion of the statement record. Thus, the algorithm
consists of a find (as in the case of an insertion, this is a fully bound query
pattern) followed by setting the flag on the found record. In the future, we may
utilize doubly linked lists so that the space occupied by deleted statements can be
reclaimed efficiently. However, in our work to date deletion has been infrequent
enough that this has been deemed a lower priority enhancement.

5 Theoretical Analysis

As is readily apparent, the presented approach suffers some unfortunate worst
case performance, but the average case performance is quite good. This is con-
sistent with empirical results presented in [10] and this paper. We will address
both find operations on a single triple pattern and triple insertions.

5.1 Worst Case Analysis

The worst-case performance for a single triple pattern lookup is dependent on
how many of the elements in the pattern (s, p, o) are bound. If zero elements are
bound, the triple pattern results in a total scan of the statement list, resulting
in O(n). Since all triples are the expected result, this is the best possible worst
case performance. If one element is bound, the chain for that particular element
will be traversed with time O(count(bound, pos)). Again exactly the triples that
answer the pattern are traversed.

Things change slightly for the cases where two or three of the (s, p, o) ele-
ments are bound. If two elements are bound, the shorter of the two lists will be
traversed. This triple pattern can be returned in

O(min(count(bound1, pos1), count(bound2, pos2)))

However, this could be O(n) if all triples use the two bound elements. If all
three elements are bound, the shortest of the three lists will be traversed. This
shortest list will be longest when the set of statements is exactly the three-way
cross product of the set of resources. In this case, if the number of resources is
m, then the number of statements is m3 and every list is of length m2. Thus the
list length is n2/3, and a find operation for three bound elements is O(n2/3).

Since an insertion first requires a find on the triple to be inserted, it incurs
the worst-case cost of a find with three bound elements, O(n2/3). It also incurs
the cost of inserting any nodes in the triple that were not previously known into
the dictionary, but this logarithmic time O(log m) is overshadowed by the worst
case find time. After that, adding the triple to the head of the lists is done in
O(1) constant time. Thus the worst-case of the insertion operation is O(n2/3).

Here we note that this worst-case performance is indeed worse than other
previously published approaches, which are logarithmic. However, the scenarios
that produce these worst-case results are quite rare in practice, as will be shown
in the following section.

25

10

5.2 Average Case Analysis

While the worst-case performance is worse than other approaches, analyzing the
relevant qualities of several example data sets leads us to believe that the average
case performance is actually quite good.

The most relevant feature of a data set with respect to its performance within
this indexing scheme is the length of the various statement lists for a particular
subject, predicate, or object. For instance, the worst-case time of the insert
operation and the find operation with three bound elements is O(n2/3), but this
is associated with the case that the set of triples is the cross-product of the
subjects, predicates, and objects, which is a highly unlikely real world situation.
Since these bounds are derived from the shortest statement list, analysis of the
average list lengths in a data set is a key measure to how this scheme will perform
in the real world.

Table 1. List Length Means (Standard Deviations)

Data Set Size Subject Predicate Non-Lit Object Lit Object

Webscope 83M 3.96 (9.77) 87,900 (722,575) 3.43 (2,170) 4.33 (659)
Falcon 33M 4.22 (13) 983 (31,773) 2.56 (328) 2.31 (217)
Swoogle 175M 5.65 (36) 4,464 (188,023) 3.27 (1,793) 3.38 (569)
Watson 60M 5.58 (56) 3,040 (98,288) 2.87 (918) 2.91 (407)
SWSE-1 30M 5.25 (15) 25,404 (289,000) 2.46 (1,138) 2.29 (187)
SWSE-2 61M 5.37 (15) 83,773 (739,736) 2.89 (1,741) 2.87 (300)
DBpedia 110M 15 (39) 300,855 (3,560,666) 3.84 (148) 1.17 (22)
Geonames 70M 10.4 (1.66) 4,096,150 (3,167,048) 2.81 (1,623) 1.67 (15)
SwetoDBLP 15M 5.63 (3.82) 103,009 (325,380) 2.93 (629) 2.36 (168)
Wordnet 2M 4.18 (2.04) 47,387 (100,907) 2.53 (295) 2.39 (271)
Freebase 63M 4.45 (15) 12,329 (316,363) 2.79 (1,286) 1.83 (116)
US Census 446M 5.39 (9.18) 265,005 (1,921,537) 5.29 (15,916) 227 (115,616)

Table 1 shows the mean and standard deviations of the subject, predicate,
and object list lengths for several large data sets [19]. There are a few nice prop-
erties of this data that are worth noting. First, the average number of statements
using a particular subject is quite small in all data sets. The average number
of statements using a particular object is generally even smaller, though with a
much higher standard deviation. Finally, only the predicate list length generally
seems to scale with the size of the data set.

These observations have important implications with respect to the average
time of find and insert operations. For find operations, we now know several
things to be generally true:

– Either the object or subject list will likely be used for find operations when
all three elements are bound. Thus these operations will often touch fewer
than 10 triples.

26

11

– Due to the previous, insert operations should generally be quite fast.
– The predicate list is only likely to be used for find operations when only

the predicate is bound, and thus only when all statements with the given
predicate must be touched to be returned anyway.

– Find operations with two bound elements, which have the most troubling
theoretical worst-case performance, necessarily include either a bound sub-
ject or bound object. As a result, these too should generally be quite fast.

These conclusions collectively suggest real world performance that is much
more impressive than the worst-case analysis would imply, and this is shown
empirically in the following section.

6 Empirical Analysis

Since Hexastore [13] is the most recently published work in this area, and its in-
dexing structure out performed several of the other approaches, we have focused
our empirical evaluation on Parliament as compared to Hexastore. At the time of
our evaluation, only the prototype Python version of Hexastore was available for
comparison. Future work will compare against the newly released version. This
limitation resulted in the relatively small size of this empirical evaluation; we
could not go beyond the size of main memory without the comparison becoming
unfair to Hexastore. Parliament was tested with 850 million triples in [10].

Evaluation was performed on a MacBook Pro laptop with a 2.6 GHz dual
core CPU, 4 GB of RAM, and a 7200 RPM SATA HD, running Mac OS X
10.5.7. This platform was most convenient for execution of both systems. While
Hexastore’s evaluation focused on only query performance, we feel it is important
to include insertion performance and memory utilization as well, as there are
many Semantic Web applications for which these factors are significant. We have
focused on the Lehigh University Benchmark [20], as it was used in the Hexastore
evaluation and contains insertion time metrics as well. We have evaluated LUBM
queries 1, 2, 3, 4, and 9. Since the version of Hexastore used does not perform
inference, we were forced to modify queries 4 and 9 such that none was required.

The insertion performance graph is shown in Figure 2. The throughput of
Parliament stays fairly stable at approximately 35k statements per second. This
throughput is 3 to 7 times larger than that of Hexastore, which starts at approx-
imately 9k statements per second, and declines to less than 5k statements per
second as the total number of triples increases. Parliament’s throughput results
include both persisting the data to disk (the Python version of Hexastore is en-
tirely memory-based) and forward chaining for its RDFS inference capabilities.

Figures 3, 4, 5, 6, and 7 show the relative query performance of Parliament
and Hexastore on LUBM queries 1, 2, 3, 4, and 9 respectively.

Queries 1, 3, and 4 produce results where both systems appear to be following
the same growth pattern, though Hexastore performs slightly better on queries 1
and 3 and Parliament performs better on query 4. Parliament also demonstrates
more variability in the query execution times, which is likely a result of the
dependency on the operating system’s memory mapping functionality.

27

12

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

!(!" !(#" $(!" $(#" %(!" %(#" &(!" &(#" '(!" '(#"

!
"
#$
%
&
"
'
%
()
*(
"
$
%
+,
-
.
+)
$
/)
+(
,
(0
1
0
-
(+
)'
0
#)
+0
2$
-
.
3)

45665$-+)$/)7(,(010-(+)8$,.0.)

)*+,-*./01"

2/3*415+/"

Fig. 2. Insertion Performance

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

!#!" !#$" %#!" %#$" &#!" &#$" '#!" '#$" (#!" (#$"

!
"
#$
%
&
#"
'(
)*

"
'+
*
),
,)
#"
-%
&
.
#/
'

0),,)%&#'%1'2343"*"&3#'5%4.".'

)*+,-*./01"

2/3*415+/"

Fig. 3. LUBM Query 1 Response Time

28

13

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

!(!" !()" '(!" '()" #(!" #()" *(!" *()" $(!" $()"

!
"
#$
%
&
#"
'(
)*

"
'+
*
),
,)
#"
-%
&
.
#/
'

0),,)%&#'%1'2343"*"&3#'5%4.".'

+,-./,0123"

415,637-1"

Fig. 4. LUBM Query 2 Response Time

!"

!#$"

%"

%#$"

&"

&#$"

!#!" !#$" %#!" %#$" &#!" &#$" '#!" '#$" (#!" (#$"

!
"
#$
%
&
#"
'(
)*

"
'+
*
),
,)
#"
-%
&
.
#/
'

0),,)%&#'%1'2343"*"&3#'5%4.".'

)*+,-*./01"

2/3*415+/"

Fig. 5. LUBM Query 3 Response Time

29

14

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

!(!" !()" '(!" '()" #(!" #()" *(!" *()" $(!" $()"

!
"
#$
%
&
#"
'(
)*

"
'+
*
),
,)
#"
-%
&
.
#/
'

0),,)%&#'%1'2343"*"&3#'5%4.".'

+,-./,0123"

415,637-1"

Fig. 6. LUBM Query 4 (modified) Response Time

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"

!(!" !()" '(!" '()" #(!" #()" *(!" *()" $(!" $()"

!
"
#$
%
&
#"
'(
)*

"
'+
#"
,%
&
-
#.
'

/)00)%&#'%1'2343"*"&3#'5%4-"-'

+,-./,0123"

415,637-1"

Fig. 7. LUBM Query 9 (modified) Response Time

30

15

Queries 2 and 9 show Parliament and Hexastore following different growth
curves, with Parliament performing better in query 9 and Hexastore performing
better in query 2. This is more likely the result of differing query plans within the
two systems than a strength or deficiency of the storage structure, but without
insight into the query planner of Hexastore we cannot verify this claim.

Finally, Table 2 shows an estimate of memory used by Hexastore and Parlia-
ment with all 4.3M statements loaded. These numbers are as reported by Mac
OS X, but as is often the case with virtual memory management, the mem-
ory metrics are only useful as course estimates. However, they show what was
expected; Parliament’s storage scheme requires significantly less storage space.

Table 2. Space Utilization for 4.3M Triples (in GB)

Hexastore Parliament

Real Memory 2.02 0.50
Virtual Memory 2.59 1.38
Disk Space N/A 0.36

Overall, we conclude that Parliament maintains very comparable query per-
formance to Hexastore, while significantly outperforming Hexastore with respect
to insertion throughput and required space.

7 Conclusions

In this paper, we have shown the storage and indexing scheme based on linked
lists and memory mapping used in Parliament. This scheme is designed to bal-
ance insertion performance, query performance, and space usage. We found that
while the worst-case performance does not compare favorably with other ap-
proaches, average case analysis indicates good performance. Experiments demon-
strate that Parliament maintains excellent query performance while significantly
increasing insertion throughput and decreasing space requirements compared to
Hexastore. Future work will include experiments focusing on different query op-
timization strategies for Parliament, explanations and analysis of Parliament’s
internal rule engine, and further optimizations to the storage structure.

References

1. Klyne, G., Carroll, J., eds.: Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation (February 2004)
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

2. Dean, M., Schrieber, G., eds.: OWL Web Ontology Language Reference.
W3C Recommendation (February 2004) http://www.w3.org/TR/2004/REC-owl-
ref-20040210/.

31

16

3. Harris, S., Shadbolt, N.: Sparql query processing with conventional relational
database systems. In: Lecture Notes in Computer Science. Springer (2005) 235–
244

4. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D., Database, J.: Efficient rdf
storage and retrieval in jena2. In: EXPLOITING HYPERLINKS 349. (2003) 35–
43

5. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web
data management using vertical partitioning. In: VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, VLDB Endowment (2007)
411–422

6. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient sql-based rdf querying
scheme. In: VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, VLDB Endowment (2005) 1216–1227

7. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In Auer, S., Bizer,
C., Müller, C., Zhdanova, A.V., eds.: The Social Semantic Web 2007, Proceedings
of the 1st Conference on Social Semantic Web (CSSW), September 26-28, 2007,
Leipzig, Germany. Volume 113 of LNI., GI (2007) 59–68

8. BBN Technologies: Parliament http://parliament.semwebcentral.org/.
9. Dean, M., Neves, P.: DAML DB http://www.daml.org/2001/09/damldb/.

10. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-
store technologies for large data stores. In: On the Move to Meaningful Internet
Systems 2007: OTM 2007 Workshops, Vilamoura, Portugal, Springer (2007) 1105–
1114 LNCS 4806.

11. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: WWW Alt. ’04: Pro-
ceedings of the 13th international World Wide Web conference on Alternate track
papers & posters, New York, NY, USA, ACM (2004) 74–83

12. Broekstra, J., Kampman, A., Harmelen, F.V.: Sesame: A generic architecture for
storing and querying rdf and rdf schema. In: Lecture notes in computer science.
Volume 2342., Springer (2002) 54–68

13. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic
web data management. Proc. VLDB Endow. 1(1) (2008) 1008–1019

14. Wood, D., Gearon, P., Adams, T.: Kowari: A platform for semantic web storage
and analysis. In: XTech2005: XML, the Web and beyond, Amsterdam (2005)

15. Harth, A., Decker, S.: Optimized index structures for querying rdf from the web.
Web Congress, Latin American 0 (2005) 71–80

16. Franz, Inc.: AllegroGraph http://www.franz.com/products/allegrograph/.
17. Kiryakov, A., Ognyanov, D., Manov, D.: Owlim — a pragmatic semantic repository

for owl. In: Lecture Notes in Computer Science. Volume 3807/2005. Springer (2005)
182–192

18. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley db. In: ATEC ’99: Proceedings of
the annual conference on USENIX Annual Technical Conference, Berkeley, CA,
USA, USENIX Association (1999) 43–43

19. Dean, M.: Toward a science of knowledge base performance analysis. In:
Invited Talk, 4th International Workshop on Scalable Semantic Web Knowl-
edge Base Systems (SSWS2008), Karlsruhe, Germany (October 2008) slide 20
http://asio.bbn.com/2008/10/iswc2008/mdean-ssws-2008-10-27.ppt.

20. Guo, Y., Qasem, A., Pan, Z., Heflin, J.: A requirements driven framework for
benchmarking semantic web knowledge base systems. IEEE Transactions on
Knowledge and Data Engineering 19(2) (2007) 297–309

32

BitMat: A Main Memory Bit-matrix of RDF

Triples

Medha Atre and James A. Hendler

Tetherless World Constellation,
Dept. of Computer Science

Rensselaer Polytechnic Institute
Troy NY USA

{atrem, hendler}@cs.rpi.edu

Abstract. BitMat is a main memory based bit-matrix structure for
representing a large set of RDF triples, designed primarily to allow pro-
cessing of conjunctive triple pattern (join) queries. The key aspects are
as follows: i) its RDF triple-set representation is compact compared to
conventional disk-based and existing main-memory RDF stores, ii) ba-
sic join query processing employs logical bitwise AND/OR operations
on parts of a BitMat, and iii) for multi-joins, intermediate results are
maintained in the form of a BitMat containing candidate triples without
complete materialization, thereby ensuring that the intermediate result
size remains bounded across a large number of join operations, provided
there are no Cartesian joins. We present the key concepts of the BitMat
structure, its use in processing join queries, describe our experimental
results with RDF datasets of different sizes (from 0.2 to 47 million), and
discuss the use case scenarios.

1 Introduction

RDF [4] and SPARQL [16] are gaining importance as semantic data is increas-
ingly becoming available in the RDF format. The growing scale of RDF data
necessitates novel ways of storing and querying this data in a compact form. To
handle this large scale RDF data, numerous systems are being developed [13,
23, 1]. Many of these systems are implemented as a straight-forward extension
of relational database systems and SQL querying techniques. These systems can
be broadly classified as persistent disk-based and main-memory-based systems.
The work described in this paper belongs to the latter category proposing a
main-memory RDF triple store.

Most of the other RDF store systems depend on building efficient auxiliary
indexes on the RDF data and using them either for specific type of queries or
to improve the overall query performance. In contrast, in our approach, BitMat
which is an compressed inverted index structure itself makes up the primary
storage for RDF triples. Our proposed query processing algorithm voids the
need to uncompress this data at any point during query processing.

33

Generic relational data can have varied dimensions (i.e. number of columns),
and hence the SQL query processing algorithms have to encompass this nature of
relational data. As opposed to that, an RDF triple is a fixed 3-dimensional (S, P,
O) entity and the dimensionality of SPARQL conjunctive triple pattern queries
is also fixed (which depend on the number of conjunctive patterns in the query).
Hence while building the BitMat structure and query processing algorithms, we
made use of this fact.

In essence, BitMat is a 3-dimensional bit-cube, in which each cell is a bit
representing a unique triple denoting the presence or absence of that triple by
the bit value 1 or 0. This bit-cube is flattened in a 2-dimensional bit matrix for
implementation purpose. Figure 1 shows an example of a set of RDF triples and
the corresponding BitMat representation.

Object

:released_in :similar_plot_as :is_a

:the_thirteenth_floor

:the_matrix 0 1 0

0 1 0

0 0 0

1 0 0

0 0 1

0 0 1

:the_matrix "1999"

"1999":released_in

:released_in

:similar_plot_as :the_matrix

:the_matrix :is_a :movie

:is_a :movie

:the_thirteenth_floor

:the_thirteenth_floor

:the_thirteenth_floor

Distinct subjects: [

Distinct predicates: [:is_a]:released_in, :similar_plot_as,

Distinct objects: []

:the_matrix,

:movie:the_matrix, "1999",

]:the_thirteenth_floor

Note: Each bit sequence represents sequence of objects (:the_matrix, "1999", :movie)

Subject Predicate

Fig. 1. BitMat of sample RDF data

If the number of distinct subjects, predicates, and objects in a given RDF
data are represented as sets Vs, Vp, Vo, then a typical RDF dataset covers a very
small set of Vs×Vp×Vo space. Hence BitMat inherently tends to be very sparse.
We exploit this sparsity to achieve compactness of the BitMat by compressing
each bit-row using D-gap compression scheme [7]1.

Since conjunctive triple pattern (join) queries are the fundamental building
blocks of SPARQL queries, presently our query processing algorithm supports
only those. These queries are processed using bitwise AND, OR operations on
the compressed BitMat rows. Note that the bitwise AND, OR operations are
directly supported on a compressed BitMat thereby allowing memory efficient
execution of the queries. At the end of the query execution, the resulting filtered
triples are returned as another BitMat (i.e. a query’s answer is another result
BitMat). This process is explained in Section 4.

Figure 2 shows the conjunctive triple pattern for movies that have similar plot
and the corresponding result BitMat. Unlike the conventional RDF triple stores,

1 E.g. In D-gap compression scheme a bit-vector of “0011000” will be represented as
[0]-2,2,3. A bit-vector of “10001100” will be represented as [1]-1,3,2,2.

34

where size of the intermediate join results can grow very large, our BitMat based
multi-join2 algorithm ensures that the intermediate result size remains bounded,
(at most to (n * size of the original BitMat), where n is the number of triple
patterns in the query), across any number of join operations (provided there are
no Cartesian joins).

0 0 0

Query: (?m :similar_plot ?n . ?m :is_a :movie . ?n :is_a :movie)

:released_in :similar_plot_as :is_a

:the_thirteenth_floor

:the_matrix 0 0 0

1 0 0

0 0 1

0 0 1

0 0 0

Fig. 2. Result BitMat of a sample query

A conventional SPARQL join query engine produces zero or more match-
ing subgraphs (each resulting row with variable bindings identifies a matching
subgraph). BitMat join processing returns a set of distinct triples in the result
BitMat that together form all the matching subgraphs. Currently we are work-
ing on an algorithm to enumerate all the matching subgraphs – which is not
presented here. But even without this last phase of result generation, current
query processing algorithms can be used for:

– ‘EXISTS’ or ‘ASK’ queries as very large multi-joins can be performed in
memory using BitMat (existence of one or more 1 bits in the resulting BitMat
indicates that the query will produce at least one matching subgraph).

– As a precursor to an in-memory query processing engine (e.g. Jena-ARQ [2])
to identify the result triples from a large triple set.

BitMat is designed specifically to process conjunctive triple pattern queries and
presently the query processing interface does not support full SPARQL syntax
or other SPARQL constructs.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of the related work. Section 3 describes the BitMat structure and its composition
in greater details. Sections 4 and 5 describe the basic algorithm of single join
procedure and an algorithm for multi-join based on the single-join algorithm
respectively. Section 6 gives our evaluation of the system, and Section 7 concludes
the paper with strengths and weaknesses of the present structure of the BitMat
and query processing system.

2 Related Work

The structure of a BitMat is somewhat similar to the idea of bitmap indexes,
which are used in relational database systems and more recently by the Virtuoso
RDF store [8] to efficiently process queries over low cardinality data. The key

2 Multi-join is a conjunctive triple pattern with two or more triple patterns having
two or more join variables and a single join has two triple patterns with only one
join variable.

35

difference is that BitMat’s query processor always operates on the compressed
BitMat without uncompressing it anytime. This is not possible with a traditional
SQL based query processor employing bitmap indexes over multi-joins.

In addition to these, there are various systems being developed for processing
RDF data. Some notable ones are – Hexastore [23], RDF-3X [13, 14], BRAHMS
[10], GRIN [21], SwiftOWLIM [20], Jena-TDB [1] etc.

Out of these, Hexastore and RDF-3X exploit the nature of RDF data by
creating 6-way indexes (SPO, SOP, PSO, POS, OSP, OPS) on it. RDF-3X goes
one step further by compressing these indexes and organizing them as clus-
tered B+-trees. BRAHMS and GRIN mainly use their system for path-based
queries on RDF graph. But they have not published results on very large RDF
graphs, putting the scalability of their system under question. BRAHMS have
used LUBM data of only 6 million triples and GRIN has published results for
only upto 17,000 triples3.

The notable difference between these systems and BitMat is that – BitMat’s
conjunctive triple pattern query processing algorithm which controls the inter-
mediate memory utilization in a large multi-join query.

The structure that comes closest to BitMat is RDFCube [12], which also
builds a 3D cube of subject, predicate, and object dimensions. However, RD-
FCube’s design approximates the mapping of a triple to a cell by treating each
cell as a hash bucket containing multiple triples. It is primarily used to reduce the
network traffic for processing join queries over a distributed RDF store (RDF-
Peers [5]) by narrowing down the candidate triples. In contrast, BitMat structure
maintains unique mapping of a triple to a single bit element and further com-
presses the BitMat. Our goal here is to represent large RDF triple-sets with
a compact in-memory representation and support a scalable multi-join query
execution completely in-memory.

SPARQL query language, which is structurally quite similar to the SQL query
language [6], is being studied specifically with respect to the join processing [9,
19] and query benchmarking [18]. In contrast to the conventional SPARQL query
processing scheme, we employ a different approach for multi-joins as elaborated
in Section 5.

3 BitMat Concepts

A bit-cube of RDF triples is a 3-dimensional structure with subject (S), predicate
(P), and object (O) dimensions. Individual cell is a single bit, and 1 or 0 value
of the bit represents presence or absence of the triple. This conceptual bit-cube
can be represented as a concatenation of (S,O) or (O,S) matrices for all the
distinct predicates thereby forming a mat of bits, BitMat. Concatenation done
along the subject dimension is referred to as a subject BitMat and concatenation
done along the object dimension is referred to as an object BitMat. Altogether,
there are 6 ways of flattening a bit-cube into a BitMat (as is the case of six-way

3 GRIN focuses on path-like queries which are not even expressible in current SPARQL
query language.

36

indexes on the RDF data). For the current set of experiments, we have used
subject BitMats. Exploring other structures of BitMat is a part of future work.

3.1 BitMat Structure

BitMat is constructed from a set of RDF triples as follows: Let Vs, Vp, and Vo

represent the sets of distinct subject, predicate, and object values occurring in
a RDF triple set. Let Vso represent the Vs ∩ Vo set. These four sets are mapped
to the integer sequence based identifiers as shown below:

– Common subjects and objects: Set Vso is mapped to a sequence of integers:
1 to |Vso| in that order.

– Subjects: Set Vs − Vso is mapped to a sequence of integers: |Vso| + 1 to |Vs|.
– Predicates: Set Vp is mapped to a sequence of integers: 1 to |Vp|.
– Objects: Set Vo − Vso is mapped to a sequence of integers: |Vso| + 1 to |Vo|.

Basically, each ID-space is treated independently with the exception that URIs
which appear as subjects as well as objects are assigned the same sequence
identifiers. This is done to facilitate the subject-object (S-O) cross dimensional
join as discussed in Section 4. Cross-dimension joins over subject-predicate (S-
P) or predicate-object (P-O) dimensions are rare in the context of assertional
RDF data. Since the large scale RDF data available on the web is predominantly
assertional, presently we do not handle S-P or P-O cross dimensional joins.

The above mapping is a direct representation of the position of those triples in
the BitMat structure. For the example given in Section 1, :the matrix as a subject
is mapped to 1, :the matrix as an object is also mapped to 1, :the thirteenth- floor
is mapped to 2, :similar plot as is mapped to 2 etc. Hence triple (:the thirteenth floor
:similar plot as :the matrix) is represented as (2 2 1) indicating to set the first
bit (O-position) in the second row (S-position) of the second (S,O) matrix (P-
position) (see Figure 1). A complete BitMat is built this way by setting the
bit corresponding to each encoded RDF triple. Although this is the conceptual
structure of a BitMat, we build the compressed BitMat directly from the encoded
triple set as explained further in Section 6.

3.2 BitMat Operations

The process of evaluating conjunctive triple pattern (join) queries is carried out
with three primitive operations on a BitMat. They are as follows:

(1) Filter: Filter operation is represented as ‘filter(BitMat, TriplePattern)
returns BitMat’. It takes an input BitMat and returns a new BitMat which
contains only triples that satisfy the TriplePattern.

Effectively, filter operation on a BitMat involves clearing the bits of the triples
that are filtered out. For example, a triple pattern with only bound subject value
like filter(BitMat, ‘:s1 ?p ?o’), clears all the bits in all the rows other than the
row corresponding to the bound subject value :s1 etc.

37

(2) Fold: Fold function represented as ‘fold(BitMat, RetainDimension) re-
turns bitarray’ folds the input BitMat along the two dimensions other than the
RetainDimension.

For example, if RetainDimension is set to ‘object’, then BitMat is folded along
the subject and predicate dimensions resulting into a single bitarray. Intuitively,
bits set to 1 in this bitarray indicate the presence of at least one triple with
the object corresponding to that position in the given BitMat. Typically fold
is called on the BitMat returned by filter. E.g. fold(filter(BitMat, ‘:s1 ?p ?o’),
‘object’).

(3) Unfold: Specified as ‘unfold(BitMat, MaskBitArray, RetainDimension)
returns BitMat’ takes a BitMat, a bitarray, and unfolds the bitarray on the
BitMat.

Intuitively, in the unfold operation, for every bit set to 0 in the MaskBitAr-
ray all the bits corresponding to that position of the RetainDimension in a
BitMat are cleared. Typically MaskBitArray is generated by a bitwise AND of
the bitarrays returned by fold operations before. E.g. unfold(BitMat, ‘101001’,
‘predicate’) would result in clearing all the bits in second, fourth, and fifth (S,O)
matrices which correspond to predicates mapped to {2, 4, 5}.

Filter, fold, and unfold operations are implemented to operate on a com-
pressed BitMat without uncompressing it.

4 Single Join Processing

A conventional SPARQL join query processing engine produces zero or more
matching subgraphs (each resulting row with the variable bindings identifies a
matching subgraph) (see Figure 3). The query being evaluated is (:s1 ?p ?x .
:s3 ?p ?y). Intuitively, every resulting matching subgraph is a proper subgraph
of the original RDF graph G, which satisfies the SPARQL query graph pattern
(provided there are no Cartesian joins).

BitMat based join algorithm is given in Algorithm 1 and is elaborated as
follows.

Algorithm 1 BitMat SingleJoin(BM, tp1, tp2) returns BitMat

1: Let BM be the BitMat of the original triple-set
2: Let tp1 and tp2 be the two triple patterns in the join
3: /* filter and fold */
4: BMtp1 = filter(BM , tp1)
5: BMtp2 = filter(BM , tp2)
6: BitArr1 = fold(BMtp1, RetainDimensiontp1)
7: BitArr2 = fold(BMtp2, RetainDimensiontp2)
8: BitArrres = BitArr1 AND BitArr2

9: BMtp1 = unfold(BMtp1, BitArrres, RetainDimensiontp1)
10: BMtp2 = unfold(BMtp2, BitArrres, RetainDimensiontp2)
11: /* Produce the final result BitMat */
12: Let BMres be an empty BitMat
13: BMres = BMtp1OR BMtp2

On lines 4, 5 filter operation is used to get two BitMats containing only
triples satisfying the first and second triple pattern respectively. This resembles
the selection operator used in SQL style queries. Fold is used on these two Bit-
Mats to get BitArr1 and BitArr2. Fold is analogous to the projection operator

38

11 11 1

:p2

1 1 1

:p1 :p3

1 1

11 11 1

1 1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

:s1 :p1 :o1

:s1 :p1 :o2

:s1 :p2 :o2

:s2 :p3 :o3

:s3 :p1 :o1

:s3 :p1 :o4

:s3 :p3 :o3

:s3 :p3 :o4

:s2 :p2 :o3

:s2 :p2 :o2

:s2 :p1 :o1

:s1 :p3 :o3

:s1 :p2 :o4

Join over

:s1 ?p ?x

:s3 ?p ?y 11 1 1

:o2 :o3 :o4 :o5 :o1 :o1:o2 :o2:o3 :o3:o4 :o4:o5 :o5:o1

1

1

1

1 1

1 1

1

1

1

1

1

:s1

:s2

:s3

:p1 :p2 :p3

:o1 :o1:o2 :o3 :o4 :o5 :o2 :o3 :o4 :o5 :o2 :o3 :o4 :o5

:s1

:s3

:s1

:s3

AND

:s3:s1 1 1

:p1 :p2 :p3 :p1 :p2 :p3

:o5:o1

1 1 1

1 1 1 1 1

:s1

:s3

:s2

1

:p1 :p2 :p3

Result

:p1 :p2 :p3

1

Result BitMat

Result triples (with BitMat)
:s1 :p1 :o1
:s1 :p1 :o2
:s1 :p3 :o3

fold(retainDIM = predicate)

Unfold(with retainDIM = predicate) Unfold(with retainDIM = predicate)

Bits cleared

Similar to the operation shown as a bit array

simplicity of the figure.

filter

above, is shown on a bit array for theunfold

(variable bindings)
Matching subgraphs (as would be produced by a query engine)

:s3 :p1 :o5

Map triples to a BitMat
fold(retainDIM = predicate)

corresponding to (:s1 ?p ?x) and (:s3 ?p ?y).

For the simplicity of the figure they are shown

as 2 bit arrays of :s1 and :s3 (as internally

bits in other rows are set to 0 as per the

semantics)filter

Filter operation produces 2 BitMats

:p1 :p2 :p3

:s3 :p1 :o1
:s3 :p1 :o4
:s3 :p1 :o5
:s3 :p3 :o3
:s3 :p3 :o4

1

1

 :s1 :p1 :o1 :s3 :p1 :o1
 :s1 :p1 :o1 :s3 :p1 :o4
 :s1 :p1 :o1 :s3 :p1 :o5
 :s1 :p1 :o2 :s3 :p1 :o1
 :s1 :p1 :o2 :s3 :p1 :o4
 :s1 :p1 :o2 :s3 :p1 :o5

T1.S T1.P T1.O T2.S T2.P T2.O

 :s1 :p3 :o3 :s3 :p3 :o3
 :s1 :p3 :o3 :s3 :p3 :o4

?p ?x ?p ?y

transformtripleT

Fig. 3. Single Join on a BitMat

of SQL queries. If RDF triples are presented in a 3-column table (S, P, O), then
these bitarrays correspond to a single column in the table and bit positions set to
1 indicate presence of the S, P, or O values corresponding to those bit positions.
Bitwise AND is performed on these bitarrays which is same as a relational join
on the column represented by RetainDimension. The result of the bitwise AND
is unfolded back on the filtered BitMats BMtp1 and BMtp2. Finally the two Bit-
Mats obtained after unfold are combined using bitwise OR on the corresponding
rows of them. This procedure is depicted in Figure 3.

It can be shown and proved step-by-step that filter, fold, and unfold operators
can be mapped to equivalent SQL operations and the correctness of the algorithm
can be proved. For the scope of this paper, we have omitted these details, but
they can be referred in our technical report [3].

For simplicity of presentation of the algorithm, we have shown it only for
a single join with two triple patterns, but the same algorithm can be extended
to ‘n’ triple patterns joining over a single join variable occurring in the same
dimension by performing filter and fold on each triple pattern, ANDing all the
bitarrays generated by the fold operation, unfolding the AND results on each of
the filtered BitMats, and finally combining all these BitMats with bitwise OR
on the corresponding rows to get the result BitMat. The procedure for subject-
object cross dimensional join (as shown by an example in Section 3.1) is slightly
different and is elaborated in Section 4.1.

4.1 Cross Dimensional Joins

Bitwise AND operation can be performed on two bitarrays only if the corre-
sponding bit positions have the same URI or literal values mapped to them.
This is the case for the same dimension joins.

Cross-dimensional joins need special handling. (?s :p1 ?x . ?y :p2 ?s) is an
example of subject-object (S-O) cross-dimensional join, for which we need to
perform bitwise AND on the subject and object bitarrays. As elaborated in

39

Section 3.1 and Section 3.2, every bit position in the folded bitarray corresponds
to a unique identifier assigned to a URI or literal in the respective subject,
predicate, object ID space. Since URIs which appear as subjects as well as objects
are allocated the same IDs sequentially from 1 to |Vso|, for a S-O join, bitwise
AND is performed only on the first |Vso| bit positions of the respective subject
and object bitarrays and rest all bits are cleared.

As mentioned earlier in Section 3.1, other cross-dimensional joins (S-P and
P-O) are not that common in the Semantic Web instance (assertional) data and
hence are not supported at present.

5 Multi Join Processing

In a multi-join two or more triple patterns join over two or more join variables,
e.g. (:s1 ?p ?o . :s2 ?p ?y . ?z :p3 ?o). In a conventional relational join processing,
multi-join evaluation can be presented as an operator tree where each internal
node is a self-contained representation of the materialized results of the join
subtree below it. BitMat single join procedure, as elaborated in Section 4, does
not materialize the query results (i.e. does not produce matching subgraphs), but
represents the candidate result triples with the result BitMat. Thus, if we simply
extend the single-join BitMat algorithm to multi-joins, evaluation of a later join
can change the variable bindings produced by an earlier join. Specifically, if
the dependency between different join variables is not captured and resolved
then a BitMat join can produce false positives. Hence is the need for a different
algorithm for multi-join queries.

5.1 BitMat Multi-Join Algorithm

e

?s ?y ?p ?x

:s1 ?p ?x

:s2 ?p ?y

?s ?m :o6 ?n :p3 ?x

ij

?s :p4 ?y

Fig. 4. Multi-join graph G

For the present considerations, we do not handle joins with Cartesian prod-
ucts. For better understanding of the algorithm, we develop the theory by con-
structing a bipartite graph G which captures the conjunctive triple pattern and
join variable dependencies (see Figure 4).

– Each join variable in the multi-join is a node (denoted as jvar-node).
– Each triple pattern is a node (denoted as tp-node).

40

– There is an edge between a jvar-node and a tp-node if the join variable
represented by the jvar-node appears in the triple pattern represented by
the tp-node.

Algorithm 2 BitMat MultiJoin(BM, G) returns BitMat

1: /* BM is the BitMat of the original triple-set */
2: /* Initialize graph G */
3: for all vk in graph G
4: if vk is jvar-node then
5: Set BitArrk to a bitarray with all bits set to 1.
6: else
7: BitMatk = filter(BM , getTriplePattern(vk))
8: end if
9: end for

10: repeat
11: Set changed = false
12: for each vi as jvar-node in G do
13: Let PrevBitArri = BitArri

14: /* TP is a set of all triple patterns
15: * having join-var vi */
16: Let TP = {vj | ∃eij}
17: for each vj in TP do
18: Let dim = getDimension (vi, getTriplePattern(vj))
19: Let TempBitArr = fold(BitMatj , dim)
20: BitArri = (BitArri) AND (TempBitArr)
21: end for
22: if PrevBitArri not equal BitArri then
23: Set changed = true
24: end if
25: /* Now unfold the result */
26: for each vj in TP do
27: Let dim = getDimension (vi, getTriplePattern(vj))
28: BitMatj = unfold(BitMatj , BitArri, dim)
29: end for
30: end for
31: until (changed == true and there are more than one join var)
32: Let Bres be an empty BitMat
33: for each vj as tp-node in G do
34: Bres = Bres OR BitMatj

35: end for

Although for graph G shown in Figure 4 there are exactly two edges per
jvar-node corresponding to a join variable, one could have more than two edges
per join variable.

The algorithm to evaluate a multi-join using graph G is given in Algorithm
2. For simplicity, we assume the existence of certain methods without describ-
ing them in the algorithm, viz. method getTriplePattern(vj) returns the triple
pattern associated with the tp-node node vj , and getDimension(vi, tp) returns
the position (dimension) of the join variable vi in triple pattern tp, e.g. getDi-
mension(?s, (?s :p1 ?x)) returns subject, getDimension(?s, (?y :p2 ?s)) returns
object, and getDimension(?s, (?s :p2 ?s)) returns subject and object (this is a
special form of S-O cross dimensional join and is captured by the implemen-
tation of the BitMat multi-join algorithm, but not shown in Algorithm 2 for
simplicity).

41

Associated with each jvar-node is a bitarray of the most recent result of a join
evaluated over that join variable. Initially all the bits in these bitarrays are set to
1 (as explained in the Algorithm 2). Each tp-node has a BitMat associated with
it, which is initially set to the result of the filter(BM, getTriplePattern(vj)) where
vj is the tp-node. The repeat-until loop (between lines 10 and 31) in Algorithm 2
iterates over all the join variables in the query, processing those joins until none
of the BitArri change. For each join variable, it folds the BitMats associated
with all the triple patterns which have that join variable (lines 16, 19) and
performs a bitwise AND on the generated BitArrays (line 20). At the end of the
loop (17-21) the final AND result (BitArri) is unfolded back on all the BitMats
in the set TP (line 28). Lastly, after the repeat-until loop ends, result BitMat
is generated by a bitwise OR of all the BitMats associated with all the triple
patterns (line 34) in the query.

Although the multi-join algorithm is constructed as a continuous loop, it can
be proved that this loop will converge in a finite number of iterations. In each
iteration of the loop, we are performing a bitwise AND on the previous BitArri

and the new TempBitArr folded from the BitMat of the triple pattern having
that join variable. After each bitwise AND, the resulting BitArri is unfolded
on the BitMats associated with all the triple patterns having that join variable.
Since we are doing a bitwise AND operation and unfold which expands the
BitArri on the BitMats, only a bit set to 1 can be flipped to 0. Hence the
number of set bits (and hence the triples in the BitMats) reduce monotonically
per iteration of the loop and the loop ends at a point when none of the BitArri

change after an AND (lines 20, 22) (in the worst case when all the bits in all the
BitArrays are set to 0, in which case the final join result is null).

We provide experimental results in Section 6 for the typical number of iter-
ations taken by the loop. It can be seen that for each join variable, we employ
the same basic operations as used for a single join operation.

6 Experiments

This section describes our experiments and evaluation of the BitMat structure
and join queries.

6.1 Programming Environment

The BitMat structure and join algorithms have been developed as a C program
meant to be run on a Linux distribution. All the experiments were carried out
on Gentoo Linux distribution on a Dual Core AMD Opteron Processor 870
with 8GB of RAM. The BitMat program was run as a normal user process
with the default priority as set by the Linux system. Gcc ver. 4.1.1 compiler
is used to compile the code with compiler optimization flag set to -O6. The
RDF N-triple file is first preprocessed using a Perl script to generate a raw
RDF triple file by encoding all the triples using the sequence based identifiers
allocated to URIs and literals (refer to Section 3.1). Simple bash sort command

42

is used to sort these encoded triples on subject-ID, predicate-ID, object-ID. This
preprocessing is needed to be carried out only once per dataset, and the time
taken by it varies linearly with respect to the size of the triple-set (e.g. it takes
around 30 minutes for Wikipedia 47 million triple-set). BitMat’s load function
expects either a raw RDF triple file or a disk image of the previously generated
BitMat. Given a conjunctive triple pattern (join query), another small script is
used to transform the conjunctive triple pattern by encoding all the fixed URIs
and literals present in the query using the corresponding identifiers, so that the
BitMat join processing can operate on the ID-based values.

6.2 Loading a BitMat

We used different RDF triple sets of varying sizes for testing BitMat structure’s
memory utilization. UniProt-0.2million and UniProt-22million triple sets were
extracted from a larger UniProt dataset [22] (∼730 million triples). Uniprot-
0.2million and 22 million datasets were selected from first 50 million triples in
the Uniprot 730million triple file. LUBM 1 million and 6 million triple sets were
generated using LUBM’s [11] RDF data generator program. LUBM 1 million was
generated by generating data of 10 universities and LUBM 6 million was gener-
ated by generating data of 50 universities. Wikipedia 47 million [24] was used
as is available on the web without any modifications in it. The characteristics of
these datasets are given in Table 1.

Table 1. Dataset characteristics

Dataset #Triples #Subjects #Predicates #Objects
Uniprot 0.2million 199,912 30,007 55 45,754
LUBM 1million 1,272,953 207,615 18 155,837
LUBM 6million 6,656,560 1,083,817 18 806,980

Uniprot 22million 22,619,826 5,328,843 91 4,516,903
Wiki 47million 47,054,407 2,162,189 9 8,268,864

Table 2 lists size of the BitMats of respective datasets plus the size of forward
and reverse mapping dictionaries to map each literal or URI to an integer ID. A
compressed BitMat and these dictionary mappings represent the original RDF
data completely. The results given in Table 2 show that this representation is
much smaller than the original raw RDF data presented in N-triples format.

The small size of the compressed BitMat is due to two reasons: i) since the
actual RDF triple set covers only a small set of the total Vs×Vp×Vo space (refer
to Section 3.1), BitMat makes a very sparse structure, ii) D-gap compression
scheme achieves superior results on sparse bit-vectors.

The raw RDF triple file read by the BitMat load procedure is sorted on
(subject, predicate, object) IDs. Hence although conceptually we use the D-gap
compression scheme, internally our algorithm exploits the sorted triple list to
build a compressed BitMat directly instead of building uncompressed bitarrays

43

Table 2. BitMat Size and Load Time

Dataset (#triples in
millions)

Size of compressed BitMat + mapping
dictionary / Size of raw RDF data (MB)

Time to load (sec) from Raw
file / from Disk Image

UniProt (0.2) 1.5 + 6.5 / 23 0.34 / 0.04

LUBM (1) 11.6 + 47 / 222 1.54 / 0.36

LUBM (6) 60.8 + 248 / 1193 8.35 / 1.95

UniProt (22) 213.5 + 1367 / 4037 17.11 / 8.4

Wikipedia (47) 371.1 + 932 / 7054 34.4 / 4.5

and then compressing them. This results into smaller load times to construct a
BitMat from a raw RDF file. The memory-image of a compressed BitMat can
be written out to the disk as a binary file. Loading from a disk-image just reads
this binary file into a BitMat structure in memory, hence loading from a disk
image takes even lesser time than loading the BitMat from sorted triple-ID file.

Note that each conjunctive triple pattern query is converted into an inter-
nal representation where all the fixed values in the query are replaced by their
corresponding integer mapping IDs (refer Section 3.1). Although the mapping
dictionary consumes larger space than the primary BitMat structure, it does not
need to be kept in memory while processing the queries.

6.3 Join Query Performance

To test our implementation of the join algorithm, we executed a list of single join
queries on a smaller dataset (UniProt 0.2 million) and also measured the response
times (for the list of queries, see Table 3). Typically, the subject join query
times varied from 0.019sec to 0.04sec, for predicate joins the variation was from
0.0041sec to 0.062sec, for object dimension join it was from 0.0094sec to 0.128sec,
and for S-O cross dimensional joins it was from 0.08sec to 0.28sec. Variation
in the time depended on different factors such as the selectivity4 of the triple
pattern and join condition, number of total variables in the query, dimension of
the variables in the query, etc. as explained further below. For multi-joins, we
used a mix of queries taken from UniProt queries [17], LUBM queries available
on OpenRDF [15], and some constructed by us for the Wikipedia dataset. Table
4 lists some of these queries (due to space limitations we cannot enlist all the
queries). We noted several parameters that characterize these queries as given
in the columns of Table 4.

Memory requirements: The “Sum of BitMat sizes” is the maximum mem-
ory size of all the BitMats associated with the triple patterns including the result
BitMat at any point during the query execution. Note that BitMat size for a
single pattern is the size obtained after applying the filter, which usually is much
smaller than the original BitMat since a majority of the triple patterns have a
fixed value in at least one of the S, P, O positions. But we have successfully tried
queries having all variable positions in one or more triple patterns as well (e.g.

4 A lower selective triple pattern has more triples associated with it and vice versa.

44

Table 3. Single Join Queries on UniProt-0.2million

Query #Result Triples Time (sec)

Subject Joins

(?s :author ?x)(?s rdf:type ?y) 31,044 0.019

(?s ?p :taxonomy:5875)(?s rdf:type ?y) 2 0.04

(?s ?p ?o)(?s rdf:type ?y) 199,912 0.042

(?s ?p ?o)(?s :author ?y) 43,408 0.02

Predicate Joins

(?x ?p :P15711) (?y ?p :Q43495) 10 0.062

(:UniProt.rdf# F ?p ?o) (?y ?p :Q43495) 6 0.034

(:UniProt.rdf# A ?p ?x) (:UniProt.rdf# F ?p ?y) 10 0.0041

(?s ?p ?x) (:UniProt.rdf# F ?p ?y) 75,572 0.062

Object Joins

(?x :created ?o)(?y :modified ?o) 2056 0.016

(:P15711 ?p ?o)(?y :modified ?o) 33 0.010

(?x ?p ?o)(?y :modified ?o) 2056 0.128

(?x :created ?o)(:P28335 :modified ?o) 19 0.0094

S-O Joins

(?o :begin ?x)(?y :range ?o) 11,830 0.28

(?x ?p ?o)(?o rdf:type ?y) 51,232 0.08

(?x ?n ?o)(?o ?m ?y) 135,325 0.081

a Wikipedia query in Table 4). The sizes of these BitMats are highest at the
beginning of the query, and they go on reducing monotonically as the multi-join
algorithm executes. This is due to the fact that filter, fold, and unfold oper-
ate on a compressed BitMat, and in every iteration of the multi-join algorithm,
triples get eliminated monotonically, hence the BitMat size shrinks. Also we do
not materialize the intermediate join results, but represent them as candidate
triples in the result BitMat. The size variation also depended on the selectivity
of the triple patterns. The higher the selectivity, the lower the BitMat size (due
to D-gap compression).

The variation of the query execution times can be attributed to three key
factors: i) join-dimension (e.g. whether it is a subject, predicate, object, or S-O
cross dimension join), ii) selectivity of the triple patterns, and iii) the order of
the join evaluation.

Join dimension: Since we are using a subject BitMat for joins on all the
dimensions, subject-dimension joins inherently benefited, as folding and unfold-
ing of a compressed BitMat by retaining the subject dimension involves only
updating the relevant subject rows without accessing the compressed content.
Since the number of distinct predicates is usually low in the datasets, predicate
joins performed well too. However, accessing object dimension in a compressed
subject BitMat needed special handling, and hence we observe that the struc-
ture of the subject BitMat is unsuited for the object joins since unfold requires
accessing every O-bit position within each subject row, and for each predicate in

45

Table 4. Multi-join Queries

Query Dataset
(million
triples)

Sum
Bit-
Mat
sizes

#Result-
ing
triples

Time
(sec) /
#multi-
join
loop-
itera-
tions

#Join
var /
#all
vars /
#triple
pat-
terns

(?protein rdf:type :Protein) (?protein :annotation
?annotation) (?annotation rdf:type :Transmem-
brane Annotation) (?annotation :range ?range)
(?range :begin ?begin) (?range :end ?end)

UniProt
(0.2)

355KB 3712 0.066 /
3

3 / 5 / 6

(?p1 rdf:type :Protein)(?p1 :enzyme :en-
zymes:2.7.1.105) (?p2 rdf:type :Protein) (?p2
:enzyme :enzymes:3.1.3.-) (?interaction rdf:type
rdf:Statement) (?interaction rdf:subject ?p1)
(?interaction rdf:subject ?p2)

UniProt
(0.2)

434KB 0 0.068 /
3

3 / 3 / 7

(?X rdf:type ub:GraduateStudent) (?Y rdf:type
ub:University) (?Z rdf:type ub:Department) (?X
ub:memberOf ?Z) (?Z ub:subOrganizationOf ?Y)
(?X ub:undergraduateDegreeFrom ?Y)

LUBM (1) 2.1MB 994 0.39 / 3 3 / 3 / 6

LUBM (6) 10.4MB 20,808 3.24 / 3 3 / 3 / 6

(?X rdf:type ub:UndergraduateStudent)
(?Y rdf:type ub:FullProfessor) (?Z rdf:type
ub:Course) (?X ub:advisor ?Y) (?Y ub:teacherOf
?Z) (?X ub:takesCourse ?Z)

LUBM (1) 4.6MB 10,113 2.17 /
15

3 / 3 / 6

LUBM (6) 23.1MB 52,029 55.53 /
18

3 / 3 / 6

(?s :title “Dilbert Bit Characters”) (?s ?p ?x)(?s2
?p ?y) (?s2 rdf:type wiki:Article) (?s2 ?n ?z) (?s2
wiki:internalLink ?m)

Wikipedia
(47)

1.9GB 1 5.04 / 2 3 / 9 / 6

(?s :title “Dilbert Bit Characters”) (?s ?p
:Bully)(:Johnny the Homicidal Maniac ?p ?o)
(?o rdf:type wiki:Article)

Wikipedia
(47)

26.5MB 128 3.34 / 2 3 / 3 / 4

turn. Also for the queries with a triple pattern having variable predicate dimen-
sion and a fixed object dimension, e.g. (?s ?p :o1), fold operation will require
to access a single bit position within all the subject rows, for all the predicates.
This effect was observed specifically on very large datasets when the selectivity
of the triple pattern was low. This further brought our attention to the aspect
of using all or some of the six possible BitMats that can be flattened from a
3D bit-cube, as we explained in Section 3. Usage of different BitMat structures
requires changes in the present multi-join algorithm, as fold and unfold opera-
tions have to interoperate between multiple types of BitMats. We are currently
exploring this aspect.

Selectivity: Initial selectivity of the triple pattern as well as the selectivity
of join played a role in the faster convergence of the multi-join loop. Selectivity
of the triple pattern or join result also plays key role in the memory utilization.
Higher selectivity of the triple patterns and join results reduces the BitMats’
size faster.

Join order: Although in our experiments the multi-join algorithm’s loop
typically converged in 3 or 4 iterations, as it can be noted from Table 4, the

46

second LUBM query took many more iterations (15-18) for 1 million as well as 6
million dataset. As join ordering affects the query execution time and size of the
intermediate results in a relational scheme, it affects the number of iterations
of the BitMat multi-join algorithm as well. In case of a BitMat join, due to
the use of compressed BitMats and the fact that we are not materializing the
intermediate results, memory utilization was not affected though. For the second
LUBM query, we observe that evaluating join over ?Y first brought down the
multi-join algorithm iterations from 15 to 12. We plan to use an augmented
version of the multi-join bipartite graph G (not shown in Figure 4) that can be
used to capture the cyclic or acyclic dependency, so that we can minimize the
number of iterations needed to complete the multi-join processing.

7 Conclusions and Future Work

As shown by our experiments, one of the main advantages of the BitMat struc-
ture and joins is that the memory requirement of the system is very low. Since
the intermediate or final results in a multi-join are not completely materialized,
the result size is always bounded by the size of the original BitMat. If the size
of the original BitMat is SizeBM and n is the number of triple patterns in a
multi-join query, then the instantaneous memory utilization while performing a
join is always bounded by O(n ∗ SizeBM) and the final join result size is always
bounded by O(SizeBM).

We are presently developing an efficient algorithm to enumerate all the
matching subgraphs from a result BitMat (i.e. final variable bindings). With this
the BitMat main-memory triple store can be used as an independent SPARQL
join query engine. Also as pointed out in the experimental section, we are ex-
ploring the usage of BitMats created by flattening the 3D bit-cube on different
dimensions for further improving the performance of the multi-join queries. De-
velopment of this algorithm for a fair comparison of query performance and
memory utilization with any other state-of-the-art RDF triplestore, is a part of
our ongoing work.

The present BitMat query processing algorithm only performs the step of
pruning the candidate RDF triples but does not produce final matching sub-
graphs. Hence in this paper, we have just presented empirical results of query
performance and memory utilization.

The key aspect of BitMat’s algorithms is that they always work on com-
pressed data without uncompressing it at any point.

Due to the ability to create a disk image of a BitMat in memory (as explained
in Section 3.1), the BitMat system can be used as a persistent data-store as well,
by exploiting the benefits of performing all the operations in main-memory once
the BitMat is reloaded from the disk image.

Finally, we conjecture that by creating clusters of machines, each deploying
BitMats, extremely large RDF stores can be created and processed in memory.
Our future work includes exploring how this can be realized on server-farm like
clusters as well as shared memory supercomputers for very large RDF datasets.

47

Acknowledgements

We would like to thank Dr. Jagannathan Srinivasan of Oracle Corp. for his
invaluable inputs during the early development of this work.

References

1. TDB - A SPARQL Database for Jena. http://jena.sourceforge.net/TDB/.
2. ARQ - A SPARQL Processor for Jena. http://jena.sourceforge.net/ARQ/.
3. M. Atre, J. Srinivasan, and J. Hendler. BitMat: A Main Memory RDF store.

Technical Report, TW-2009-02, January 2009.
4. D. Beckette and B. McBride. RDF/XML Syntax Specification. W3C Recommen-

dation, February 2004. http://www.w3.org/TR/rdf-syntax-grammar/.
5. M. Cai and M. Frank. RDFPeers: A Scalable Distributed RDF Repository based

on a Structured Peer-to-Peer Network. In Proceedings of WWW, May 2004.
6. R. Cyganiak. A Relational Algebra for SPARQL. Technical Report, HP Laborato-

ries Bristol, September 2005.
7. D-gap Compression Scheme. http://bmagic.sourceforge.net/dGap.html.
8. O. Erling. Advances in Virtuoso RDF Triple Storage (Bitmap Indexing), October

2006. http://virtuoso.openlinksw.com/-wiki/main/Main/VOSBitmapIndexing.
9. O. Hartig and R. Heese. The SPARQL Query Graph Model for Query Optimiza-

tion. In Proceedings of ESWC, 2007.
10. M. Janik and K. Kochut. BRAHMS: A WorkBench RDF Store and High Per-

formance Memory System for Semantic Association Discovery. In Proceedings of
ISWC, 2005.

11. Lehigh University Benchmark (LUBM). http://swat.cse.lehigh.edu/projects/lubm/.
12. A. Matono, S. M. Pahlevi, and I. Kojima. RDFCube: A P2P-based Three-

dimensional Index for Structural Joins on Distributed Triple Stores. In DBISP2P
in Conjunction with VLDB 2006, September 2006.

13. T. Neumann and G. Weikum. RDF-3X: A RISC-style Engine for RDF. In VLDB,
2008.

14. T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF Graphs.
In SIGMOD, 2009.

15. OpenRDF LUBM SPARQL Queries. http://repo.aduna-
software.org/viewvc/org.openrdf/?pathrev=6875.

16. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
Recommendation, January 2008. http://www.w3.org/TR/rdf-sparql-query/.

17. Queries on UniProt RDF dataset. http://dev.isb-sib.ch/projects/expasy4j-
webng/query.html#examples.

18. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Per-
formance Benchmark. CoRR, abs/0806.4627, 2008.

19. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL
Basic Graph Pattern Optimization Using Selectivity Estimation. In Proceedings of
WWW, April 2008.

20. SwiftOWLIM Semantic Repository. http://www.ontotext.com/owlim/index.html.
21. O. Udrea, A. Pugliese, and V. Subrahmanian. GRIN: A Graph Based RDF Index.

In AAAI, 2007.
22. UniProt RDF. http://dev.isb-sib.ch/projects/uniprot-rdf/.
23. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic

Web Data Management. In Proceedings of VLDB, 2008.
24. Wikipedia RDF Dataset. http://labs.systemone.at/wikipedia3.

48

On-disk storage techniques for Semantic Web
data - Are B-Trees always the optimal solution?

Cathrin Weiss, Abraham Bernstein

University of Zurich
Department of Informatics

CH-8050 Zurich, Switzerland
{weiss,bernstein}@ifi.uzh.ch

Abstract. Since its introduction in 1971, the B-tree has become the
dominant index structure in database systems. Conventional wisdom
dictated that the use of a B-tree index or one of its descendants would
typically lead to good results. The advent of XML-data, column stores,
and the recent resurgence of typed-graph (or triple) stores motivated by
the Semantic Web has changed the nature of the data typically stored.
In this paper we show that in the case of triple-stores the usage of B-
trees is actually highly detrimental to query performance. Specifically, we
compare on-disk query performance of our triple-based Hexastore when
using two different B-tree implementations, and our simple and novel
vector storage that leverages offsets.
Our experimental evaluation with a large benchmark data set confirms
that the vector storage outperforms the other approaches by at least
a factor of four in load-time, by approximately a factor of three (and
up to a factor of eight for some queries) in query-time, as well as by a
factor of two in required storage. The only drawback of the vector-based
approach is its time-consuming need for reorganization of parts of the
data during inserts of new triples: a seldom occurrence in many Semantic
Web environments.
As such this paper tries to reopen the discussion about the trade-offs
when using different types of indices in the light of non-relational data
and contribute to the endeavor of building scalable and fast typed-graph
databases.

1 Introduction

The increasing interest in the Semantic Web has motivated a lot of recent re-
search in various areas. That is because the dynamic graph-structured character
of Semantic Web data is challenging many traditional approaches, for example
those of data indexing and querying. So it does not come as a surprise that there
has been done a lot of work to improve state of the art Semantic Web engines.
Recent publications show how to index Semantic Web data efficiently [1, 8, 17],
how to improve query optimization processes [9, 14], and how to represent the
data. Most of them aim to avoid mapping data to the relational scheme.

49

However, beyond optimizing in-memory indices, state-of-the-art systems still
make use of traditional data structures, such as B-trees, when it comes to on-disk
storage. It is surprising that so far no effort has been made on analyzing whether
those storage structures are a good match for the new indices. Will traditional
approaches still work well with the newly developed indexing techniques?

In this paper we discuss this issue and propose a novel, but simple lookup-
based, on-disk vector storage for the Hexastore indices. The vector storage em-
ploys key offsets rather than a tree structure to navigate large amounts of disk-
based data. The use of fixed-length indices makes lookups highly efficient (O(1),
with at most three page reads) and loads efficient. While updates are a bit
more costly, the fast load time makes it, oftentimes, simpler to “just” reload the
whole data. We benchmark our vector storage for Hexastore with two Hexastore-
customized B-tree based approaches. One has a B-tree index for each of the
Hexastore indices. Another has one B-tree index which combines all indices. We
will see that for typical queries the vector storage outperforms a B-tree based
structure by a factor of eight.

In summary our contributions in this paper are the following:

– We propose a simple but novel approach for on-disk storage of triples that
relies on an offset-based vector storage. The approach allows for a highly
compact representation of the data within the index while preserving a fast
retrieval forgoing some insert/update efficiency – a tradeoff that doesn’t seem
too disadvantageous given the nature of the data.

– We experimentally compare the load-time and space requirement perfor-
mance of the vector index with two different implementations of the a B-
tree style index and two different versions of a traditional table-based triple
store. We show that the vector storage based Hexastore has a smaller storage
footprint than a B-tree based approach and that it is much faster in loading
the data. Furthermore, we show that the vector storage based Hexastore
has about three to eight times the speed of the B-tree based approaches in
answering queries confirming the theoretical considerations.

The remainder of the paper is structured as follows. First we discuss the
work related to investigating non-tree data structures. Section 3 summarizes
the structure of Hexastore, introduces the novel vector storage structure, and
explains how the two B-tree-based back-ends for Hexastore are constructed.
Section 4 discusses the advantages and disadvantages of each of the indices and
is complemented by the experimental evaluation. We close with a discussion of
limitations and our conclusions.

2 Related Work

We found three areas of related work: other work on typed-graph (or RDF)
stores, projects focusing on the native storage of XML data, and other papers
investigating the limitations of usefulness of tree-based storage.

50

Efficient indexing of Semantic Web data has become an active research
topic [1, 8, 13, 17]. Most approaches propose methods how to rearrange data
in-memory or in given database systems respectively such that query process-
ing can be performed more efficiently compared to straightforward approaches
like triple tables. Abadi et al [1] store their vertical partitioning approach in
a column-oriented database [2, 15]. Specifically they store each predicate in a
two-column < subject, object > table in a column store, indexed with an un-
clustered B-tree. Neumann et al. [8] as well as Guha [12] use native B-tree storage
approaches. The goal with our proposed vector storage is to avoid storage in ex-
isting DBS and also the usage of B-tree structures and to show that applying
these approaches is detrimental to query performance.

One of the oftentimes used serializations of an RDF graph is in XML. Projects
in the XML domain have investigated a plethora of approaches to efficient storage
and querying of this type of data. We can distinguish between non-native storage
strategies, which map the data onto the relational model, and native strategies,
that try to store the data more according to its nature. Native XML databases [3,
5, 7] typically store their data either as the XML document itself, or they store
the tree structure, i.e., the nodes and child node references. For indexing, some
index-related information may be stored as well, such as partial documents,
sub-tree information, and others. All of these approaches have in common that
they store their data (and usually their indices) in tree like structures, as the
underlying data is also in that format. The one exception is the native on-disk
XML-storage format proposed by Zhang et al. [18]. It provides an optimized,
non-tree disk-layout for XML-trees optimized to answer XPath queries. Akin to
this last project, we also propose to shed the limitations of the underlying data
format. Indeed, our on-disk structure consists only of the indices themselves,
which helps to answer queries about the underlying data and, hence, enables
their reconstruction.

It was most difficult to find work investigating the boundaries of tree-based
indices. Idreos et al. [4] address the slow build-time of an index in general by
proposing not to build an index at load time but to initially load the data in its
raw format and reorganize it to answer each query. They show that under certain
conditions the data organization converges to the ideal one. In the most radical
attack on the general applicability of trees, Weber et al. [16] discuss similarity
searches in high-dimensional spaces. They find that the performance of tree-
based indices radically degrades below the performance of a simple sequential
scan. They propose a novel vector-approximation scheme called VA-file that
overcomes this “dimensionality curse”. Our work can be seen in the spirit of
these studies in that we also try to explore the limitations of the predominant
tree structures and propose alternatives that excel under certain conditions.

3 The Storage Structure

In this section we describe our vector storage for Hexastore indices and data.
Hexastore, proposed in [17] as an in-memory prototype, is an efficient six-way

51

indexing structure for Semantic Web data. In order to explain the functionality
of the vector storage we first briefly review the functionality of Hexastore itself
and its requirements towards an index. We then introduce the vector storage
and discuss its technical and computational characteristics. This is followed by
a brief explanation on how to build the B-tree based Hexastore back-ends.

3.1 Hexastore: A Sextuple index based graph store

A Semantic Web triple < s, p, o > consists of a subject s, which is a node in
the graph, a predicate p designating the type of edge, and an object o, which is
either a node in the graph or a literal. In RDF, the nodes are identified by a URI.
To limit the amount of storage needed for the URIs, Hexastore uses the typical
dictionary encoding of the URIs and the literals, i.e. every URI and literal is
assigned a unique numerical id. Furthermore, Hexastore recognizes that queries
are constructed by a collection of graph patterns [14] which may (i) bind any
of the three elements of the triples to a value, (ii) may use variables for any
of the triple elements effectively resulting in a join with other graph pattern,
and (iii) define any element with a wild card to be returned. Consequently, any
join order between triple patterns in the query is possible. Hexastore, therefore,
indexes the data to allow for retrieving values for each order of a triple pattern
respectively joining over every element (s, p, or o) of a triple pattern resulting in
six indices designated in the order in which the triple elements are indexed (e.g.,
SPO, OSP, etc.). This structure allows to retrieve all connected triple residuals
with one index lookup.

Figure 1 illustrates the structure of the six indices. It shows that each index
essentially consists of three different elements: a first-level Type1 index, a second-
level Type2 index, and a third-level Type3 ordered set, where the TypeN’s are
one of the three triple elements {subject, predicate, object}. Given a key ai the
first-level Type1 index returns a second-level Type2 index. Given a key bj the
Type2 index returns a Type3 ordered set, which lists all the matches to the query
< ai, bj , ? >. As an example consider trying to match a query that tries to find
all papers authored by “Bayer”. This query could result in the triple structure
< Bayer, authored, ? > and could be executed by consulting the spo index (i.e.,
Type1 = s, Type2 = p,and Type3 = o). Hence, first the s index would be asked
to return the p index matching the key “Bayer”, then the returned index would
be asked to return the ordered set for the key “authored”, which would be the
result of the query. Note that this structure has the advantage that every lookup
is of amortized cost of order O(1).

Our implementation of Hexastore presented in [17] used an in-memory pro-
totype for all experiments. Storing the first and second level indices on disk so
that all Hexastore performance advantages can be preserved is not straightfor-
ward. Clearly the proposed indexing technique does not adhere to the traditional
relational model. Still, taking inspiration from RDF-3X, we could use B-trees as
the well established indexing technique – an approach that we use to compare
our results to (see Section 3.3). But as we argued in the introduction we believe
that since our data adheres to different underlying assumptions, we would loose

52

!"

!#

!$

!!!

!%

!&

'""

'"#

'"$

("""

'#"

'##

(""# (""$)))

*+,-." *+,-.# *+,-.$

)
)
)

).).)

).).)

*+,-./.012'3-(45.,6-78(!4-5.9'3-(4:

Fig. 1. Sketch of a Hexastore in-
dex

!"#$

%&''''''''''''''''''(!"#$)
+,'-.+'''''''''(-#,)
+,'!!+'"//+,'(!"#$)

!"#$%

0-!+'1

234#5'1

234#5'6

234#5'7

0-!+'6

234#5'181

234#5'186

234#5'187
9:+,';+/+;+#<+='

>?'234#5'1

234#5'681

234#5'686 9 :+,';+/+;+#<+='
>?'234#5'6

&'&'&'

&'&'&'

0-!+'7

&'&'&'

!"#$

!"#$

!"#$

!"#$
9 :+,';+/+;+#<+='

>?'234#5'181

Fig. 2. Vector storage file layout

some of the advantages of the Hexastore index. Consequently, we need an on-disk
index structure/storage layout that adheres to the following requirements:

1. Given an item a of Type1 and a desired target Type2, there should be an
operation on the first-level index that efficiently retrieves the associated
second-level index of Type2, denoted as I(Type2). Hence we need an effi-
cient implementation of the operation:

getIdx(a) : Type1 !→ PointerTo−−−−−−−→ I(Type2)

2. Given an item b of Type2 and a desired target Type3, there should be an
operation operating on the second-level index that efficiently retrieves the
associated third-level ordered set Type3, denoted as S. Hence we need an
efficient implementation of the operation:

getSet(b) : Type2 !→ PointerTo−−−−−−−→ S(Type3)

3. The operations getIdx (a) and getSet(a) should require as few read operations
as possible.

4. The third-level sorted set should be accessible in as few read operations as
possible.

Obviously, this linked structure can be implemented in various ways. Given
that the structure is reminiscent of linked vectors one approach would be to store
each vector-like structure in a column store. This would fulfill requirements 3
and 4 above. In practice, however, this approach does not scale, as the number
of vectors is huge: while the number of first-level indices is only six, the number
of second level indices has an upper bound of 2|S|+2|P |+2|O| and the number
of third-level ordered sets would be, due to the fact that the third-level sets can
be shared by two indices, |S|(|P | + |O|) + |O||P | – a prohibitively large number.
MonetDB [2], for example, allocates one file for each column. Since most vectors
are small (requiring far less space than 4 KB, which is the default minimal size

53

for each new file), this approach would lead to a tremendous waste of space.
In the following, we discuss three implementations. First, we introduce our own
vector storage. Then, we show two different approaches of how the two necessary
structure operations (getSecondLevelIndex(a) and getThirdLevelSet(a)) can be
implemented using a traditional B-tree.

3.2 Vector Storage

The Hexastore structure favors vector-like indices connected with pointers. To
mimic this behavior on-disk we needed to establish the analogues of vectors and
pointers on-disk whilst limiting the number of files needed (to avoid having a
large numbers of almost empty second and third level files). As an analogue for
a pointer we chose a storage structure we call a chunk (see also Figure 2 at the
top). A chunk contains the particular id (the id that results of the dictionary
encoding) of a URI or literal represented as a long integer, the number of
elements in the associated second-level index (or third-level sorted set) it points
to represented as integer, which can be chosen as long integer as well, if
necessary, and the offset information where to find the associated set data in the
level-two, respectively level-three file, again represented as long integer.

Chunks allow for the efficient storage of the first and second-level indices in a
single file each. Figure 2 shows the layout for each of the six Hexatore indices. If
an element with id i is stored, the appropriate chunk in the ith position of File 1
has the value ID set to i and size set to the number of chunks it points to in the
second-level index. The value offset contains the position of the start of the
files referenced by the chunk within File 2. Some nodes that appear as subjects
might also be objects in some triples, while other nodes are only referred to as
either subjects or objects. In the latter case the first-level index of the SPO,
SOP, OSP, and OPS has to return a NULL value, as those ids are not used
as subject respectively object. If that is the case the particular entry is filled
with a “zero” chunk, i.e. the ID, size and the offset are set to 0. While this
approach “wastes” some space to “zero” chunks, it maintains a placeholder for
every possible subject and/or object id allowing to compute the location of a
chunk associated with a given id by simply multiplying the id times the disk
footprint of a chunk (i.e., (id− 1) · sizeof(chunk)). In the predicate-headed
first-level indices (belonging to the overall Hexastore indices PSO and POS) we
avoid the necessity of “zero” chunks all together by using a different key-space
for the dictionary encoding. The second-level index is also stored as a collection
of chunks grouped in a single file denoted as File 2 in Figure 2. Since the lookup
in the first-level index provided us with the offset as well as the size (or number)
of chunks associated with its key in the second-level index we can again start to
directly read the relevant chunks and know how far we need to read. Note that
the second-level index does not use “zero” chunks, since the entries associated
with a first-level key are typically much fewer than the number of nodes (or
edges). Consequently, the offset-jump method of finding a second-level chunk
associated with a key requires a search for the chunk. The size of the second-
level group of chunks corresponds to the degree of a given node (or the number

54

of differing types of predicates it is associated with) in the case of a subject or
object first-level index, or the number of nodes connected with a certain type of
edge in the case of a first-level predicate. Hence, in most cases, the typical size
of a second-level group of chunks is going to be small enough to fit into main
memory allowing an efficient binary search. The third-level sorted sets are again
all stored in a single file denoted as File 3 in Figure 2. Reading the sorted set
associated with a second-level chunk results in a simple reading of the size ids
starting from the offset in the file.

The presented on-disk structure allows to store each index in 3 files resulting
in a total of 15 files (in addition to the dictionary store). Note that the number of
File 3s can be halved, as two Hexastore indices can share them (e.g., the SPO and
PSO index can share their third-level list File 3). Returning to our requirements
of Section 3.1 we can summarize:

1. getIdx(a) can be implemented as a simple lookup based on an off-set calcu-
lation (i.e., (id− 1) · sizeof(chunk)). It requires at most one page read.

2. getSet(b) can be implemented as a search over an ordered set of chunks in
File 2: In the best case it will involve one page read followed by a binary
search (or a simple binary search if the page is already in memory). In the
worst case it might involve multiple page reads (if the chunk group is larger
than the page size) and partial binary searches.

3. Few page reads (first and second level): In the first-level index lookup only
the relevant page is read. In the second-level index only the pages associated
with the relevant chunk group are read.

4. Third-level page reads: only pages containing the relevant third-level ordered
set are read.

3.3 B-tree Based Implementations

As a base-line comparison and following the conventional wisdom we imple-
mented two different Hexastore implementations based on B-trees. We decided
to use BerkeleyDB B-trees rather than from-the-scratch implemented ones, as
they a) are efficiently implemented, and b) allow for flexible key-value definitions
per default.

The first approach stores each Hexastore index in a separate B-tree. We refer
to it as the One-For-Each (OFE) approach. The second approach stores all
Hexstore indices in a single B-tree. Therefore, we refer to it as the All-In-One
(AIO) approach.

OFE: Storing each Hexastore index in one B-tree In this approach we store each
Hexastore index in a separate B-tree. Thus, instead of using the structure shown
in Figure 2 we implement it as a B-tree with a compound key consisting of the
lookup value for the first-level and the second-level index in the form of:

BtreeLookup(< a, b >) :
< Type1, Type2 > !→ S(Type3) if b > 0

< Type1 > !→ S(Type2) otherwise.

55

This provides an easy lookup for each of the operations necessary to implement
a Hexastore operation. The typical lookup of the sorted set of third-level keys
for a given set of first-level and second-level keys is a straightforward call of
the BtreeLookup(a, b) function. Note that the vector storage requires calling
b = getIdx(a) followed by calling getList(b) to achieve the same operation. If
only the second-level keys are needed then the second-level key is passed as 0.
Hence, getIdx(a) = BtreeLookup(< a, 0 >). The result of this implementation
is that all lookups are optimized using the chosen B-tree implementation

AIO: Storing Hexastore in one B-tree In this approach we even further reduce
the number of needed B-trees by adding the type of index (SPO, SOP, ...) to the
compound key. Thus:

BtreeLookup(< a, b, t >) :
< Type1, Type2, idxType > !→ S(Type3) if b > 0

< Type1, idxType > !→ S(Type2) otherwise,

where idxType ∈ {SPO,SOP,PSO,POS,OSP,OPS}. Again partial lookups are
achieved with setting b to 0 and efficiency is handled by the B-tree implementa-
tion.

Note, that assuming an efficient implementation of a B-tree the main differ-
ence between OFE and AIO lies in the implementation ability to reuse/share
elements of the tree and the approach to dealing with compound keys. The sim-
pler key structure of OFE suggests a faster index build time. But an efficient
handling of compound keys in AIO could lead to a better reuse of already read
pages and could lead to better retrieval times.

4 Experimental Evaluation

In our evaluation we wanted to provide empirical evidence for our claim that
B-trees can be suboptimal in some situations and that they are outperformed
by our vector storage. To compare the vector storage, which we implemented in
C++, with B-tree based approaches, we implemented both B-tree variants, AIO
and OFE, described in Section 3.3 using the Oracle Berkeley DB [10,11] library
in release 4.7. Inspired by [13], in which the authors show that proper B-tree
indices over triple tables can already be highly efficient and scalable, we also
inserted the data into a standard MySQL 5 database table with three columns,
one for subject, one for predicate, and one for object. We then created indices
over all three columns. This indexed MySQL table is referred to as iMySQL.
Finally, we also used the unindexed MySQL database as a baseline for some of
the comparisons.

According to our goal we wanted to benchmark the systems with respect to
index creation times, required disk space, and data access (or retrieval) time.
All experiments were performed on a 2.8GHz, 2 x Dual Core AMD Opteron
machine with 16GB of main memory and 1TB hard disk running the 64Bit
version of Fedora Linux.

56

Data Sets As we wanted to measure the behavior of the different storages under
various sizes we looked for a suitable typed-graph data set. We chose the Lehigh
University Benchmark (LUBM) [6] data set, which models typical academic set-
ting of universities, classes, students, instructors, and their relationships. The
advantage of this synthetical data set is that it has an associated data generator
which can generate an arbitrary number of triples within the given schema and
that it has a number of associated queries with their correct answers. It is, there-
fore, widely used for benchmarking Semantic Web infrastructure applications.
Table 1 summarizes the number of subjects, predicates, objects, and triples for
the used data sets.

Triples |T | |P | |S| |O| |N |
5 Mio 18 787,288 585,784 1,191,500
25 Mio 18 3,928,780 2,921,363 5,948,606
50 Mio 18 7,855,814 5,842,384 11,894,568

Table 1. Number of triples, predicates, subjects, objects, and nodes of the used LUBM
data sets used

Experimental Procedure To ensure that all systems would have the same starting
conditions regardless of any string-handling optimizations we replaced all URIs
to unique numerical ids. In addition we also replaced all literals with unique
numerical ids mimicking a dictionary index. Note that according to the approach
chosen in Hexastore the numerical ids came from two different sets of numbers:
one for predicates as well as a second one for subjects and objects (since nodes
can be both subjects and objects).
To further ensure that the data would be loaded uniformly in the same way and
equalize possible differences between data-loaders we first built an in-memory
index from the data source files and then built the different on-disk indices in
exactly the same order. The exception was the MySQL loads, which had to rely
on SQL INSERT statements instead of calling a direct index API function.

4.1 Creation Time

To compare the index creation time under practical conditions using the LUBM
data set we measured the time from the first API-call until the data was entirely
written to disk. The results are presented in Figures 3 and 4. Surprisingly, as
depicted in Figure 3 the vector storage takes only marginally longer than the
simple (unindexed) MySQL insert batch process and already outperforms the
indexed MySQL table. As Figure 4 clearly indicates, both Berkeley DB B-tree
implementations take a very long time to create the on-disk index and are clearly
outperformed by the vector storage: to write a 50 million triples index, vector
storage requires about 50 minutes, whereas OFE requires 11.5 hours, and AIO

57

 0

 10

 20

 30

 40

 50

 60

 70

 80

5 Mio 25 Mio 50 Mio

C
re

a
ti
o
n
 T

im
e
 (

m
in

u
te

s
)

Number of Triples stored

Creation Time

Vector Store
MySQL
iMySQL

Fig. 3. Comparison of index creation
times of the vector storage and indexed
(iMySQL) and unindexed MySQL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 Mio 25 Mio 50 Mio

C
re

a
ti
o
n
 T

im
e
 (

m
in

u
te

s
)

Number of Triples stored

Creation Time

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 4. Comparison of index creation time
of vector storage and OFE/AIO

15 hours. These numbers show clearly that the vector storage index is built much
faster than any of the B-tree based indices.

4.2 Required Disk Space

The required disk space was determined by looking at the sum of the file sizes
of the respective stores containing a particular amount of triples. The results for
that are shown in Figures 5 and 6. We can see in Figure 5 that the ordinary
unindexed MySQL triples table requires the least amount of space, which is
no surprise. In fact it requires constantly approximately 4.3 times less space
than our vector storage approach. The B-tree-indexed MySQL version requires
about 33% less space than the vector storage. These findings weaken the original
criticism of Hexastore that its six indices use too much space. Indeed we argued
in in [17] that Hexastore would use at most 5 times the space than a single index
variant under worst-case conditions. We see here that a relational triple store
with index on each column (which is necessary given the types of queries typically
used in typed graph stores) uses only 33% less space. As shown in Figure 6 both
Hexastore-customized Berkeley DB approaches clearly require more disk space
than the vector storage. The OFE approach requires most storage, i.e. 2.3 times
as much as vector storage. The AIO approach requires less but still twice as
much space as the vector storage. A final observation is that for the LUBM data
the vector storage requires about 100 MB per million triples. This linear growth
is probably observed due to the uniformity of the interconnections of the data
generated by the LUBM generator, which adds new universities when additional
numbers of triples are required.

4.3 Retrieval Time

The most important question was how the different systems would compare in
terms of retrieval time. To ensure that we measure the time spent by querying

58

 0

 1000

 2000

 3000

 4000

 5000

5 Mio 25 Mio 50 Mio

R
e
q
u
ir
e
d
 S

p
a
c
e
 (

M
B

)

Number of Triples stored

Disk Space

Vector Store
MySQL
iMySQL

Fig. 5. Comparison of required disk space
for indices stored with vector storage and
(i-)MySQL

 0

 2000

 4000

 6000

 8000

 10000

 12000

5 Mio 25 Mio 50 Mio

R
e
q
u
ir
e
d
 S

p
a
c
e
 (

M
B

)

Number of Triples stored

Disk Space

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 6. Comparison of required disk space
for indices stored with vector storage and
AIO/OFE

the index and not any performed pre- or post-processing operations, we mea-
sured retrieval time from the moment all strings in the queries were converted
to ids until the final numerical results were retrieved. We also did not take into
account the final materialization step because we wanted to compare the imme-
diate behaviors of the different Hexastore implementations without being biased
by an additional lookup index. Thus the total time includes finding the key po-
sition(s) and fetching the desired data from disk. To avoid measuring the quality
of query optimization we restricted ourselves to single triple patterns. Note that
we refrained from including retrieval times for MySQL in this experiment, since
they were significantly worse than those of the other approaches. Specifically, we
evaluated the following requests, each as cold and warm run (i.e., uncached and
cached):

1. Retrieve all predicates for a given subject: < s, ?p, · >
2. Retrieve all objects for a given subject and predicate: < s, p, ?o >
3. Retrieve all subjects for a given predicate: <?s, p, · >

The ids chosen for the given subject or predicate were determined by a random
generator.

The results of the first request are shown in Figures 7 (cold run) and 8
(warm run). This request is highly selective and does not fetch much data. For
the vector storage approach it chooses the SPO index and fetches the subject
information from the first file and the set of associated predicates. There is no
need to fetch any information from the third file. Both B-tree approaches have
to perform key searches and fetch a small corresponding data chunk (in our
particular experiment run the given subject had three associated predicates).
We can see that the vector storage approach allows data retrieval in this case
for a cold run 2–3 times faster than the B-tree approaches and for a warm run
about 8 times faster. Given its structure the vector storage can probably answer
this query with only two page reads, which are then cached in the warm-run.
The B-trees have to perform more page-reads as they had to ”navigate” down
the tree. Interestingly, this navigation takes longer for the OFE, which has six

59

smaller indices, in the cold-run case but exactly the same time in the warm-run
case.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

5 Mio 25 Mio 50 Mio

D
a
ta

 R
e
tr

ie
v
a
l
T

im
e
 (

m
s
)

Number of Triples stored

Experiment SP (cold run)

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 7. Comparison of retrieval time for
vector storage and AIO/OFE, all predi-
cates for a given subject < s, ?p, · > (cold
run)

 0

 0.5

 1

 1.5

 2

5 Mio 25 Mio 50 Mio

D
a
ta

 R
e
tr

ie
v
a
l
T

im
e
 (

m
s
)

Number of Triples stored

Experiment SP (warm run)

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 8. Comparison of retrieval time for
vector storage and AIO/OFE, all predi-
cates for a given subject < s, ?p, · > (warm
run)

The second request fetches all objects for a given subject and predicate. The
vector storage needs to touch all three files to collect the required data, including
the predicate position determination in the second file within the known range
(compare Section 3.2). Both B-tree approaches work similarly to the first request
except for searching for a different key. This request is again highly selective, i.e.
in our experiment we had five objects connected to the given subject over the
given predicate.
The results are presented in Figures 9 and 10. Again we can see that the B-trees
are outperformed by vector storage by a factor of 1.5 – 3 for a cold run and 8 for
warm runs respectively. All three approaches have in common that retrieval times
remain constant with increasing number of stored triples for highly selective data
retrieval. Comparing the results of this query to the last one it is interesting to
observe that the cold-run case of this higher specified query is actually evaluated
faster than the one that ”only” resolves one level. In the warm-run case any
advantage is lost due to caching.

The last request retrieving all subjects for a given predicate is analogous to
the first one, but has a low selectivity and requires a lot of data to be fetched from
disk. In this concrete case, the number of subjects associated with the particular
predicate were 376, 924 in the 5 million triples case, 1, 888, 258 in the 25 million
triples case, and 3, 776, 769 in the 50 million triples case. It becomes therefore
obvious that in this case page size for a single retrieval is clearly exceeded.
Figures 11 and 12 show the corresponding results, where each of the approaches
has to retrieve a significant amount of more result triples as the size of the data
set increases. Correspondingly, the time needed for retrieval also increases. The
large number of retrieved result keys necessitates an increasing number of serial
page reads in the second-level index file for the vector storage. Due to the big

60

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 Mio 25 Mio 50 Mio

D
a
ta

 R
e
tr

ie
v
a
l
T

im
e
 (

m
s
)

Number of Triples stored

Experiment SPO (cold run)

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 9. Comparison of retrieval time for
vector storage and AIO/OFE, all ob-
jects for a given subject and predicate
< s, p, ?o > (cold run)

 0

 0.5

 1

 1.5

 2

5 Mio 25 Mio 50 Mio

D
a
ta

 R
e
tr

ie
v
a
l
T

im
e
 (

m
s
)

Number of Triples stored

Experiment SPO (warm run)

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 10. Comparison of retrieval time for
vector storage and AIO/OFE, all ob-
jects for a given subject and predicate
< s, p, ?o > (warm run)

data amount to be read, the B-tree needs to read more pages and, in case of
overflows, determine their positions respectively beforehand. The vector storage
outperforms both B-trees by a factor of 1.5 as it can leverage the sequential
structure of the second-level index, which is cheaper than traversing overflow
pages.

 0

 200

 400

 600

 800

 1000

 1200

 1400

5 Mio 25 Mio 50 Mio

D
a
ta

 R
e
tr

ie
v
a
l
T

im
e
 (

m
s
)

Number of Triples stored

Experiment PS (cold run)

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 11. Comparison of retrieval time for
vector storage and AIO/OFE, all subjects
for a given predicate <?s, p, · > (cold run)

 0

 10

 20

 30

 40

 50

 60

5 Mio 25 Mio 50 Mio

D
a
ta

 R
e
tr

ie
v
a
l
T

im
e
 (

m
s
)

Number of Triples stored

Experiment PS (warm run)

Vector Store
B-Tree (OFE)
B-Tree (AIO)

Fig. 12. Comparison of retrieval time for
vector storage and AIO/OFE, all subjects
for a given predicate <?s, p, · > (warm
run)

4.4 Results Summary

The presented results clearly show the advantages of our vector storage scheme.
We have shown empirically that it provides significantly lower data retrieval
times compared to B-trees. The differences are “only” in the tens or hundreds
of milliseconds. However, real world applications are likely to store even more
triples and to combine a series of such single graph pattern to a query. This

61

would require a series of lookups such as the ones we discussed here and further
widen the gap.

Most computer science algorithms employ some type of time/space tradeoff.
In this case, we do not: besides being faster, the novel vector storage approach
also only requires half of the space of B-trees. Creation of the on-disk vector
storage is fast. Indeed, it is several orders of magnitude faster than creating the
corresponding B-trees and almost on par with creating a simple triple table in
MySQL without indices.

5 Limitations and Future Work

The goal of our work was twofold. First, we tried to re-open the discussion on the
general applicability of trees as the “one-size-fits-all” index and second to present
our vector storage format as an efficient on-disk format for semantic web data
storage. Even though the experimental evaluation shows that the vector storage
exhibits better performance characteristics our findings have some limitations.

First and foremost, our findings are limited by the introductory permanence
assumption. If the data stored in a Hexastore would entail many updates, then
the overall performance balance might not be so clearly in favor of the vector
storage. Again, our basic assumption, supported by many usages of RDF stores
in the semantic web, is that such updates are rare and that reloading the whole
store in those rare occasions would be faster than using a slower index.

Second, our approach is limited to storing numerical ids requiring a dictio-
nary index for URI-based ids and literals. This approach requires that literal-
based query processing elements would be handled by the dictionary index, for
example for SPARQL1 FILTER expressions. To address this limitation we are
currently investigating an extension of the dictionary index to efficiently handle
such elements. Its discussion was, however, beyond the scope of this paper.

Third, as illustrated in the evaluation of the <?s, p, · > query in the last
section, all approaches suffer when they need to retrieve very large amounts of
data from the second-level index. This is oftentimes the case if the first-level
index is not very selective such as when the number of predicates |P | is small
compared to the number of triples |T | (18 versus 50 millions in the example
query). If such a triple pattern would be queried in the context of a query
containing many patterns then the query optimizer would call it at a later stage
due to its low selectivity. To speed things up in other cases (or for very loosely
bounded queries with lots of results) one could consider to forgoing some of the
vector storage compactness for highly unselective first-level indices and introduce
the zero-chunks at the second-level. We would foresee that such an approach
would only seldomly be chosen: mostly in the PSO and POS second-level indices
when |P | << |T |. We hope to investigate this further in future work.

Fourth, the LUBM data set is obviously only one possible choice and has
its limitations. It is a synthetic data set and has the limitations associated with

1 http://www.w3.org/TR/rdf-sparql-query/

62

such data. Nonetheless, it is realistic in that it has a small number of relationship
types but many entries/triples – a typical observation in real-world data. Also,
it is a heavily used data set, which makes our results comparable to a series of
other studies. We hope to extend our evaluation to other large data sets in the
future. Given our careful theoretical evaluation we are, however, confident that
the new experiments will reflect the results presented here.

Last but not least, our approach was conceived in the context of RDF data
and the evaluation only employs such data. As a consequence our findings should
only be generalized beyond graph-basd data with caution. In particular, the
vector storage index we proposed was geared towards serving as a back-end to
Hexastore and might not be quite as useful in other setting. Nonetheless, we
believe that scrutinizing the basic assumption of the ubiquitous applicability of
B-trees is a fruitful takeaway in itself and should be considered in all areas of
database research.

6 Conclusions

In this paper we set out to question the universal superiority of B-tree-based in-
dex structures and presented a simple vector-based index structure that outper-
forms the former in typical graph-based RDF-stye data. Specifically, we departed
from three assumptions about RDF data: its structurelessness, its permanence,
and its mostly path-style queries. Based on these assumptions we proposed to
exploit the structurelessness in favor of a novel storage format based on storing
the data in indices rather than in their raw format. Exploiting the difference
in permanence (compared to traditional transaction-focused RDBMS) we opti-
mized the indices for loads and reads. We showed empirically that the proposed
vector storage index for Hexastore outperforms state-of-the-art B-tree imple-
mentations both in terms of load time (by over one order of magnitude) and
retrieval time (up to eight times faster). We also showed, that the proposed
structure had a load time comparable to an unindexed MySQL < s, p, o > table
and even slightly outperformed the load into a similar table providing an index
over all three columns (which would be needed to answer any realistic queries).
Consequently, as the vector-storage-backed Hexastore so clearly outperformed
the other solutions, we can confirm that under certain conditions following con-
ventional wisdom can be considered harmful.

As such the presented paper and its vector storage index can be seen as a
first step in developing new on-disk storage structures that are better suited for
Semantic Web data. The goal of this endeavor is to gather the building blocks
for truly scalable fast stores for typed graph (and thus Semantic Web) data.

7 Acknowledgments

This work was partially supported by the Swiss National Science Foundation
under contract number 200021-118000.

63

References

1. D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic web
data management using vertical partitioning. In VLDB ’07, pages 411–422. VLDB
Endowment, 2007.

2. P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query
Execution. In CIDR, pages 225–237, Asilomar, CA, USA, January 2005.

3. G. Feinberg. Native XML database storage and retrieval. Linux J., 2005(137):7,
2005.

4. S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. In CIDR, Asilomar,
CA, USA, January 2007.

5. C.-C. Kanne and G. Moerkotte. Efficient storage of XML data. In ICDE ’00, page
198. Society Press, 2000.

6. Lehigh University Benchmark. LUBM Website. http://swat.cse.lehigh.edu/
projects/lubm/, September 2008.

7. X. Meng, D. Luo, M. L. Lee, and J. An. OrientStore: a schema based native XML
storage system. In VLDB ’2003, pages 1057–1060. VLDB Endowment, 2003.

8. T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for RDF. In Vol. 1
of JDMR (formely Proc. VLDB) 2008, Auckland, New Zealand, 2008.

9. T. Neumann and G. Weikum. Scalable Join Processing on Very Large RDF Graphs.
In SIGMOD 2009, Providence, USA, 2009. ACM.

10. M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In ATEC ’99: Proceedings
of the annual conference on USENIX Annual Technical Conference, pages 43–43,
Berkeley, CA, USA, 1999. USENIX Association.

11. Oracle. Berkeley DB Reference Guide, Version 4.7.25. http://www.oracle.com/
technology/documentation/berkeley-db/db/ref/toc.html.

12. R. V. Guha. rdfDB : An RDF database. http://www.guha.com/rdfdb/.
13. L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and S. Manegold. Column-

Store Support for RDF Data Management: not all swans are white. In Vol. 1 of
JDMR (formely Proc. VLDB) 2008, Auckland, New Zealand, 2008.

14. M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. SPARQL
basic graph pattern optimization using selectivity estimation. In WWW ’08, pages
595–604, New York, NY, USA, 2008. ACM.

15. M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: a column-oriented DBMS. In VLDB ’05, pages 553–564. VLDB Endow-
ment, 2005.

16. R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis and Performance
Study for Similarity-Search Methods in High-Dimensional Spaces. In VLDB ’98,
pages 194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

17. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic
Web Data Management. In Vol. 1 of JDMR (formely Proc. VLDB) 2008, Auck-
land, New Zealand, 2008.

18. N. Zhang, V. Kacholia, and M. T. Özsu. A Succinct Physical Storage Scheme for
Efficient Evaluation of Path Queries in XML. In ICDE ’04, page 54, Washington,
DC, USA, 2004. IEEE Computer Society.

64

OneQL: An Ontology-based Architecture to Efficiently
Query Resources on the Semantic Web

Tomas Lampo1 and Edna Ruckhaus1 and Javier Sierra1 and Marı́a-Esther Vidal1 and
Amadı́s Martı́nez1,2

1 Universidad Simón Bolı́var, Caracas, Venezuela
{tomas,ruckhaus,javier,mvidal}@ldc.usb.ve

2 Universidad de Carabobo, Valencia, Venezuela {aamartin}@uc.edu.ve

Abstract. The widespread explosion of Web accessible resources has led to
new problems on the traditional tasks of query evaluation and efficient data ac-
cess. With this is mind, we have developed the ontology-based OneQL system
which provides optimization and query evaluation techniques to scale up to large
RDF/RDFS documents and complex queries, i.e., queries of any shape and with
a large number of triple patterns. Efficiency of OneQL relies on the following
components:

– Query optimization and evaluation techniques that focus on cost models to
estimate the execution time of a plan, and on searching the space of plans
of any shape, i.e., bushy plans can be generated according to their estimated
cost.

– Bhyper: A directed hypergraph-based representation of RDF documents to
directly access triples that share the same subject and property values, or the
same property and object values.

We report on the quality of the developed strategies, and have observed that im-
plementing RDF documents with Bhyper and producing low estimated cost bushy
plans, can speed up the evaluation time by up to four orders of magnitude.

1 Introduction

Emerging infrastructures such as the Semantic Web, the Semantic Grid and Service
Oriented architectures, support on-line access to a wealth of ontologies, data sources
and Web services. Ontologies play an important role in the Semantic Web and provide
the basis for the definition of concepts and relationships that make information inte-
gration possible. Knowledge represented in ontologies can be used to annotate data,
distinguish similar concepts, and generalize and specialize concepts published by data
sources or produced by Web services. A great number of ontologies have become avail-
able under the umbrella of the Semantic Web; some of these ontologies can be very
large, impacting in this way the tasks of ontology query answering and reasoning; for
instance, MeSH, NCI Cancer, and GO are good examples of ontologies comprised of
thousands of concepts. Furthermore, the number of available Web data sources and
services has exploded during the last few years. For example, currently, the molecu-
lar biology databases collection includes 1,078 databases [12], that is 110 more than
the previous year [11]; tools and services as well as the number of instances published

65

by these resources, follow a similar progression [6]. In addition, thanks to this wealth,
users rely more on various digital tasks such as data retrieval from public data sources
and data analysis with Web tools or services organized in complex workflows. Thus, in
order to be capable of scaling up, Web architectures have to be tailored for query pro-
cessing on large number of resources and instances. We have aimed at these problems,
and have proposed the OneQL system.

OneQL is based on query optimization and evaluation techniques to efficiently ex-
ecute SPARQL queries. Ontologies are implemented as a deductive database whose
predicates represent knowledge explicitly expressed in the ontology, and the seman-
tics of the vocabulary terms. To efficiently store and index the RDF documents where
ontologies are defined, we have proposed a directed hypergraph formal model named
Bhyper. Basically, a Bhyper structure is defined by a set of nodes and a set of hyperarcs;
each hyperarc connects a set of source nodes to a set of target nodes. In a Bhyper struc-
ture, the information is stored only in the nodes, and the hyperarcs preserve the role of
each node and the concept of direction of RDF graphs. Thus, each resource (subject,
property, or value) is stored only once, and the space complexity of an RDF document is
reduced if a resource appears several times in the document. Besides, Bhyper structures
define implicit position-based indices [25] for an RDF document, which can support
efficient evaluation of queries over the document.

This paper is comprised of seven sections. The next section summarizes the related
work. In section 3 we briefly describe the OneQL system architecture. We then dis-
cuss our research in query optimization and evaluation. Section 5 describes Bhyper,
a hypergraph-based representation for RDF documents. The experimental study is re-
ported in section 6, and finally, section 7 outlines our conclusions and future work.

2 Related Work

In the context of the Semantic Web, several query engines have been developed to
access RDF documents efficiently [4, 13–16, 20, 31]. Jena [15, 32] provides a program-
matic environment for SPARQL, and it includes the ARQ query engine and indices
which provide an efficient access to large datasets. The ARQ-Optimizer is a system that
implements heuristics for selectivity-based Basic Graph Pattern optimization, proposed
by Stocker et al. [28]. These heuristics range from simple triple pattern variable count-
ing to more sophisticated selectivity estimation techniques; the optimization process
is based on a greedy optimization algorithm which may explore a reduced portion of
the space of possible plans, i.e., only left linear plans. Hence, ARQ-Optimizer query
plans can sometimes be far from the optimal plans. Tuple Database or TDB [16] is a
persistent graph storage layer for Jena. TDB works with the Jena SPARQL query en-
gine (ARQ) to support SPARQL together with a number of extensions (e.g., property
functions, aggregates, arbitrary length property paths). It is a pure-Java component that
employs memory mapped I/O, and a customized implementation of B+-trees to index
three different triple patterns permutations, i.e., spo, pos, and osp.

Sesame [31] is an open source Java framework for storage and querying RDF data.
It supports SPARQL and SeRQL queries which are translated to Prolog; the join oper-
ator is implemented as sideways-passing of variable bindings, which is similar to our

66

Index Nested Loop Join (NJoin) operator. YARS2 (Yet Another RDF Store, Version
2) [13] is a federated repository for queries against indexed RDF documents. YARS2
supports three types of indices that enable keyword lookups, perform atomic lookup
operations on RDF documents, and speed up combinations of patterns or values. In-
dices are implemented by using an in-memory sparse index data structure that refers
to on-disk block entries which contain the indexed entry; six combinations of triple
patterns are indexed. A general query processor on top of a distributed Index Manager
was implemented, and SPARQL queries are supported; however, no SPARQL specific
optimization or evaluation techniques have been developed.

RDF-3X [20] focuses on an index system, and its optimization techniques were de-
veloped to explore the space of plans that benefit from these index structures. RDF-3X
query optimizer implements a dynamic programming-based algorithm for plan enu-
meration, which imposes restrictions on the size of queries that can be optimized and
evaluated. Indeed, in certain cases, these index-based plans could coincide with OneQL
optimized plans; however, the RDF-3X optimization strategies are not tailored to iden-
tify any type of bushy plans or to scale up to queries with at least one Cartesian product.

AllegroGraph [4] uses a native object store for on-disk binary tree-based storage of
RDF triples. AllegroGraph also maintains six indices to manage all the possible permu-
tations of subject (s), predicate (p) and object (o). The standard indexing strategy is to
build indices whenever there are more than a certain number of triples. The query op-
timizer is based on join ordering for the generation of execution plans; no bushy plans
are generated. Hexastore [30] is a main memory indexing technique that uses the triple
nature of RDF as an asset. RDF data is also indexed in six possible ways, one for each
possible triple pattern permutation. However, the prime drawback of the Hexastore lies
in storage space usage; it may require a five-fold increase in storage space compared to
a triple table; also, the same resource can appear in multiple indices. Furthermore, two
second memory index-based representations and evaluation techniques are presented in
[8, 19]. [8] propose indexing the universe of RDF resource identifiers, regardless of
the role played by the resource; although they are able to reduce the storage costs of
RDF documents, since the proposed join implementations are not closed, the properties
of the index-based structures can only be exploited in joins on basic graph patterns. In
contrast, [19] propose an index-based representation for RDF documents that main-
tains the results for subject-subject joins, object-object joins and subject-object joins.
Although these structures can speed up the evaluation of joins, this solution may not
scale up to strongly connected very large RDF graphs.

GiaBATA [14] is a SPARQL engine built on top of the dlvhex reasoning engine
for HEX-programs, and the DLVDB [29] ASP solver with persistent storage. GiaBATA
does not implement an RDF-based cost model, but purely relies on join reordering
optimizations of DLV and optimizations of the underlying relational database system.

Finally, [1, 2, 27] propose different RDF store schemas to implement an RDF man-
agement system on top of a relational database system. They empirically show that a
physical implementation of vertically partitioned RDF tables, may outperform the tradi-
tional physical schema of RDF tables. Similarly to some of the existing state-of-the-art
RDF systems, the optimization techniques are not tailored to identify bushy plans.

67

3 Architecture

Figure 1 presents the architecture of the OneQL system; it is comprised of a Query
Planner, a Query and Reasoning engine, and an Ontology catalog [23].

Ontologies are modeled as a deductive database (DOB) which is composed of an ex-
tensional and an intensional database. The extensional database (EDB) is comprised of
meta-level predicates that represent the information explicitly modeled by the ontology;
for each ontology language built-in vocabulary term, there exists a meta-level predicate
(e.g., subClassO f). The intensional database (IDB) corresponds to the deductive rules
that express the semantics of the vocabulary terms (e.g., the transitive properties of the
subClassO f term).

Queries are described as SPARQL queries and are posted to OneQL through a
SPARQL-based API which translates each query into a conjunctive query on the predi-
cates in DOB. The conjunctive query is then passed to the optimizer which uses statis-
tics stored in the catalog and Magic Sets rewriting techniques to identify an efficient
query execution plan. Next, the plan is given to the query and reasoning engine, which
evaluates it against DOB.

The statistics that describe the ontologies stored in DOB include: cost of inferring
intensional facts, cardinality of extensional and intensional facts, and number of re-
sources. These statistics are used by the hybrid cost model to estimate the cost of a
given query plan. Finally, a hypergraph-based structure named Bhyper is used to index
predicates in DOB and to speed up the tasks of query processing and reasoning.

Magic Sets Rewritings

Cost-based Optimization

Techniques

Query and Reasoning

Engine

Query Optimizer

EDB

IDB

 Canonical

Representation

SPARQL-based API

Ontology

Statistics

User's
queries

Hybrid Cost

Model

Bhyper

Query
Planner

Fig. 1. The OneQL System Architecture

68

4 Optimizing and Evaluating SPARQL queries

OneQL implements optimization and evaluation techniques to support the execution of
SPARQL queries. The proposed optimization techniques are based on a cost model that
estimates the execution time or facts inferred during query evaluation; they are able to
produce query plans of any shape.

The Query Planner component in OneQL (Figure 1) is built on top the following
two sub-components [22–24]: a hybrid cost model that estimates the cardinality and
evaluation cost of the predicates that represent the ontology’s explicit and implicit facts,
and a twofold optimization strategy to identify bushy plans. The Query Engine relies
on several physical operators and Bhyper-based indices to efficiently evaluate SPARQL
queries.

4.1 The Hybrid Cost Model

In the hybrid cost model, evaluation cost is measured in terms of the number of interme-
diate inferred facts, and the cardinality corresponds to the number of valid answers of
the query pattern. This model estimates the cost and cardinality of explicit and implicit
facts, as follows:

– To estimate the cardinality and cost of the intensional predicates that represent im-
plicit facts, we have applied the Adaptive Sampling Technique [17]. This method
does not need to extract, store or maintain information about the data that satisfies
a particular predicate, and does not make any assumptions about statistical charac-
teristics of the data, such as distribution. Sampling stop conditions are defined to
ensure that the estimates are within an appropriate confidence level.

– To estimate the cardinality and cost of the extensional predicates, and the cost of
a query plan, we use a cost model à la System R [26]. Similarly to System R, we
store information about the number of ground facts corresponding to an extensional
predicate, and the number of different values (constants) of each predicate variable.
Formulas for computing the cost and cardinality are similar to the different physical
join formulas in relational queries.

4.2 The TwoFold Optimization Technique

A twofold optimization strategy that combines cost-based optimization and Magic Sets
techniques was developed. In the first stage of the query optimization component,
dynamic-based or randomized algorithms can be applied to identify a good ordering or
grouping of the patterns in a SPARQL query. On one hand, the dynamic-programming
algorithm works on iterations, and during each iteration the best intermediate sub-plans
are chosen based on the cost and the cardinality that were estimated using the hybrid
cost model. In the last iteration of the algorithm, final plans are constructed and the
best plan is selected in terms of the estimated cost. This optimal ordering reflects the
minimization of the number of intermediate inferred facts using a top-down evaluation
strategy. This dynamic-based algorithm is performed on queries with a small number of

69

triple patterns in the where clause, and it is able to produce only left-linear plans which
are not always the best solution for RDF-based queries.

On the other hand, the randomized algorithm performs random walks over the
search space of bushy execution plans; the query optimizer implements a Simulated
Annealing algorithm. Random walks are performed in stages, where each stage con-
sists of an initial plan generation step followed by one or more plan transformation
steps. An equilibrium condition or a number of iterations determines the number of
transformation steps. At the beginning of each stage, a query execution plan is ran-
domly created in the plan generation step. Then, successive plan transformations are
applied to the query execution plan during the plan transformation steps, in order to
obtain new plans. The probability of transforming a current plan p into a new plan p′
is specified by an acceptance probability function P(p, p′,T), that depends on a global
time-varying parameter T called the temperature; it reflects the number of stages to be
executed. The function P may be nonzero when cost(p′) > cost(p), meaning that the
optimizer can produce a new plan even when it is worse than the current one, i.e., it
has a higher cost. This feature prevents the optimizer from becoming stuck in a local
minimum. Temperature T is decreased during each stage and the optimizer concludes
when T = 0. Transformations applied to the plan during the random walks correspond
to the SPARQL axioms of the physical operators implemented by the query and reason-
ing engine. The Simulated Annealing-based optimizer scales up to queries of any shape
and number of triple patterns, and is able to produce execution plans of any shape.

In the second stage, the optimizer applies Magic Set optimization techniques [21]
to the execution plan obtained in the first stage. Magic Sets combines the benefits of
both, top-down and bottom-up evaluation strategies and tries to avoid repeated com-
putations of the same subgoals, and unnecessary inferences. The deductive database
program DOB is rewritten w.r.t. the optimal execution plan, and then evaluated with
a bottom-up strategy. “Magic predicates” are inserted into the program to represent
bounded arguments in the query, and “Supplementary predicates” are included to rep-
resent sideways information-passing in rules. It should be noted that we implemented
the general Magic Sets technique for Datalog with the two improvements suggested
by [3] to eliminate the first and last redundant supplementary predicates, and to merge
consecutive sequences of extensional predicates in rule bodies.

4.3 The OneQL Query Engine

The query and reasoning engine implements different strategies (operators) used to re-
trieve and combine ontology facts. We have defined different operators that implement
the retrieval and combination of ontology facts, and make use of the direct access pro-
vided by the Bhyper-based structures:

1. Index Nested-Loop Join. For each matching triple in the first pattern, we retrieve
the matching triples in the second pattern, i.e., the join arguments3 are instantiated
in the second pattern through the sideways passing of variable bindings. The Index
Nested-Loop Join was implemented by extending the sideways-passing of infor-
mation inherent to Prolog rules, with Bhyper indices that allow a direct access to

3 The join arguments are the common variables in the two predicates that represent the patterns.

70

the inner pattern triples that match the join variable values of each outer pattern
triple; once a result is produced, the computation of the operator is forced to fail,
and backtracking takes place to produce a new answer.

2. Group Join. The main idea of this operator is to partition the patterns that appear
in the ’WHERE’ clause of a query into groups that are comprised of a relatively
small number of triples. The Group Join was implemented by first evaluating each
group independently, and then asserting in the SWI-Prolog main memory database
the results produced by each group; the main memory predicates used to temporally
store the results of each group, are indexed by using SWI-Prolog indices. Finally,
the main memory stored results are checked to identify matches. Similarly to the
Index Nested-Loop Join, the Group Join control is implemented by forcing the com-
putation of the operator to fail when a solution is produced, and using backtracking
to generate more solutions.

winner title

hasBallot

option

option

hasBallot

voter

(a) Left-linear tree

hasBallot

voter

option

winner title

hasBallot

option

(b) Bushy tree

Fig. 2. Query Execution Plans

To illustrate the behavior of the proposed optimization and evaluation techniques,
consider the dataset that publishes the US Congress bills voting process 4. Suppose that
the following SPARQL query is posed against OneQL: Select all the bills and their title
where “Nay” was the winner, and at least one voter voted for the same option than the
voter L000174.

PREFIX vote: <tag:govshare.info,2005:rdf/vote/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX people:
<http://www.rdfabout.com/rdf/usgov/congress/people/>
SELECT ?E ?T FROM <http://example.org/votes>
WHERE {?E vote:winner ’Nay’ .

?E dc:title ?T . ?E vote:hasBallot ?I .
?I vote:option ?X .?J vote:option ?X .
?E vote:hasBallot ?J .
?J vote:voter ’people:L000174’}

4 http://www.govtrack.us/data/rdf/

71

Following the optimization techniques reported in [28], only left linear plans as the
one reported in Figure 2(a) will be produced; for this left linear plan, the evaluation
time is 8,466 secs. On the other hand, our proposed optimization techniques are able to
produce bushy trees as the one reported in Figure 2(b) whose evaluation time is 122
secs, i.e., one order of magnitude cheaper than the left linear plan.

5 Bhyper: A Hypergraph-based representation for RDF/RDFS
documents

OneQL stores RDF triples using a directed hypergraph-based representation [18]. Ba-
sically, a directed hypergraph is defined by a set of nodes and a set of hyperarcs, each
one of them connecting a set of source nodes (named tail of the hyperarc) to a set of
target nodes (named head of the hyperarc). Directed hypergraphs have been success-
fully used as a modeling tool to represent concepts and structures in many application
areas: formal languages, relational databases, production and manufacturing systems,
public transportation systems, topic maps, among others [5, 9, 10]. An RDF directed
hypergraph is defined as follows:

Let D be an RDF document. We define a Bhyper RDF representation D as a tuple
H(D) = (W, E, ρ) such that:

– W = {w : w ∈ univ(D)} is the set of nodes.
– E = {ei : 1 ≤ i ≤ |D|} is the set of hyperarcs.
– ρ : W × E → {s, p, o} is the role function of nodes w.r.t. hyperarcs. Let t ∈ D be an

RDF triple, e ∈ E an hyperarc, and w ∈ W a node such that w ∈ head(e) ∪ tail(e).
Then the following must hold:
• (ρ(w, e) = s)⇔ (w ∈ tail(e)) ∧ (w ∈ sub({t}))
• (ρ(w, e) = p)⇔ (w ∈ tail(e)) ∧ (w ∈ pred({t}))
• (ρ(w, e) = o)⇔ (w ∈ head(e)) ∧ (w ∈ ob j({t}))

The Bhyper representation reduces space complexity to store the RDF document
and speeds up the data recovery process. To illustrate the benefits of the Bhyper-based
representation and the main drawbacks of the traditional graph-based representation,
we use some examples extracted from the US Congress bills voting process dataset.

First, consider the RDF document D1 ={(:id0, type, Term), (:id0, forOffice, AZ),
(AZ, type, Office), (Office, subClassOf, Organization), (Country, subClassOf, Organiza-
tion), (forOffice, range, Organization), (forOffice, domain, Term)}, where the resource
forOffice occurs as a predicate and a subject. This situation can be modeled by allowing
multiple occurrences of the same resource in the resulting labeled directed graph, as
arcs or nodes labels (Figure 3(a)). However, this violates one of the most important
aspects of graph theory: the intersection between the nodes and arcs labels must be
empty.

Second, a predicate may relate other predicates in an RDF document. For example,
in the RDF document D2 = {(Rush, sponsor, HR45), (:id1, supported, SJ37), (sponsor,
subPropertyOf, supported)} the predicate subPropertyOf relates the predicates sponsor
and supported. This situation can be modeled extending the notion of arc by allowing
the connection between arcs (Figure 3(b)). However, the resulting structure is not a

72

graph in the mathematical sense, because the set of arcs must be a subset of the Carte-
sian product of the set of nodes. Since these two simple situations violate some of the
graph constraints, it is not possible to use concepts and search algorithms of graph the-
ory to manipulate RDF documents. Thus, while the labeled directed graph model is the
most widely used representation, it cannot be considered a formal model for RDF [7].

(a) Multiple occurrences of the same re-
source

(b) Extending Notion of Edge

Fig. 3. RDF document properties

Figures 4(a) and 4(b) show the RDF directed hypergraphs representing RDF doc-
uments D1 and D2, respectively. In Bhyper, given an RDF document D, each node
corresponds to an element w ∈ univ(D). Thus, the information is only stored in the
nodes, and the hyperarcs only preserve the role of each node and the concept of direc-
tion of RDF graphs. An advantage of this representation is that each resource (subject,
property, or value) is stored only once, and the space required to store an RDF docu-
ment is reduced if a resource appears several times in the document. In this way, the
space complexity of our approach is lower than the complexity of the graph-based RDF
representation. Besides, concepts, techniques, and algorithms of hypergraph theory can
be used to manipulate RDF documents more efficiently.

The Bhyper indices were implemented in Prolog by using two extensional predi-
cates: subject(S,P,Lo) and object(O,P,Ls). The predicate subject associates a given sub-
ject value S with the property P that relates it with the object values in the list Lo.
Similarly, the predicate object maps an object value O with the property P that relates it
with the subject values in the list Ls. Both predicates are indexed on the first and second
arguments with the SWI-Prolog indices. OneQL predicates subject and object resemble
the property tables implemented in Jena2 to speed up queries over the same subject or
object values [32].

6 Experimental Results

We conducted an experimental study to empirically analyze the effectiveness of the
OneQL optimization and evaluation techniques. We report on the evaluation time per-
formance of bushy plans comprised of groups and identified by our proposed query
optimizer.

73

(a) Reducing Multiple occurrences of the
same resource

(b) Respecting Notion of Edge

Fig. 4. The Bhyper-based representation

Dataset and Query Benchmark: We use the real-world dataset on US Congress vote
results of the 2004 bills voting process described in Figure 5(b). The entire dataset
was downloaded and locally stored in flat files; the total size is 3.613 MB and
67,392 triples. We considered two sets of queries. Benchmark one is a set of nine
queries which are described in Figure 5(a) in terms of the number of patterns in
the WHERE clause and the answer size; all the queries have at least one pattern
whose object is instantiated with a constant. Benchmark two is a set of 60 queries
which have between one and seven GJoin(s) among small size groups of patterns
and have more than 12 triple patterns. These two benchmarks are published in
http:www.ldc.usb.ve/˜mvidal/OneQL/datasets.

Evaluation Metrics: We report on runtime performance, which corresponds to the
user time produced by the time command of the Unix operation system. OneQL
was implemented in SWI-Prolog (Multi-threaded, 64 bits, Version 5.6.54). The
randomized optimizer was run for 20 iterations at an initial temperature of 700.
The experiments were evaluated on a Solaris machine with a Sparcv9 1281 MHz
processor and 16GB of RAM.

query #patterns answer size
q1 4 3
q2 3 14033
q3 7 3908
q4 4 14868
q5 4 10503
q6 4 47
q7 3 6600
q8 3 963
q9 7 13177

(a) Benchmark One Query Set

property # triples # values subject # values object
voter 21600 21600 100

winner 216 216 2
hasBallot 21600 216 21600

option 21600 21600 3
title 216 216 216

(b) Cardinality and number of values govtrack.us 2004

Fig. 5. Experiment Configuration Set-Up

74

6.1 Predictive Capability of the Hybrid Cost Model

We studied the predictive capability of the OneQL hybrid cost model. We generated
190 different bushy tree plans for a query with four patterns (Figure 5(a)), and com-
puted the estimated evaluation time using the OneQL hybrid cost model. Additionally,
we executed the 190 plans in the OneQL query engine and measured the evaluation
time in terms of the total number of inferences. Figure 6 plots the actual versus the
estimated evaluation costs; we can observe a positive trend between the estimated and
actual cost, and a correlation between both costs of 0.76. Both results indicate that there
is a linear relation between the estimated and the actual costs, and they suggest that
the OneQL hybrid cost model is able to predict the runtime performance of the OneQL
query engine.

Correlation Estimated Cost vs. Actual Cost

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 50 100 150 200 250 300 350 400

Estimated Cost (Number of Triples Read)

A
c
tu

a
l
C

o
s
t

(N
u

m
b

e
r

o
f

T
ri

p
le

s
 R

e
a
d

)

Fig. 6. Correlation actual cost vs. estimated cost

6.2 Effectiveness of the OneQL Optimization Techniques

We studied the effectiveness of the OneQL optimization techniques by empirically ana-
lyzing the quality of the optimized plans w.r.t. the rest of the plans of the corresponding
query, and the runtime performance of the optimized plans.

To analyze the quality of the optimized plans, we generated all the plans for queries
in benchmark one with three and four patterns, and computed the percentile in which
the optimal plan falls. The average percentile is 97 and the lowest is 92. These results

75

indicate that the optimizer is able to identify execution plans that are at least better than
92% of the execution plans of the query.

0

1

2

3

4

5

6

7

8

9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Query

lo
g

(N
u

m
b

e
r

o
f

In
fe

re
n

c
e
s
)

Original Optimal

Fig. 7. Cost of Original vs. Optimal Queries (Inferences-logarithmic scale)

We also report on the runtime performance of the optimized queries. Figure 7 com-
pares the number of inferred triples of the non-optimized and optimized versions of
benchmark one in logarithmic scale. In general, we can observe that the optimized
query has a significantly lower cost than the original query, speeding up the evaluation
time in some cases by more than one order of magnitude. Plans with the most signifi-
cant performance improvements correspond to bushy trees, and they are comprised of
Group joins with small size groups.

6.3 Effectiveness of the OneQL Physical Operators

We have conducted an empirical analysis on the benefits of the evaluation techniques
implemented on OneQL, and have executed 60 queries of benchmark two. Figure 8
compares the evaluation time (logarithmic scale) of the queries comprised of Group
Joins (GJoin) against queries with Index Nested Loop Joins (Njoin). We can observe
that the plans composed of GJoins overcome the Njoin plans by at least one order of
magnitude when the GJoins are comprised of small size groups and low join selectivity.

76

0

0.5

1

1.5

2

2.5

3

3.5

1GJoin 2GJoin 3GJoin 4GJoin 5+Gjoin

OneQL Queries

E
v
a
lu

a
ti

o
n

 T
im

e
 m

s
e
c
s
 (

L
o

g
-s

c
a
le

)

Gjoin

Njoin

Fig. 8. Performance of the OneQL Physical Operators

6.4 Effectiveness of the OneQL Bhyper-based representation

Figure 9 compares the evaluation cost of twenty queries of benchmark two in loga-
rithmic scale, when the Bhyper structures are used to index the RDF data, and when
the Bhyper structures are not used to index the RDF data. The results indicate that the
indices improve the performance of the physical operators, and the evaluation time is
reduced by up to two orders of magnitude in queries comprised of a large number of
GJoins composed of groups of instantiated triples.

6.5 Effectiveness of the OneQL Optimization and Evaluation Techniques

Finally, we studied the benefits of the optimization and evaluation techniques imple-
mented by OneQL by empirically analyzing the quality of the OneQL optimized plans
w.r.t. the plans optimized by the RDF-3X query optimizer. Queries of benchmark one
were optimized by OneQL and RDF-3X and the generated plans were run in OneQL
with and without Bhyper indices. Each RDF-3X optimized plan was run using the GJoin
and NJoin operators to evaluate the groups in the bushy plans. Figure 10 reports the
evaluation time (logarithmic scale) of these combinations of queries. We can observe
that Bhyper-based representation is able to speed up the evaluation time of all the ver-
sions of the queries comprised of instantiated triples. Second, the evaluation time of
the OneQL and RDF-3X optimized plans are competitive, except for queries q1 and
q6 where OneQL was able to identify plans where all the triples are instantiated, and
the most selective ones are evaluated first. These results indicate that the OneQL opti-
mization and evaluation techniques may be used in conjunction with the state-of-the-art

77

0

1

2

3

4

5

6

7

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
1
0

q
1
1

q
1
2

q
1
3

q
1
4

q
1
5

q
1
6

q
1
7

q
1
8

q
1
9

q
2
0

OneQL Queries

E
v
a
lu

a
ti

o
n

 T
im

e
 m

s
e
c
s
(L

o
g

-s
c
a
le

)
Bhyper

Non-Indexed

Fig. 9. Performance of the OneQL Bhyper-based index representation

-6

-4

-2

0

2

4

6

8

1 2 3 4 5 6 7 8 9

OneQL Queries

E
v
a
lu

a
ti

o
n

 T
im

e
 m

s
e
c
s
 (

L
o

g
-s

c
a
le

)

Original

Original+Bhyper

OneQL Opt

OneQL Opt+Bhyper

RDF-3X Opt Gjoin

RDF-3X Opt Gjoin+Bhyper

RDF-3x Opt Njoin

RDF-3X Opt Njoin+Bhyper

Fig. 10. Performance of the OneQL Optimization and Evaluation Techniques

78

techniques to provide more efficient query engines; they have encouraged us to develop
our physical operators in existing RDF engines. So far, we have implemented the GJoin
operator in the Jena engine, and we have observed in initial experiments that our GJoin
implementation outperforms the evaluation time by up to three orders of magnitude. In
the future, we also plan to implement these techniques in RDF-3X and conduct a more
exhaustive empirical study to corroborate the effects of the developed techniques.

7 Conclusions

We have presented the OneQL system for efficiently evaluating SPARQL queries. We
have addressed the challenges of scaling up to large RDF documents and complex
SPARQL queries. We report on the results of our optimization and evaluation tech-
niques for SPARQL queries. Then, we describe a Bhyper-based representation for RDF
documents that reduces the space and time complexity of the tasks of storing and query-
ing RDF documents. In the future, we plan to enhance the hybrid cost model with
Bayesian inference capabilities to consider correlations between the different patterns
that can appear in a SPARQL query; implement our operators in existing SPARQL
query engines; and finally, extend the set of physical operators to better exploit the
properties of the Bhyper-based representation.

8 Acknowledgments

This research has been partially supported by the DID-USB and the Proyecto ALMA
Mater-OPSU. The authors are very grateful to Eduardo Ruiz for his programming sup-
port.

References

1. D. J. Abadi, A. M. 0002, S. Madden, and K. Hollenbach. SW-Store: a vertically partitioned
DBMS for Semantic Web data management. VLDB J., 18(2):385–406, 2009.

2. D. J. Abadi, A. M. 0002, S. Madden, and K. J. Hollenbach. Scalable Semantic Web Data
Management Using Vertical Partitioning. In VLDB, pages 411–422, 2007.

3. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley Publishing
Company, 1995.

4. AllegroGraph. http://www.franz.com/agraph/allegrograph/.
5. P. Auillans, P. O. de Mendez, P. Rosenstiehl, and B. Vatant. A Formal Model for Topic Maps.

In Proceedings of the Third International Semantic Web Conference (ISWC 2004), 2002.
6. G. Benson. Editorial. Nucleic Acids Research, 35(Web-Server-Issue):1, 2007.
7. F. Dau. RDF as Graph-Based, Diagrammatic Logic. In Proceedings of the 16th International

Symposium on Methodologies for Intelligent Systems (ISMIS 2006), 2006.
8. G. Fletcher and P. Beck. Scalable Indexing of RDF Graph for Efficient Join Processing. In

CIKM, 2009.
9. G. Gallo, G. Longo, S. Pallottino, and S. V. Nguyen. Directed Hypergraphs and Applications.

In Discrete Applied Mathematics, 2003.
10. G. Gallo and M. G. Scutella. Directed Hypergraphs as a Modelling Paradigm. In Tech. Rep.

TR-99-02, Universita di Pisa, 1999.

79

11. M. Y. Galperin. The Molecular Biology Database Collection: 2007 update. Nucleic Acids
Res, 35(Database issue), January 2007.

12. M. Y. Galperin. The Molecular Biology Database Collection: 2008 update. Nucleic Acids
Res, 36(Database issue):D2–D4, Jan 2008.

13. A. Harth, J. Umbrich, A. Hogan, and S. Decker. YARS2: A Federated Repository for Query-
ing Graph Structured Data from the Web. In ISWC/ASWC, pages 211–224, 2007.

14. G. Ianni, T. Krennwallner, A. Martello, and A. Polleres. A Rule System for Querying
Persistent RDFS Data. In Proceedings of the 6th European Semantic Web Conference
(ESWC2009), Heraklion, Greece, May 2009. Springer. Demo Paper.

15. The JenaOntology Api. http://jena.sourceforge.net/ontology/index.html.
16. Jena TDB. http://jena.hpl.hp.com/wiki/TDB.
17. R. Lipton and J. Naughton. Query Size estimation by adaptive sampling (extended abstract).

In Proceedings of SIGMOD, 1990.
18. A. Martinez and M. Vidal. A Directed Hypergraph Model for RDF. In KWEPSY, 2007.
19. J. McGlothlin and L. Khan. RDFJoin: A Scalable of Data Model for Persistence and Efficient

Querying of RDF Dataasets. In VLDB, 2009.
20. T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. PVLDB, 1(1):647–

659, 2008.
21. R. Ramakrishnan and J. D. Ullman. A survey of research on deductive database systems.

Journal of Logic Programming, 23(2):125–149, 1993.
22. E. Ruckhaus, E. Ruiz, and M. Vidal. Query Evaluation and Optimization in the Semantic

Web. In Proceedings ALPSWS2006: 2nd International Workshop on Applications of Logic
Programming to the Semantic Web and Semantic Web Services, 2006.

23. E. Ruckhaus, E. Ruiz, and M. Vidal. OnEQL: An Ontology Efficient Query Language Engine
for the Semantic Web. In Proceedings ALPSWS2007, 2007.

24. E. Ruckhaus, E. Ruiz, and M. Vidal. Query Evaluation and Optimization in the Semantic
Web. TPLP, 2008.

25. R. Sacks-Davis, T. D. J. A. Thom, and J. Zobel. Indexing documents for queries on structure,
content, and attributes. In Proceedings of the International Conference on Digital Media
Information Bases, 1997.

26. P. Selingerl, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in a
Relational Database Management System. Proceedings of ACM Sigmod, 1979.

27. L. Sidirourgos, R. Goncalves, M. L. Kersten, N. Nes, and S. Manegold. Column-store sup-
port for RDF data management: not all swans are white. PVLDB, 1(2):1553–1563, 2008.

28. M. Stoker, A. Seaborne, A. Bernstein, C. Keifer, and D. Reynolds. SPARQL Basic Graph
Pattern Optimizatin Using Selectivity Estimation. In WWW, 2008.

29. G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in
database and logic programming systems. Theory Pract. Log. Program., 8(2):129–165, 2008.

30. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web data
management. PVLDB, 1(1):1008–1019, 2008.

31. J. Wielemaker. An Optimised Semantic Web Query Language Implementation in Prolog. In
ICLP, pages 128–142, 2005.

32. K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds, and J. Database. Efficient RDF Storage and
Retrieval in Jena2. In EXPLOITING HYPERLINKS 349, pages 35–43, 2003.

80

Scalable RDF query processing on clusters and
supercomputers

Jesse Weaver and Gregory Todd Williams

Rensselaer Polytechnic Institute, Troy, NY, USA
{weavej3,willig4}@cs.rpi.edu

Abstract. The proliferation of RDF data on the web has increased the
need for systems that can query these data while scaling with their grow-
ing size and number. We present an application of parallel hash-joins for
basic graph pattern matching over large amounts of RDF designed for
shared nothing architectures including high-performance clusters and the
Blue Gene/L. Our approach does not require any pre-processing of the
RDF data or costly index building. Rather, we rely on a cluster’s high
bandwidth and fast memory to load and query data in parallel and in
near-real time. We present an initial evaluation of our algorithm showing
competitive results on clusters of up to 1,024 processors.

1 Introduction

The web has recently seen a proliferation of structured data. RDF data is now
available from many sources across the web relating to a huge variety of topics.
Examples of these RDF datasets include the Billion Triples Challenge1 dataset
(collected by a webcrawler from RDF documents available on the web), the
Linking Open Data project2 (in which a number of independent datasets are
linked together using common URIs), and the recent conversion3 of the data.gov4

dataset to RDF.
With such a large and growing availability of RDF data, new and more

efficient ways of querying these data are needed. While most existing systems
rely on common database indexing techniques to allow fast retrieval of RDF data,
the time required to load and index the data can be prohibitive. In this paper,
we present a system for RDF query answering on clusters that does not require
any pre-processing, global indexing, or particular assignment of RDF triples to
processors. Our system is designed for use on shared-nothing clusters that can
range from simple Beowulf clusters to the IBM Blue Gene/L supercomputer.

By utilizing a cluster’s parallelism, our system is able to load and query
a large dataset much more quickly than traditional approaches. After data is
loaded, our system makes use of a parallel hash-join to answer basic graph
1 http://challenge.semanticweb.org/
2 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData/
3 http://data-gov.tw.rpi.edu/
4 http://www.data.gov/

81

2

pattern queries. Hash-join is a join algorithm that derives its efficiency from
partitioning data based on a hash value. We base our work on an existing par-
allelization of the hash-join algorithm [1]. Our join implementation utilizes an
on-the-fly conversion between RDF node values and locally-unique node identi-
fiers to allow efficient join processing without requiring global node identifiers.
We differ from most previous work with parallel hash-joins by assuming the
presence of a high performance cluster with enough system memory (between
all processors) to keep the entire RDF dataset and all intermediate results in
memory.

The architecture of our system allows for very fast querying of a dataset.
Since our system never pre-processes input RDF data, this speed enables ad-
hoc querying with the ability to add and remove arbitrary amounts of data in
subsequent queries with little to no cost. We evaluate our system with several
existing datasets on a Linux-based AMD Opteron cluster ranging from 2 to 128
processors, and on a Blue Gene/L from 32 to 1,024 processors.

The rest of this paper is organized as follows. Section 2 reviews related work
on parallel hash-join algorithms and other approaches to processing RDF data
in distributed and parallel environments. Section 3 presents specific details of
our parallel hash-join implementation including parallel loading and indexing of
RDF data, hash-based distribution and joining of intermediate results. Section
4 presents an evaluation of our system using several existing RDF datasets and
queries. Finally, Section 5 concludes the paper and discusses possible future work
in extending our system for reasoning and support for more complex queries.

2 Related Work

Other works on parallel and/or distributed RDF query processing include RDF-
Peers [2], Continuous RDF Query Processing over DHTs [3], YARS2 [4], Vir-
tuoso5 [5, 6], GridVine [7], Clustered TDB [8], and 4store6. While works like
Marvin [9, 10], parallel OWL inferencing [11], and parallel RDFS inferencing
[12] use parallelism for semantic web reasoning, they are not directly compara-
ble to the system we present in this paper since we focus on RDF query and not
inferencing.

RDFPeers creates a distributed RDF repository over a multi-attribute ad-
dressable network (MAAN) [13]. Triples are stored as three attribute-value pairs
(subject=. . ., predicate=. . ., object=. . .) on three nodes based on hash values
generated from the subject, predicate, and object. RDFPeers provides a query
language which maps to MAAN’s multi-attribute range queries allowing for dis-
tributed querying. [3] focuses on “continuous evaluation of conjunctive triple
pattern queries over RDF data stored in distributed hash tables,” and GridVine
is also a DHT approach. These approaches do not address parallelism and thus
differ from our work.
5 http://virtuoso.openlinksw.com/
6 http://4store.org/

82

3

YARS2, Clustered TDB, Virtuoso (cluster edition), and 4store provide sup-
port for RDF stores on clusters. The Clustered TDB work discusses several forms
of parallelism: inter-query (running more than one query in parallel), intra-query
(running subqueries in parallel and pipelining operators), and intra-operation
(distributing single operations for concurrent execution). YARS2 provides fine-
grained intra-operation parallelism in triple-pattern matching. The details of
Virtuoso and 4store are less certain to us since the finer details of these stores’
query evaluation techniques are not published to our knowledge. We differ from
these approaches in that we address parallel query processing as a process in-
volving both the loading and computation over RDF data rather than a process
occurring over a persistent storage system. For clarity, the system presented
herein is not interactive. Queries are queued for evaluation, and our system ex-
ecutes once in its entirety for each query.

Finally, in [1], DeWitt and Gerber show an extension of the hash-join to a
multiprocessor environment, and demonstrate its effectiveness in parallel join
execution. Our work is based heavily on this extension with two notable excep-
tions. We restrict our work to all in-memory environments, avoiding the need
for variants of the hash-join such as Grace and Hybrid hash-joins that address
optimizations in the presence of limited memory. Moreover, every node in our
system acts as both a partitioning processor and a joining processor, allowing a
join to utilize all available processing power.

3 Methodology

We implement our system in C using the Message Passing Interface7 (MPI) for
interprocessor communication. Each processor maintains an in-memory triple
store consisting of three indexes that can directly answer any triple pattern.

In this section we assume the reader is familiar with the following notation
from SPARQL8. A solution mapping µ is a partial function from variables to
RDF terms, and a set of results from a query is a multiset, Ω, of solution map-
pings. An example solution mapping with two variable bindings might look like
{name=“Alice”, email=<mailto:alice@work.example>}.

3.1 Parallel Hash-Join

In our parallel hash-join implementation, two subqueries are executed indepen-
dently on each processor i, regardless of the dataset held locally on each proces-
sor. The results of these subqueries (Ω1,i and Ω2,i) are then redistributed among
the processors in such a way as to ensure that the appropriate results for the
join are colocated. This is done by hashing on the values of the variables shared
between the two result sets. For example, if the results of the two subqueries
join on variables ?a and ?b, then for each solution mapping µ in the results,
7 http://www.mpi-forum.org
8 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#initDefinitions

83

4

we hash on the values of ?a and ?b in µ, and based on that hash value, µ is
sent to the appropriate processor. Therefore, solution mappings with the same
terms bound to ?a and ?b will have the same hash value and will get sent to the
same processor. After distributing the results, each processor performs the join
locally on the received results (Ω′

1,i and Ω′
2,i). The redistribution is illustrated in

Algorithm 1, while the overall parallel hash-join is illustrated in Algorithm 2 (as-
suming Ω1,i and Ω2,i are available as input after executing the two subqueries).
In Algorithm 2, we use “pardo” to mean “do in parallel.” (For clarity, note that
it is allowed for a processor to “send” a solution mapping to itself on line 5 of
Algorithm 1. This is a logical description of the algorithm; the implementation
of this algorithm may handle such sends as a special case.)

For the query evaluation of a basic graph pattern containing n triple patterns,
the parallel hash-join algorithm is run n − 1 times, joining the triple patterns
in a so-called left-deep query execution plan. The union on line 6 of Algorithm
2 represents the logical, complete results of the join. During basic graph pat-
tern evaluation, however, instead of performing this union, each Ω′

1!"2,i simply
becomes the input Ω1,i for the subsequent join with the results from the next
triple pattern in the query execution plan.

Algorithm 1: Distribute Solution Mappings (distmu)
Input: A (local) multiset of solution mappings Ωi, a set of join variables V , and

a number of processors p.
Output: A multiset of solution mappings Ω′

i from redistribution.
Ω′

i = ∅1

foreach µ ∈ Ωi do2

µ′ = project(V, µ)3

recvr = hash(µ′) % p4

// Send µ to recvr.
send(recvr, µ)5

// Receive solution mappings from any processor.
while recv(∗, µr) do6

add µr to Ω′
i7

end8

end9

return Ω′
i10

3.2 Parallel RDF I/O

We utilize the same approach to loading RDF data in parallel as in [12]. Our
only requirement on the input data is that it be in syntax similar to N-Triples9.
We say similar to the N-Triples syntax because we do not require the data to
9 http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples

84

5

Algorithm 2: Parallel Hash Join
Input: Two multisets of solution mappings Ω1 =

Sp−1
i=0 Ω1,i and

Ω2 =
Sp−1

i=0 Ω2,i, the set of join variables V , and a number of processors
p.

Output: A multiset of solution mappings Ω1!"2 = join(Ω1, Ω2).

// Loop indicates parallelism where i is the rank of the processor.
for i = 0 to p− 1 pardo1

// Ensure solution mappings that can join meet on same processor.
Ω′

1,i = distmu(Ω1,i, V, p)2

Ω′
2,i = distmu(Ω2,i, V, p)3

// Join local solution mappings.
Ω′

1!"2,i = join(Ω′
1,i, Ω′

2,i)4

end5

return
Sp−1

i=0 Ω′
1!"2,i6

be encoded in 7-bit US-ASCII. The simple format of these N-Triples-like files
make parallel reading of the data trivial. Each processor is assigned—in rank-
order—a chunk of the input file to read; that is, the ith processor reads the ith

consecutive chunk of data. The chunk of data may begin and/or end in the middle
of a triple. To handle this, each processor of rank i simply sends the fragment at
the beginning of its chunk to processor with rank i−1. Processor i then receives
such a fragment from processor i + 1 and concatenates the triple fragment to
the end of its chunk of data. Then, every processor has a set of complete triples
which it loads locally into an indexed, in-memory store, converting the serialized
RDF nodes into 64-bit identifiers and holding in memory a map for converting
between the two (which we will refer to as the nodemap). Unlike most traditional
databases and much like many RDF stores, the indexes themselves are the data;
there are no data tables holding additional information. Note that while we index
the local data on each processor, there is no global index for the entirety of the
data (that is, an index over all the data distributed across all processors). This
is discussed in the following subsection.

At the end of the query, each processor writes out its local set of solutions
(the last Ω1!"2,i) to its own file using RDF node values (as opposed to the local
identifiers). Therefore, our entire query process starts with N-Triples-like files
and ends with results containing full RDF node values.

3.3 Communicating Solution Mappings

As mentioned in the previous section, no global indexes are created at any point
of the query evaluation. Each processor holds its local triples as 64-bit identifiers
and a nodemap. From lines 6 and 7 of Algorithm 1, the solution mappings must
be communicated in a way that is meaningful to all processors. This is done by
converting the 64-bit identifiers back into string representations before sending
the solution mapping to another processor. This allows the receiving processor

85

6

to assign its own local identifier to the RDF node. While this may incur a higher
communication cost, it saves greatly on loading time. Generating, distributing,
managing, and performing lookups on global 64-bit identifiers is an extremely
time-consuming process, one which we found to be prohibitive.

We note that this approach makes loading data inexpensive enough that we
can afford to load data for every query evaluation. This allows our system to take
advantage of the up-to-date state of the data without costly index maintenance.

While assigning local identifiers, we take advantage of a simple optimization.
During line 2 of Algorithm 2, as results are received from the left-hand side of the
join (from Ω1,i of the sending processors into Ω′

1,i of the receiving processors),
a processor assigns new local identifiers to RDF nodes from received solution
mappings, placing the new identifiers in a new nodemap. Then, during line 3, as
results are received from the right-hand side of the join (from Ω2,i of the sending
processors into Ω′

2,i of the receiving processors), the RDF terms bound to the join
variables in the solution mappings are checked for local identifiers in the nodemap
generated from the left-hand side of the query. For each solution mapping, if there
is no local identifier assigned to one of its join variables’ RDF terms, then we
can be certain that there are no results from the left-hand side to which the
solution mapping can join. In this case, we can eliminate the solution mapping
immediately. Otherwise, if local identifiers exist for all the RDF terms bound
to join variables, then the remaining (non-join) variables’ RDF terms in the
solution mappings are also added to the nodemap. In essence, this simply allows
us to eliminate results from the right-hand side without actually attempting the
join. This is similar to the effect of the use of bit vector filtering in [1].

4 Evaluation

We evaluated our system on a high performance cluster and a Blue Gene/L
supercomputer at Rensselaer Polytechnic Institute’s Computational Center for
Nanotechnology Innovations10 (CCNI). Each node of the CCNI high perfor-
mance Opteron cluster is an IBM LS21 blade server running RedHat Worksta-
tion 4 Update 5 with two dual-core 2.6 GHz AMD Opteron processors with
gigabit ethernet and InfiniBand interconnects. We ran tests on up to 128 proces-
sors on medium-memory nodes, each of which has 12GB of system memory. Our
testing on the CCNI Blue Gene/L was performed on up to 1,024 nodes, each
of which has two 700-MHz PowerPC 440 processors and 512–1024MB of system
memory. We utilize three of the Blue Gene/L’s specialized hardware networks:
a 175MBps 3-dimensional torus for point-to-point communication, a 350MBps
global-collective network, and a global barrier network.

We read and write files to/from the large General Parallel File System11

(GPFS) which has a block size of 1024 KB, scatter block allocation policy, and
256 KB RAID device segment size using a RAID5 storage system.

10 http://www.rpi.edu/research/ccni/
11 http://www-03.ibm.com/systems/clusters/software/gpfs/index.html

86

7

We evaluate query performance using the Lehigh University Benchmark [14]
20-university dataset (LUBM(20,0)) and on the Barton dataset12 using queries
introduced in [15]. LUBM datasets are synthetically generated datasets con-
taining information about universities. Since LUBM is well-known and widely
evaluated against, we provide an evaluation on a LUBM dataset to allow for com-
parisons with other systems. After generating LUBM(20,0), we used the work
from [12] to produce the RDFS closure so as to make the standard LUBM queries
meaningful. (For example, for LUBM query 6, no results will be returned unless
inferencing is performed to derive that, e.g., all graduate students are students.)
The RDFS closure of LUBM(20,0) has 5,159,292 triples. The Barton dataset is
an RDF formatted version of the MIT Libraries Barton catalog, and contains
51,598,374 triples.

Much performance tuning can be done by tweaking parameters that affect
how Algorithm 1 sends and receives solution mappings. Such parameters include
the ratio of transient send messages to transient receive messages and also the
frequency at which the processors collaborate to determine whether they have
finished distributing solution mappings (a costly operation). The Blue Gene/L
has a more sensitive network in that a high number of transient messages can
cause the system to effectively fail (ultimately due to memory limitations), and
so we set the number of allowable transient messages on the Blue Gene/L lower
than on the Opteron cluster. The Blue Gene/L also has an optimized collective
network allowing for processors to collaborate to determine termination of Al-
gorithm 1 at a lower cost, and thus we allow the Blue Gene/L to check more
frequently for termination than on the Opteron cluster. In our experience, these
tuning parameters greatly affect performance and scaling characteristics, and for
this evaluation we have tuned them according to personal experience. However,
we have yet to optimize these parameters, and so better performance may be
possible.

All figures discussed below use logarithmic axes for both time and number
of processors.

Figures 1 through 4 show performance of four of the LUBM queries on the
Opteron cluster scaling from 2 to 16 processors, and in general, they show scaling
of loading time and total time with respect to the number of processors. Only
query two in Figure 1 shows an increase in query time from 8 to 16 processors.
This is likely because query two is the only query of the four that requires a high
number of joins and does not restrict results to data from a specific university.
Queries three and four have a bound term that—by the nature of LUBM data—
restricts results to data from “University0”, and query six has only a single triple
pattern (no joins).

The Barton dataset is roughly ten times the size of the LUBM(20,0) RDFS
closure, and so more memory is needed to perform the evaluation. Figure 5 shows
the query execution of Barton query 7 on 32 to 128 processors. The loading time
decreases greatly as the number of processors increases, but the query time
increases after 64 processors.

12 http://simile.mit.edu/rdf-test-data/barton/

87

8

!"

!#"

!##"

!"

!#"

!##"

$" %" &" !'"

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

()*+,-."

/0123,-."

4)5*6"

Fig. 1. LUBM(20,0) Query 2 evaluation on Opteron cluster

!"#$

#$

#!$

#!!$

!"#$

#$

#!$

#!!$

%$ &$ '$ #($

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

)*+,-./$

01234-./$

5*6+7$

Fig. 2. LUBM(20,0) Query 3 evaluation on Opteron cluster

In Figure 6, we also show query execution of LUBM query 3 on the LUBM(20,0)
RDFS closure using the Blue Gene/L ranging from 32 to 1024 processors. Clearly,
loading time scales linearly, but the query time increases after 128 processors.

We notice from Figures 1, 4, and 6 that there seems to be a “sweet spot”
for query time only (excluding loading time). Further tweaking of the afore-
mentioned parameters have shown that we can adjust the characteristics of the
“sweet spot,” but often at a cost. We believe that tuning the parameters based
on the number of processors will provide better scaling, and such is left as future
work.

Our system competes well with state-of-the-art RDF query systems in load-
ing and query times. Anecdotal evidence indicates that Virtuoso provides the
fastest RDF loading time of any RDF store at 110,532 triples-per-second on
eight processors13. We report in Figure 3 a loading rate of 820,117 triples per
second on eight processors, and we achieve a maximum loading rate of 3,088,172

13 http://www.openlinksw.com/weblog/oerling/index.vspx?page=&id=1562

88

9

!"

!#"

!##"

!"

!#"

!##"

$" %" &" !'"

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

()*+,-."

/0123,-."

4)5*6"

Fig. 3. LUBM(20,0) Query 4 evaluation on Opteron cluster

!"#$

#$

#!$

#!!$

!"#$

#$

#!$

#!!$

%$ &$ '$ #($

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

)*+,-./$

01234-./$

5*6+7$

Fig. 4. LUBM(20,0) Query 6 evaluation on Opteron cluster

triples per second on 1024 processors on the Blue Gene/L. RDF-3X [16] seems
to be the state-of-the-art in query times. It is difficult to compare our query
times to theirs since most of the Barton queries that they use for evaluation use
non-standard SPARQL features (e.g., aggregation, “duplicates” keyword, “in”
operator) and filters, features which we do not currently support. Therefore, we
compare only Barton query 7, the single query that we both support. RDF-3X
evaluates Barton query 7 in 32.61 seconds with cold caches (dropping to 1.26
seconds after five runs), whereas we perform the same query in 23.75 seconds on
64 processors. We emphasize, though, that RDF-3X requires 13 minutes to load
the Barton dataset after an unreported amount of pre-processing time, whereas
our total time (loading and querying) is at lowest 49.92 seconds on 64 processors
and 47.37 seconds on 128 processors.

Our system is capable of loading roughly 1.25 million triples from the tested
datasets per 1GB of RAM. This total includes storing the full nodemap as well
as the three covering indexes. We note that we have spent no time attempting to
improve this storage density, but our system should be able to take advantage of

89

10

!"#

!""#

!"#

!""#

$%# &'# !%(#

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

)*+,-./#

01234-./#

5*6+7#

Fig. 5. Barton Query 7 evaluation on Opteron cluster

!"#$

#$

#!$

#!!$

%&$ '($ #&)$ &*'$ *#&$ #!&($

!
"#

$
%&
'$
()
%

*+#,$-%./%0-.($''.-'%

+,-./01$

23456/01$

7,8-9$

Fig. 6. LUBM(20,0) Query 3 evaluation on Blue Gene/L

compression techniques such as those discussed in [16], significantly improving
storage density. While storage density is obviously a concern for an in-memory
system like ours, we also note that the primary limitation we faced was not
available memory but job queuing time on both the Opteron cluster and Blue
Gene/L (both heavily used systems).

5 Conclusion and Future Work

In this paper we have presented a system for answering basic graph pattern
queries over large RDF datasets on clusters. Our evaluation has shown our sys-
tem to be competitive with more traditional indexed, persistent triple stores
without the need for expensive pre-processing, loading, or global indexing of the
data. Our results show that some datasets and queries exhibit a “sweet spot” for
optimal execution dependent on the number of processors and tuning parame-
ters while others show total time of loading data and query evaluation speed can
scale with a constant factor as the number of processors increases.

90

11

There are many areas where our system can be improved. Beyond further
evaluation and tuning on both the Opteron cluster and Blue Gene/L, we hope
to pursue some of the following areas in future work. Currently our system only
handles basic graph patterns, but a natural extension would include optional
patterns, named graphs, and filters. In addition, the ability to distribute results
in our system is ideally suited to answering aggregate queries, a feature we hope
to implement.

Our current hash-join implementation seems to perform well on selective
queries, but can have trouble with unselective queries or triple patterns. We are
currently investigating a second parallel join algorithm to address queries with
unselective triple patterns. We are also pursuing evaluation on larger datasets
such as the RDFS closure of LUBM(10000,0) (containing roughly 2.4 billion
triples) and the Billion Triples Challenge 2009 dataset. Finally, we hope to in-
tegrate the work presented in [12] with our system to allow parallel inferencing
to occur during query evaluation.

Acknowledgements. We thank Gunnar AAstrand Grimnes for his insight-
ful comments on this work.

References

1. DeWitt, D.J., Gerber, R.H.: Multiprocessor Hash-Based Join Algorithms. In:
Proceedings of the 11th International Conference on Very Large Data Bases. (1985)
151–164

2. Cai, M., Frank, M.R.: RDFPeers: a scalable distributed RDF repository based on
a structured peer-to-peer network. In: Proceedings of the 13th International World
Wide Web Conference. (2004) 650–657

3. Liarou, E., Idreos, S., Koubarakis, M.: Continuous RDF Query Processing over
DHTs. In: Proceedings of the 6th International Semantic Web Conference and the
2nd Asian Semantic Web Conference. (2007) 324–339

4. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for
Querying Graph Structured Data from the Web. In: Proceedings of the 6th Inter-
national Semantic Web Conference and the 2nd Asian Semantic Web Conference.
(2007) 211–224

5. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In Auer, S., Bizer,
C., Müller, C., Zhdanova, A.V., eds.: Proceedings of the 1st Conference on Social
Semantic Web. Volume 113 of LNI., GI (2007) 59–68

6. Erling, O.: Toward web scale RDF. In: Proceedings of the 4th International
Workshop on Scalable Semantic Web Knowledge Base Systems. (2008)

7. Cudré-Mauroux, P., Agarwal, S., Aberer, K.: GridVine: An Infrastructure for Peer
Information Management. IEEE Internet Computing 11(5) (2007) 36–44

8. Owens, A., Seaborne, A., Gibbins, N., mc schrae-
fel: Clustered TDB: A Clustered Triple Store for Jena.
http://eprints.ecs.soton.ac.uk/16974/1/www2009fixedref.pdf (2008)

9. Anadiotis, G., Kotoulas, S., Oren, E., Siebes, R., van Harmelen, F., Drost, N.,
Kemp, R., Maassen, J., Seinstra, F.J., Bal, H.E.: MaRVIN: a distributed platform
for massive RDF inference. http://www.larkc.eu/marvin/btc2008.pdf (2008)

91

12

10. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.:
MaRVIN: A platform for large-scale analysis of Semantic Web data. In: Proceeding
of the WebSci’09: Society On-Line. (March 2009)

11. Soma, R., Prasanna, V.K.: Parallel Inferencing for OWL Knowledge Bases. In:
ICPP ’08: Proceedings of the 2008 37th International Conference on Parallel Pro-
cessing, Washington DC, USA, IEEE Computer Society (2008) 75–82

12. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for
Hundreds of Millions of Triples. In: Proceedings of the 8th International Semantic
Web Conference. (2009)

13. Cai, M., Frank, M.R., Chen, J., Szekely, P.A.: MAAN: A Multi-Attribute Ad-
dressable Network for Grid Information Services. Journal of Grid Computing 2(1)
(2004) 3–14

14. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics 3(2-3) (2005) 158–182

15. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management Using Vertical Partitioning. In: Proceedings of the 33rd Inter-
national Conference on Very Large Data Bases, VLDB Endowment (2007) 411–422

16. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proceedings
of the VLDB Endowment 1(1) (2008) 647–659

Appendix

Below we list the four LUBM queries and one Barton query (defined in [14]
and [15], respectively) used in our evaluation. We chose these four LUBM
queries as representative and ranging from a single triple pattern (query 6) to a
six-way join (query 2). Out of seven original Barton queries, only two can be
represented in SPARQL (the others cannot due to their use of aggregates). Of
the remaining two queries, we chose query 7 because it is the only query for
which we can directly compare results with RDF-3X.

LUBM Query 2

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {
?z a :Department .
?z :subOrganizationOf ?y .
?y a :University .
?x :undergraduateDegreeFrom ?y .
?x a :GraduateStudent .
?x :memberOf ?z .

}

LUBM Query 3

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {

92

13

?x a :Publication .
?x :publicationAuthor
<http://www.Department0.University0.edu/AssistantProfessor0> .

}

LUBM Query 4

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {
?x a :Professor .
?x :worksFor <http://www.Department0.University0.edu> .
?x :name ?y1 .
?x :emailAddress ?y2 .
?x :telephone ?y3 .

}

LUBM Query 6

PREFIX : <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT DISTINCT * WHERE {
?x a :Student .

}

Barton Query 7

PREFIX : <http://simile.mit.edu/2006/01/ontologies/mods3#>
SELECT ?s ?bo ?co
WHERE {
?s :point "end" .
?s :encoding ?bo .
?s a ?co .

}

93

4store: The Design and Implementation of a

Clustered RDF Store

Steve Harris, Nick Lamb, and Nigel Shadbolt

Garlik Ltd.
{steve.harris, nick.lamb, nigel.shadbolt}@garlik.com

Abstract. This paper describes the design and implementation of the
4store RDF storage and SPARQL query system with respect to its cluster
and query processing design. 4store was originally designed to meet the
data needs of Garlik, a UK-based semantic web company. This paper
describes the design and performance characteristics of 4store, as well as
discussing some of the trade-offs and design decisions. These arose both
from immediate business requirements and a desire to engineer a scalable
system capable of reuse in a range of experimental contexts where we
were looking to explore new business opportunities.

1 Introduction

The need for 4store originated from a fundamental business requirement in Gar-
lik. 4store was designed primarily to provide the backend storage for Garlik’s
DataPatrol1, a consumer-facing personal information protection product. This
product and its variants now have established user bases of many tens of thou-
sands of individuals.

4store was implemented on a low-cost networked cluster with many tens of
servers supporting a 24x7 operation. In addition Garlik has built semantically
informed search and harvesting software and used industrial strength language
engineering technologies across many millions of people-centric Web pages. Meth-
ods have been developed for extracting information from structured and semi
structured databases. This information is organised against a lightweight people-
centric ontology which, when imported comprises many billions of RDF triples.

Since its initial development 4store has been replaced within Garlik by a new
clustered store with even greater scalability and efficiency. The 4store source
code has been made available under the GNU General Public Licence version
3 [1]. The ANSI C99 source code and documentation can be found at http:
//4store.org/.

1 http://www.garlik.com/. DataPatrol is an online application that checks databases
and internet data sources for indications that personal information has “leaked” into
the public domain.

81

1.1 Original Requirements

Due to the expected data volume that would be stored Garlik decided to aim for
the storage of 109 quads in a cluster of nine machines, each machine having two
processor cores, 4GB of RAM, and two SATA disks – a typical configuration for
a commodity server at the time.

Average response time to SPARQL [2] queries was required to be in the low
milliseconds range – for the typical queries that would be required to provide
the service.

One of the features of the application was that a wide range of heterogeneous
data would need to be incorporated into the system. Moreover, new data sets
were likely to become available whose form and structure we could not anticipate.
Since the exact nature of the data could not be known it was decided that the
storage system should not be specialised to any particular RDF schema.

Data updates were intended to be applied in bulk. The RDF store refreshing
a weeks worth of data at a time. Time allowed for this import was around eight
hours. Due to the volume of updates taking place it was felt that transactions
would be required to ensure the integrity of results.

1.2 Current Requirements

As the application grew, the requirements evolved. For the last version of 4store
that was used to support DataPatrol, the requirement was to hold 15×109 triples
in a cluster of nine machines with 8GB of RAM each.

The volume of updates averaged 4×109 triples per week, updated in a twelve
hour period. However, it was found that explicit transactions were not necessary,
so this requirement was dropped.

Garlik had also developed other applications backed by 4store during this
period, including QDOS2 and the QDOS FOAF Index3, which brought their
own requirements. The requirement that had the most impact on the design was
for live updates, completing in a predictable time, proportional to the size of the
RDF file imported. This required moving from an earlier quad index structure
to the one described in section 5.2. It was important that we were able to adapt
the design of the store to new business requirements.

2 Related Work

There are a number of other RDF storage systems which use cluster based stor-
age, or share some design principles with 4store. These include:

3store Although 3store [3] is not a cluster-based RDF engine many of the design
principles originated in 3store. In particular the method of mapping RDF
Resources to integers is inherited more or less directly from 3store.

2 http://qdos.com/, an online impact measuring application.
3 http://foaf.qdos.com/, an index of around ten million FOAF files, stored in an

instance of 4store.

82

Bigdata Bigdata [4] is another clustered RDF store. It has very high import
performance, but little information about its design is available at this time.

Jena Clustered TDB Jena’s Clustered TDB backend [5] has similar design
goals to 4store. The paper describes an early prototype, rather than a pro-
duction environment, but the segmentation and storage are substantially
different to those in 4store.

Virtuoso Cluster Edition The Clustered Edition of Virtuoso [6] uses yet an-
other clustering model based on the Map-Reduce algorithm and bitmap quad
indices.

YARS2 YARS2 [7] uses a very different approach to 4store to achieve heavy
utilisation of the cluster following a more conventional clustering model to
spread the load across multiple nodes. It is known to scale to 9× 109 triples.

3 Architecture

At the time of the initial design it was uneconomic to purchase computers with
sufficient main memory to hold an adequate proportion of an RDF index for the
projected data size. It was estimated that a reasonable average memory footprint
for a quad was in the region of 100 bytes, implying that 93GB of RAM would
be required to hold the complete index. As a result it was decided to pursue a
clustered storage methodology.

For reasons of cost efficiency it was decided to base the cluster on commod-
ity 64-bit, multicore x86 hardware, running the Linux operating system. At the
time this was felt to offer the best price/performance ratio, and offers access to a
large number of skilled administrators and systems programmers. The commu-
nications were to be provided by Gigabit Ethernet network interface controllers
and switches. The choice of this hardware platform suggested the “Shared Noth-
ing” architecture [8] as the most practical design.

3.1 Cluster Topology

The data is divided among a number of segments (non-overlapping slices of data),
with one or more segments on every storage node, as shown in figure 1. These
nodes are divided into Processing and Storage nodes.

It is also possible to run 4store on a single node, running the Processing
front-end and one or more Storage back-ends on a single machine. 4store draws
little advantage from the proximity, and the overhead of TCP communications
between the Processing and Storage components is still incurred.

3.2 Segmentation

The segmentation model used in 4store is extremely simple. A RID integer (see
section 5.1) is calculated for the subject of any given triple. The segment number
is then computed such that

segment = rid(subject) mod segments

83

!"#$%&'()#*'(+
!'&,'-".(/0(10(20(34

5$#6'..7-&()#*'

!"#$%&'()#*'(8
!'&,'-".(30(90(:0(3;

!"#$%&'()#*'(<
!'&,'-".(40(=0(3/0(31

!"#$%&'()#*'(>
!'&,'-".(;0(?0(330(39

@(

A-*'B

C(

A-*'B

@(

A-*'B

C(

A-*'B

@(

A-*'B

C(

A-*'B

@(

A-*'B

C(

A-*'B

@DE(

D%"%

F$%GH

A,G#$"(I(D'J'"'

KB"'$-%J(

LGGJ76%"7#-.

!5L@MN(MO'$P

@DE(

5%$.'$

!5L@MN

K-&7-'

!'&,'-"!'&,'-" !'&,'-" !'&,'-"

1."#$'(6JO."'$

KB"'$-%J(%GGJ76%"7#-

5(

A-*76'.

5(

A-*76'.

5(

A-*76'.

5(

A-*76'.

Fig. 1. 4store’s cluster topology

To segment resources the same function is applied to the RID of the resource.
This extremely simplistic segmentation schema has some benefits, but also a
number of drawbacks, as illustrated below.

Benefits For commonly encountered data this segmentation scheme produces
remarkably even distribution of data amongst the segments. If sn is the popula-
tion of segment n then the coefficient of variation (cv) for a given system is given

by σ(s)
s̄ . The values of cv for the twenty five million triple BSBM [9] dataset,

a sample of FOAF data4, and the USGS TIGER/Line dataset 5 are shown in
table 1.

Due to the relatively value low of cv there is rarely any need to migrate
segments between nodes, and there is little need to gather the statistics required
for re-segmenting the data during import operations.

4 Taken from a population of ten million FOAF files crawled in 2008 as part of the
QDOS FOAF Index project

5 The USGS TIGER/Line dataset, converted into RDF. This dataset was regularly
used as test data in the development of 4store.

84

Dataset cv
Fr
Fq

BSBM 25MT 2.83 × 10−3 14.99
FOAF 1.70 × 10−2 9.09
TIGER/Line 1.59 × 10−3 5.27

Table 1. Characteristics of various datasets

Drawbacks Synthetic datasets, and potentially real-world ones could skew the
distribution of subjects in such as way as to increase the value of cv, this would
have a deleterious effect on the performance and efficiency of the cluster. For
example, a large number of triples of the following form would increase cv sub-
stantially:

country:US :citizen _:us1 .
country:US :citizen _:us2 .
...

Given a triple pattern where the subject is not known, the segmentation
algorithm used cannot determine in which segment the matching quad or quads
will be found. Because of this it is necessary for the querying process to contact
every node in the cluster in order to find matches for this pattern. In practice this
limits the application of this algorithm to relatively small clusters. However, in
such small clusters it potentially offers an advantage in that the query optimiser
is frequently given the choice between a broad shallow query across many nodes,
or a narrow deep one against a single node.

When there are two or more potential query operations with similar speci-
ficity, but some have constant or known subject values, and some have constant
or known object values then the query engine can make the choice between
querying all nodes specifying one or more objects in the bind (see section 6.1),
or it can specify the subjects and target on the required segments.

The trade-off is that broad bindings consume more resources overall, but
complete in a shorter wall-clock time, the IO load being spread across many
nodes in the cluster.

3.3 Segment Distribution and Replication

Given a set of nodes N, {α, β, ...} and a set of segments S, {0, 1, ...} the nodes
are assigned non-negative integer identifiers, starting from zero. The segments
are the divided amongst the nodes, such that the set of segments assigned to
node n with r replicas Anr is as below.

Anr =
r

⋃

m=0

Rnm

Rnm =

{

{s ∈ S : s mod |N | = n} for m = 0

{s ∈ S :
((

s +
⌊

s
|N |

⌋)

mod (|N |− m) + m
)

mod |N | = n} for m > 0

85

For a cluster of 8 nodes, consisting of 32 segments with 2 way replication,
the allocations would be as seen in table 2. The aim of this replication method is
to ensure that should up to r nodes fail, the increased load is distributed evenly
across the remaining nodes.

Node Rn0 Rn1 Rn2

α {0, 8, 16, 24} {7, 14, 21, 28} {6, 13, 20, 27}
β {1, 9, 17, 25} {0, 15, 22, 29} {7, 14, 21, 28}
γ {2, 10, 18, 26} {1, 8, 23, 30} {0, 15, 22, 29}
δ {3, 11, 19, 27} {2, 9, 16, 31} {1, 8, 23, 30}
ε {4, 12, 20, 28} {3, 10, 17, 24} {2, 9, 16, 31}
ζ {5, 13, 21, 29} {4, 11, 18, 25} {3, 10, 17, 24}
η {6, 14, 22, 30} {5, 12, 19, 26} {4, 11, 18, 25}
θ {7, 15, 23, 31} {6, 13, 20, 27} {5, 12, 19, 26}

Table 2. Segment distribution across an eight node cluster with two way replication

4 Inter-Node Communications

Processing nodes communicate with storage nodes via TCP/IP. There is no
direct communication between storage nodes. Having discovered the addresses
of the storage nodes (see section 4.1) at startup a processing node asks each
node which segments are stored there, and makes one connection per segment
on that node. At this point the storage nodes may also optionally (configured
at setup time) require an authentication step using a shared secret password
to provide some degree of assurance that the processing node is authorised to
access the data. The connection is not encrypted because of the likely impact on
performance.

Connections between processing nodes and storage nodes are used to send
variable sized messages using a type-length-value scheme, each message is either
a request or a reply. Communication is always initiated by the processing node
sending a message with a request. For most types of request the storage node
replies with a message of its own, a few types do not require any reply. In place
of the expected reply a storage node can send an error reply, including human
readable text if there is a fatal error performing the requested action.

Only one message is sent at a time on any particular connection, but since
there is a separate connection for each segment, a request can be sent to all the
segments and then all the replies aggregated, meaning the total time to fulfill
the request over the whole cluster is limited by the slowest response, rather than
the sum of time taken to fulfill the request for each individual segment.

In order to provide replication requests which write new data to a segment
are sent to all replicas of the segment, while to improve performance requests
which only read data (e.g. the requests used for the bind functions described

86

in section 6.1) make requests to a single replica, and try to choose a replica
on a node with least outstanding requests. If a storage node fails while in use,
attempts to write data will report errors until it is repaired, but attempts to read
data will continue to work normally (but potentially with reduced performance)
if at least one replica of each segment is still accessible.

4.1 Discovery

From the outset we wanted processing nodes to be able to discover the stor-
age nodes containing the relevant data without any specific configuration. The
processing node needs to identify the complete address (IP address and port
number) of a listening TCP socket on each storage node. A “well known port”
was not desired, as this would impose a limit of only one instance of the storage
node software per node. DNS Service Discovery [10] seemed well suited to this
purpose and, since the storage nodes are on the local network, we used Multi-
cast DNS [11] to enable this without needing a DNS server to be installed or
specifically configured for this purpose.

Each storage node advertises a service with the 4store DNS service type
(4store. tcp). To distinguish multiple datasets stored on the same physical
nodes, or on different nodes connected to the same network, each dataset has a
unique name, which is included in a DNS TXT record, and the total number of
segments is also included in the advertisement.

The processing nodes solicit advertisements for the 4store service type and
then listen for advertisements. Received advertisements are checked to see that
the name matches the desired dataset, and if so the processing node attempts
to connect to the advertised address. If the connection fails, other addresses are
tried. If after a reasonable time the processing node has not been able to identify
and connect to all the storage nodes (or for a processing node which performs
only queries, enough nodes to access all the distinct segments) it gives up and
reports an error.

5 RDF Representation

5.1 Resources

RIDs RIDs (Resource IDentifiers) are used as a symbol encoding [12] for re-
source values. RIDs are 64-bit integers which represent URIs, Literals, and Blank
Nodes using a disjoint value space. The one or two most significant bits of the
RID value determine whether the RID encodes a URI, Literals or Blank Node:

MSB1 MSB2 Encodes
0 Literal
1 0 Blank Node
1 1 URI

87

In the case of URIs and Literals the remainder of the RID is made up of the
least significant bits of a UMAC-64 [13] hash of the UTF-8 encoded lexical value
of the resource. The cryptographic features of a strongly universal hash are of
little relevance, however the collision resistance is desirable. In the case of literals
with either a language tag or a datatype, an attribute RID is calculated from
the language tag or datatype, stored as the attr and additionally exclusive-or’d
with UMAC hash of the lexical value. For URIs, Blank Nodes, and Plain Literals
the value of attr is zero.

Blank Nodes are encoded differently. An integer representing the highest
blank node identifier is maintained on the storage node(s) holding segment zero.
When an importing process wishes to allocate some Blank Node RIDs it requests
a block of IDs, represented as (min, max) from segment zero. These IDs are bit-
wise permuted in such a way as to keep both the MSBs and LSBs of the resulting
ID varying frequently, whilst ensuring that distinct input IDs in the range [0, 262]
produce unique output IDs. The variability at both ends of the identifier ensures
an even distribution of Blank Nodes across both segments, and in the trie used
to store quads (see section 5.2).

Once a collision is detected on any given segment, all future translations
from lexical forms to RIDs on that segment must be confirmed by the resource
index in the appropriate segment, in order to prevent incorrect results from being
returned.

As the RDF Literals and URIs are stored in separate value spaces the point
at which collisions are likely depends on the number of unique literals and URIs
in a given dataset. The probability of a collision occurring for n values in a space
of d possible hash values is given by

1 −
n−1
∏

k=1

(

1 −
k

d

)

So, if the number of literals is fl and the number of URIs is fu then the overall
probability of a collision in a particular segment, where there are s segments is:

1 −







fl
s −1
∏

k=1

(

1 −
k

263s

)

fu
s −1
∏

k=1

(

1 −
k

262s

)







Assuming that the number of resources in each segment is approximately
equal, which is likely given the strong universality of the UMAC function [13].

The number of values that can be hashed before we expect to encounter a
collision is given by

√
N for a hash of N values. If we make the assumption6 that

fl ≈ fu, and define fr as the sum of fl and fu then the approximate number of
resources that can be imported before we expect to encounter a collision is given
by 2

√
262.

6 Although this situation is not especially likely the statistics for the breakdown into
URIs and Literals are not available at this time. Nevertheless, this approximation
should still provide a reasonable order-of-magnitude estimate

88

To know the expected number of quads that can be imported before encoun-
tering a collision (eq) it is necessary to know the ratio of unique quads (fq) to
fr.

eq = 232 fq

fr

Some values for fq

fr
are given in table 1. From this we can estimate that

typically 3.9 × 1010 quads of FOAF data could be imported before collision
handling would be required. Consequently, it is a worthwhile optimisation to
delay handling of collisions until it becomes necessary.

Lexical Value Storage RDF Resources, (URIs, Literals, and Blank Nodes) are
represented as a 3-tuple of (rid, attr, lexical value), and stored in a bucketed,
power-of-two sized hash table, shown as the “R Index” in figure 1. The rid and
attr are both RIDs, and the lexical value is a text string, encoded in one of a
number of ways.

5.2 Quad Storage

In 4store, RDF triples are represented as quads of (model, subject, predicate, object),
where a model is somewhat analogous to a SPARQL Graph. The chief differences
between a SPARQL Graph and a model are in the handling of empty graphs
and the behaviour of the default graph. In 4store, triples assigned to the default
graph are placed in a particular model, which is used in query execution against
the default graph – when the SPARQL default graph behaviour is enabled.

Although the quads are queried using a flat pattern structure (see section
6.1), the internal structure more closely resembles property tables [12].

Each quad in a particular segment is stored in three indexes. The first two
will be described here and the third will be described in section 5.3. The indexes
described here are shown as “P Indices” in figure 1.

The P Indices consist of a set of radix tries [14], two for each predicate,
using a 4-bit radix. Ordinarily radix tries are at a disadvantage compared to
balanced trees as their worst case lookup performance is O(k), where k is the
key length, compared to O(log n) for a B-Tree [15]. However the keys in this
case have already been mapped to 64-bit integers, so are of finite, short length.
Additionally, the integers are already evenly distributed across the space due to
the combination of hashing and Blank Node identifier distribution, making the
worst case lookup conditions uncommon.

The key for the per-predicate radix tries is the subject or object of the quads
to be indexed. The graph and subject/object are stored in a list of rows, pointed
to by leaf entry in the radix trie.

Queries with known subjects or objects, but unknown predicates are rela-
tively expensive to execute, as all tries must be consulted to determine if match-
ing subjects or objects appear with that predicate.

89

5.3 Model Storage

Graphs are indexed using a hash table that points to a list of rows of triples.
This index is shown as the “M Index” in figure 1. The function of the graph
index is twofold. Primarily it allows queries of the following form to be executed
efficiently:

SELECT * WHERE { GRAPH <some-graph> { ?s ?p ?o } }

A side effect of this is that it allows graph-level deletes to be performed
more efficiently, clearing out the Graph index entry and removing matching
quads from the appropriate radix trees, this can be performed on each segment
independently as all the pertinent information is held locally to the segment.

6 Query Operations

Often the focus on performance of clustered systems is on delegating work to
cluster members in order to distribute the work. In large clusters with many
parallel task to complete this is a significant efficiency gain, but on the relatively
small clusters that 4store is designed to run on this is not always the case.

Running a test on a cluster of five machines, connected by Gigabit Ethernet
on an isolated network the mean time over one thousand requests for one node to
issue an empty request and receive an empty response from one cluster member
is 175µs, given an established TCP/IP connection.

For comparison, a join on two 2,000 row binding tables, with one common
variable can be completed on the same hardware in 520µs. Consequently, given
a pure response-time consideration it’s only advantageous to push the join down
to cluster members if the tables can be split, sent, joined and returned by the
remote cluster members in 520µs. Given the situation that CPU manufacturers
are offering increasing numbers of cores, there is a potential to perform multi-
ple joins simultaneously without incurring network IO overhead. As many such
parallel operation can be performed locally, this optimisation looks increasingly
unattractive for small operations.

There are however still situations in which performing the joins on cluster
members has an overall time advantage. For instance, when the data for both
sides of the join is already present on one member, one such situation will be
discussed in section 8.2.

Equally a cluster where a very large volume of queries is being performed,
saturating the CPU cores on the front-end machines, would benefit from pushing
more joins down into the cluster. Another situation would be when the joins are
typically performed across very large tables. A join between two binding tables
has a complexity around O(n log n), so breaking this down into m O(n

m log n
m)

operations is a win in net processor time for sufficiently large n, regardless of
the parallelism.

4store has two fundamental distributed query operations, bind and resolve,
these are used to perform the underlying operations for all SPARQL expression
evaluation and are described below.

90

6.1 The Bind Functions

The bind functions are used by the query engine when it wishes to produce a
binding set for some SPARQL graph pattern. One function takes four multisets
of RIDs, and the other a set of quads of RIDs that describe the match to be
performed (see below). These arguments are presented to the network distri-
bution algorithm. The network distribution algorithm decides what segment or
segments should be consulted to return the complete set of bindings and divides
the sets into one set for each segment that is to be consulted.

Once the results have been obtained from the segments of interest the network
distributor performs a multiset union on the results and returns this to the query
engine.

The primary form of the bind function takes four multisets of RIDs, M , S,
P and O and a set of flags indicating which columns should be projected. These
multisets are matched against the quads held by a particular segment (Qs),
containing a set of quads of RIDs such that quads of the form (m, s, p, o) are
selected where:

{(m, s, p, o) ∈ Qs : m ∈ M ∨ M = ∅, s ∈ S ∨ S = ∅, p ∈ P ∨ P = ∅, o ∈ O ∨ O = ∅}

The resulting multiset of quads is then projected to produce a multiset of
n-tuples where n is the cardinality of the projection set.

There is also a second bind function, called the reverse-bind, for historical
reasons. This reverse-bind function takes a set of quads R, and returns a multiset
of quads such that:

{(m, s, p, o) ∈ Qs : (m′, s′, p′, o′) ∈ R, m = m′ ∨ m′ = ω, s = s′ ∨ s′ = ω,

p = p′ ∨ p′ = ω, o = o′ ∨ o′ = ω}

This multiset is then projected as per the main bind form. ω in this expression
is the “null” value, some nominated RID value which cannot appear in real data.

6.2 The Resolve Function

The resolve function is used to map RIDs to attribute RIDs and the lexical value
of the input RID.

It takes a set of RIDs and returns a set of tuples of the form (rid, attr, lexical
value), for a given segment. As in the bind case there is a network distributor
that is responsible for sending resolve requests to the appropriate segments and
the result is the union of the returned values from each segment.

7 Query Execution

The 4store query engine is largely based on Relational Algebra. This is due
to the fact that 4store’s query engine predates the finished SPARQL algebra.
Moreover, there is a large body of literature around optimisation that can be

91

applied to relational algebra. Implementations that started after the publication
of the SPARQL specification are more likely to use the SPARQL algebra. How-
ever many of the observations that follow are likely to be relevant to SPARQL
algebra implementations.

4store uses the Rasqal SPARQL parser [16]. Rasqal produces a parse tree
representing the underlying structure of the SPARQL expression. 4store walks
this tree looking for occurrences of variables, which it records as metadata, and
labels blocks of binding patterns with IDs. For example, consider the following
query, where the block IDs are show in parentheses:

SELECT * WHERE {
?x a <Foo> . (0)
?x <has> ?y . (0)
OPTIONAL {
?y <factor> ?z . (1)
}
{ ?y <value> ?v . (2)
?v <label> ?l . (2)

} UNION {
?y <label> ?l . } (3)

}

Additionally it records which blocks are joined to which other blocks, and by
what operation. So, in this case we have:

child parent operation
1 0
2 0 !

3 2 ∪

The query executor descends the expression tree, internally joining the ex-
pressions to produce a table for each block. Although the projection is performed
internally by the bind function, in the expressions below it will be shown sepa-
rately, for clarity:

b0 ← πxρx/subject(bind(∅, ∅, {rdf:type}, {<Foo>})) !

πx,yρx/subjectρy/object(bind(∅, x, {<has>}, ∅))

b1 ← πy,zρy/subjectρz/object(bind(∅, b0.y, {<factor>}, ∅))

b2 ← πy,vρy/subjectρv/object(bind(∅, b0.y, {<value>}, ∅)) !

πv,lρv/subjectρl/object(bind(∅, v, {<label>}, ∅))

b3 ← πy,lρy/subjectρl/object(bind(b0.y, ∅, {<label>}, ∅))

92

The next phase collapses all the UNION expressions. Relational algebra has
no equivalent to SPARQL’s UNION, but we will use the ∪ symbol to represent
SPARQL’s UNION. UNION blocks are collapsed bottom-up (from highest block
ID to lowest), first any FILTER expressions are evaluated, and non-satisfying
rows are removed, then the binding tables for co-UNIONs (any blocks related
by the ∪ operation in the operations table) are concatenated:

b2 ← b2 ∪ b3

Next the joins across the remaining blocks are performed:

b0 ← b0 ! b2 b1

Finally, any remaining FILTERs, ORDER BY, and DISTINCT are applied.
FILTERs are left to as late as possible to avoid having to resolve more RIDs
than required. The presence of LIMIT without ORDER BY, internal complexity
limiting and other factors may indicate that not all lexical values for bindings
are required. Calls to the resolve operation are relatively expensive, as they are
more likely to require random access IO in the storage nodes, and can transfer
large volumes of data.

It has been our experience that when dealing with queries over large volumes
of data using the SPARQL protocol it is often necessary to use the LIMIT
keyword, or enable some form of effort limiting, or soft limit to reduce the volume
of answers that will be returned. Few HTTP client libraries expose sufficient
support for flow control to indicate to the SPARQL server that enough answers
have been obtained, or else that the query has been running for too long.

Where possible FILTER expressions are evaluated as results are streamed
to the client, with blocks of RIDs from b0 being resolved at once, based on an
heuristic estimation of how many rows of values will be required to satisfy the
query.

8 Notable Optimisations

8.1 Join Ordering Optimisation

The primary source of optimisation is the conventional ordering on the joins
internal to a block join. We attempt to predict which bind will be the most spe-
cific, perform that one first, then successively apply the same specificity estimate,
given the values from the binding table at that point.

Earlier versions of 4store had access to comprehensive quad histogram data.
The current version only has access to predicate frequency information in order
to perform this heuristic evaluation. This is due to the structure of the radix
trie indexes, an earlier index form providing a highly efficient way to obtain
occurrence histograms as a side-effect of its design.

93

8.2 Common Subject Optimisation

Where two or more binds of the form

bind(M1, S, {p1}, {o1}), bind(M2, S, {p2}, {o2}), . . . bind(M b, S, {pb}, {ob})

are encountered, where |Mn| ≤ 1 this pair of binds can be transformed to a
single reverse-bind:

reverse-bind

(

b
⋃

n=1

{(m, s, pn, on) : s ∈ S, m ∈ Mn}
)

Where Mn is treated as {ω} if |Mn| = 0.
This has a twofold advantage. Firstly it reduces the number of network oper-

ations, and secondly (and more importantly) it breaks the join operation across
the storage nodes, due to the way quads are segmented.

In the example of the following query:

SELECT ?x WHERE {
?x <givenName> "John" ;

<familyName> "Smith" .
}

Any pair of triples matching this pattern will fall into the same segment, as
they must share a subject RID, so when the storage node performs the join it will
only have to consider one segment at a time, eliminating unnecessary bindings
for ?x before they reach the front-end, and thus reducing the search space.

8.3 Cardinality Reduction

If the REDUCED or DISTINCT keywords are used then the cardinality of bind
functions need not be preserved. Because of this, the presence of one of these
keywords is passed down to the storage node, and it takes any time-efficient mea-
sures that are available to reduce the cardinality of the result set. For example,
by removing adjacent identical rows, and also by use of index structures. Given a
bind of the form πpredicate(bind(∅, ∅, x, ∅)) it is sufficient to to consult the list of
predicate indices, to return the RID values for the matching predicates present in
the segment. If DISTINCT is specified then the front-end still needs to perform
the DISTINCT operation, but typically the size of the result set returned will
be greatly reduced.

Similar optimisations are available for bindings to all subjects, objects, mod-
els, and resources.

8.4 Unreferenced Variables

It is often necessary to place variables in graph patterns where the value of the
variable is not required. Consider a query to find all the people that have some
employer:

94

SELECT DISTINCT ?x WHERE {
?x a <Person> ;

<has> ?employer .
}

By inspection it is possible to ascertain that bindings for ?employer are not
required, we simply have to ensure that such a binding exists. Given this, the
bind call for the second triple pattern above can be reduced to:

πxρx/subject(bind(∅, x, {<has>}, ∅))

Without the DISTINCT or REDUCED keywords the engine is still required
to preserve the cardinality of ?x, but in either case we can avoid holding a column
of bindings in the binding table.

9 Future Work

9.1 Updates

As of writing the only update operations that are supported in the front-end are
deleting an entire model, and adding triples to a model. The nascent SPARQL/Update
specification will require fine-grained updates.

9.2 Full Text Indexing

Currently 4store has no index that can efficiently address full text searches. This
is supported in SPARQL via the regex function. More sophisticated full-text
searching is commonly offered as a non-standard extension. This is an area for
future work.

10 Conclusion

In this paper we have described in detail the architectural design principals
and methods of implementation for key aspects of our clustered RDF store. We
discussed the merits and demerits of a number of fundamental features of the
store such as its segmentation model. We have detailed a number of optimisation
strategies and we have also reviewed the performance characteristics and trade-
offs that informed our design.

We believe that there is much to be gained by sharing effective design pat-
terns, best practice, and hard won insights amongst our emerging community.

References

1. Free Software Foundation: GNU General Public License. http://www.gnu.org/
licenses/gpl.txt (June 2007)

95

2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. http:

//www.w3.org/TR/rdf-sparql-query/ (2005)
3. Harris, S., Shadbolt, N.: SPARQL query processing with conventional relational

database systems. In Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy,
S., Pan, Z., Sheng, Q.Z., eds.: WISE Workshops. Volume 3807 of Lecture Notes in
Computer Science., Springer (2005) 235–244 http://eprints.ecs.soton.ac.uk/
11126/1/harris-ssws05.pdf.

4. Personick, M.: Bigdata: Approaching web scale for the semantic web. http://
www.bigdata.com/whitepapers/bigdata_whitepaper_07-08-2009.pdf (2009)

5. Owens, A., Seaborne, A., Gibbins, N., mc schraefel: Clustered TDB: A clustered
triple store for Jena. In: WWW2009. (November 2008) http://eprints.ecs.
soton.ac.uk/16974/.

6. Erling, O., Mikhailov, I.: Towards web scale RDF. In: Proceedings
of the 4th International Workshop on Scalable Semantic Web Knowledge.
(October 2008) http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
VOSArticles/VOSArticleWebScaleRDF.pdf.

7. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A federated repository
for querying graph structured data from the web. In Aberer, K., Choi, K.S.,
Noy, N.F., Allemang, D., Lee, K.I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P., eds.: ISWC/ASWC. Volume
4825 of Lecture Notes in Computer Science., Springer (2007) 211–224 http://www.
deri.ie/fileadmin/documents/DERI-TR-2007-04-20.pdf.

8. Stonebraker, M.: The case for shared nothing. IEEE Database Eng. Bull. 9(1)
(1986) 4–9 http://db.cs.berkeley.edu/papers/hpts85-nothing.pdf.

9. Bizer, C., Schultz, A.: Berlin SPARQL benchmark (BSBM) specification - v2.0.
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/

10. Cheshire, S.: DNS service discovery (DNS-SD). http://www.dns-sd.org/ (2009)
11. Cheshire, S.: Multicast DNS. http://www.multicastdns.org/ (2006)
12. Wilkinson, K.: Jena property table implementation. Technical report,

Hewlett-Packard Labs (October 2006) http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.85.530.

13. Krovetz, T.: UMAC: Message authentication code using universal hashing. IETF
RFC 4418 (March 2006) http://tools.ietf.org/html/rfc4418.

14. Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. Journal of the ACM 15(4) (October 1968) 514–534 http://

portal.acm.org/citation.cfm?doid=321479.321481.
15. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes.

Technical report, Boeing Scientific Research Laboratories (July 1970) http://www.
minet.uni-jena.de/dbis/lehre/ws2005/dbs1/Bayer-McCreight.pdf.

16. Beckett, D.: Rasqal RDF Query Library. http://librdf.org/rasqal/ (2005)

96

Efficient reasoning on large SHIN Aboxes in
relational databases

Julian Dolby1, Achille Fokoue1, Aditya Kalyanpur1, Li Ma2, Chintan Patel3,
Edith Schonberg1, Kavitha Srinivas1, and Xingzhi Sun2

1 IBM Watson Research Center,P.O.Box 704, Yorktown Heights, NY 10598, USA
dolby, achille, adityakal, ediths, ksrinivs@us.ibm.com

2 IBM China Research Lab, Beijing 100094, China
malli, sunxingz@cn.ibm.com

3 Columbia University Medical Center
chintan.patel@dbmi.columbia.edu

Abstract. As applications based on semantic web technologies enter the
mainstream, there is a need to provide highly efficient ontology reason-
ing over large Aboxes. However, achieving sufficient scalability is still a
challenge, especially for expressive ontologies. In this paper, we present a
hybrid approach which combines a fast, incomplete reasoning algorithm
with a slower complete reasoning algorithm to handle the more expres-
sive features of DL. Our approach works for SHIN . We demonstrate
the effectiveness of this approach on large datasets (30-60 million as-
sertions), including a clinical-trial patient matching application, where
we show significant performance gains (an average of 15 mins per query
compared to 100 mins) without sacrificing completeness or expressivity.
keywords: Reasoning, Description Logic, Ontology.

1 Introduction

As applications based on semantic web technologies enter the mainstream, there
is a need to provide highly efficient ontology reasoning over large Aboxes. How-
ever, achieving sufficient scalability is still a challenge. DL reasoning is in-
tractable in the worst case. In [1], we reported on the use of expressive reasoning
for matching patient records to clinical trial criteria. While the system was able
to successfully reason on 240,269 patient records, a knowledge base with 59 mil-
lion Abox and 33,561 Tbox assertions, the execution time was prohibitive. In
some cases, the system took hours to respond.

The expressivity of the patient knowledge base was ALCH, so expensive
reasoning was needed to be complete. However, most typical queries were simple,
and could have been answered faster with a less expensive reasoner. A high cost
was paid by all queries to support rarer complex queries. In this paper, we present
a hybrid approach, that combines a fast, incomplete reasoning algorithm with a
slower complete reasoning algorithm to handle the more expressive features of
DL. In this way, we were able to dramatically lower the cost of typical simple
queries, without losing the ability to answer more complex queries.

94

An interesting feature of our technique is that any sound and incomplete
algorithm may be used in the first phase to quickly find as many solutions as
possible to the query. The key novelty in the approach is a mechanism to incor-
porate these solutions into a slower, complete reasoning algorithm for SHIN ,
providing much better performance characteristics overall, without sacrificing
completeness or expressivity. This approach can be described as self-adjusting,
since the reasoner dynamically defaults to the expensive complete algorithm only
when deeper inferencing is actually required. On large datasets (30-60 million
assertions), this hybrid approach provides significant performance gains (an av-
erage of 15 mins per query on the 60 million dataset compared to 100 mins)
without sacrificing completeness or expressivity.

At its core, this hybrid approach builds on the summarization and refine-
ment techniques we described earlier to perform sound and complete reasoning
on large Aboxes in relational databases [2] [3]. Briefly, this technique applies a
standard tableaux algorithm on a summary Abox A′ rather than the original
Abox A to answer queries. A summary Abox is created by aggregating individ-
uals which are members of the same concepts, so when any given individual is
tested in the summary Abox, all individuals mapped to the summary individual
are effectively tested at the same time. For a tested individual s in A′, if the
summary is found to be consistent, then we know that all individuals mapped
to that summary individual s are not solutions. But if the summary is found to
be inconsistent, it is possible that either (a) a subset of individuals mapped to
the summarized individual s are instances of the query or (b) the inconsistency
is a spurious effect of the summarization. We determine the answer through re-
finement, which selectively expands the summary Abox to make it more precise.
Refinement is an iterative process that partitions the set of individuals mapped
to a single summary individual based on the common edges they have in the
original Abox, and remaps each partition to a new summary individual. The
iteration ends when either the expanded summary is consistent, or it can be
shown that all individuals mapped to the tested summary individual are solu-
tions. Significantly, convergence on the solution is based only on the structure of
the refined summary, without testing individuals inA. In practice, the scalability
of this algorithm is limited by the number of refinement steps that are needed.
Refinement is performed by database join operations, which become expensive
when the database is large.

The key insight of our hybrid approach is that the solutions from the sound
and incomplete reasoner can be used as a partitioning function for refinement
instead of partitioning based on common edges, as described in our earlier work.
This effectively removes the obvious solutions from the summary Abox. If the
sound and incomplete reasoning algorithm finds all solutions, there will be no
solutions left in the summary Abox after this first refinement, so the algorithm
will converge very quickly. Any remaining inconsistencies are spurious, and can
be resolved in one or a few refinement steps. If the sound and incomplete algo-
rithm finds only some of the solutions, then the refinement process will find the
rest of the solutions with fewer refinement steps.

95

Our key contributions in this paper are as follows: (a) we develop a fast,
sound but incomplete algorithm based on query expansion, and describe how
to incorporate solutions from this and other such techniques into a sound and
complete hybrid algorithm for reasoning over large expressive Aboxes, and (b)
we demonstrate its effectiveness in providing performance gains (from 100 min-
utes per query to 15 minutes per query) on expressive Aboxes with 60 million
assertions.

2 Related Work

There have been efforts in the semantic web community to define less expressive
subsets of OWL-DL for which reasoning is tractable. The EL-family of languages
[4] is one such example, for which classification can be done in polynomial time.
To take advantage of this fact, various query answering algorithms for EL have
been proposed (e.g. [5]). Another example is the DL-Lite family [6], for which
conjunctive query answering is expressible as a first-order logic formula (and
hence an SQL query) over the Abox stored in a relational database. The QuOnto
algorithm [6] is a sound and complete query expansion algorithm for DL-Lite.

Our query expansion algorithm described in Section 6 is not significantly
novel. It is similar in spirit to the EL and DL-Lite query expansion approaches,
with some differences, namely: (i) instead of using an EL reasoner to compute
additional subclasses during the normalization process (as in [5]), we use a sound
and complete OWL-DL reasoner (Pellet) which enables us to discover more en-
tailments outside of EL; (ii) we use a datalog reasoner to compute same-as-
individual inferences (considering functional properties) and transitive closure
for transitive properties that exist in the ABox.

Furthermore, a key point is that any query answering algorithm for a subset
of OWL can be plugged into our sound and complete hybrid OWL-DL reason-
ing system. When it is known that the optimization is complete based on the
underlying logic of the KB4 and the manner in which it is implemented, fallback
to our refinement strategy is not necessary. Otherwise, the refinement process
will find any remaining solutions.

3 Background

Query answering in expressive DLs can be reduced to consistency detection. For
instance, assume that we want to find all instances of the concept C. To answer
this query, each individual a is tested by adding the assertion a : ¬C to the
Abox, and checking the new Abox for consistency. If the Abox is inconsistent,
then a is an instance of C. For large Aboxes, this approach will clearly not scale.
Therefore, in our previous work [3], [7], we modify this approach to perform
tableau reasoning on a summarized version of the Abox rather than the original

4 Checking whether the logic falls in EL or DL-Lite is a matter of syntactic checking
of the KB axioms which can be done easily

96

Abox. Formally, an Abox A′ is a summary Abox of a SHIN Abox A if there
is a mapping function f that satisfies the following constraints5:

(1) if a : C ∈ A then f(a) : C ∈ A′

(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′

(3) if a ˙"=b ∈ A then f(a) ˙"=f(b) ∈ A′

If the summary AboxA′ obtained by applying the mapping function f to A is
consistent w.r.t. a given Tbox T and a RboxR, then A is consistent w.r.t. T and
R. However, the converse does not hold. In the case of an inconsistent summary,
we use a process of iterative refinement to make the summary more precise, to
the point where we can conclude that an inconsistent summary A′ reflects a real
inconsistency in the actual Abox A. Refinement is a process by which only the
part of the summary that gives rise to the inconsistency is made more precise,
while preserving the summary Abox properties (1)-(3). To pinpoint the portion
of the summary that gives rise to the inconsistency, we focus on the justification
for the inconsistency, where a justification is a minimal set of assertions which,
when taken together, imply a logical contradiction.

We define refinement for a summary individual s in a justification J as a
partition where individuals mapped to s are partitioned based on which edges
in J each individual actually has. More specifically:

key(a,J) ≡






R(t, s)

∣∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(t, s) ∈J∧
∃b in A s.t.
R(b, a) ∈ A∧
f(b) = t






∪






R(s, t)

∣∣∣∣∣∣∣∣∣∣

f(a) = s∧
R(s, t) ∈J∧
∃b in A s.t.
R(a, b) ∈ A∧
f(b) = t






Since an individual may be mapped to a summary individual that is in multiple
overlapping justifications, we define:

key∗(a) =
⋃

{J |a∈J }

key(a,J)

In a refinement step that refines s in A′, new individuals s1...sk replace s in
A′, where there are k unique key sets key∗(a), for all a in A such that f(a) =
s. Individuals a and b in A mapped to s in A′ are partitioned correspondingly,
that is, f(a) = f(b) after the refinement step iff key∗(a) = key∗(b) before the
refinement step.

In principle, in the presence of many justifications involving overlapping sets
of nodes, the union of the keys could become very large. In practice, we have
not observed this across the various knowledge bases we have evaluated, even
for ones that do contain overlapping justifications.

If all individuals in A mapped to a summary individual s have the same key
w.r.t. J , then it must be the case that they have all the edges in the justification
5 We assume without loss of generality that A does not contain an assertion of the

form a=̇b

97

and hence s is precise w.r.t. J . If a justification is precise, we can conclude that all
individuals inA mapped to the tested individual in the justification are solutions
to the query. In the worst case, iterative refinement can expand a summary Abox
into the original Abox, but in practice, we conclude on precise justifications with
many individuals mapped to each summary node in the justification.

Our implementation of summarization and refinement in a system called
SHER is in terms of RDBMS operations to allow the system to scale to large
data sets. However, the iterative process of summarization and refinement is
expensive, because (a) it requires expensive join operations on all role assertions
in the Abox A to define the key(a), as well as expensive join operations of role
assertions with type assertions to rebuild the summary, and (b) it requires several
consistency checks to find the many sources of inconsistencies for each summary
that gets built. For large knowledge bases with multiple ways in which one can
derive a solution to the query, this becomes a serious performance bottleneck.

4 A Sample Knowledge Base

We illustrate our techniques with the sample knowledge base (Tbox T , the Rbox
R and the Abox A) in Figures 1 and 2. This example is a small subset of the
UOBM [8] benchmark that we use in our evaluation. To form the summary Abox
for Figure 2, the individuals a and b are mapped to a single summary individual
w with a concept set of Woman, and the individuals f , g and j are mapped
to another summary individual p with a concept set of Person. The summary
Abox is shown in the Figure 3.

T assertions:

(1) WomanCollege # ∀hasStudent.Woman
(2) % # ≤ 1isTaughtBy

R assertions:

(1) loves # likes
(2) isStudentOf is inverse of hasStudent
(3) teacherOf is inverse of isTaughtBy

Fig. 1. Example T , R

Consider the query WomanWithHobby, which is defined as Woman&≥ 1likes.
There are three solutions. The individual b is a solution because loves (likes.
The individual f is a solution because the course d can be taught by only one
Person, and so f and b will be identified with each other during reasoning. Fi-
nally, g is a solution, since isStudentOf(g, WomenCollege) implies that g is a
Woman.

Figure 3 shows the entire refinement process for answering this query:

98

! !

!!"

!!!#

!$

!!!%

!!&

%'()*"+,)-#

./0+'

!

)+1$&+2-#

!!

!!!1

!!3
!!4

./0+'

)+1$&+2-#

!5

6/*2'+ 7/81,6/..+3+

7/81,

7/81,

9+2'/,
9+2'/,

9+2'/,
9+2'/,

(/$$+2
:+,,%'

Fig. 2. Example A

(1) Refine w by splitting it into two nodes w′ which has a mapped to it, and w′′

which has b mapped to it.
(2) Refine p by splitting it into two nodes p′ which has g mapped to it, and p′′

which has f and j mapped to it.
(3) Refine p′′ further, by splitting it into nodes p1 which has f mapped to it,

and p2 which has j mapped to it.

We explain these steps in more detail. First, ¬WomanWithHobby is added
to a tested summary individual w. The resulting Abox is inconsistent, and a jus-
tification J contains the assertions: w : Woman, loves (likes, and loves(w, c).
For refinement, we target the summary individuals in J , which are w and c.
Refinement makes a justification J precise, that is, it partitions the individuals
mapped to the summary node w into a new set of summary nodes to reflect
the fact that not all individuals in A mapped to w have the loves(w, c) in J .
The summary individual w is therefore split into two new summary nodes, w′

that has individuals with no loves(w, c) mapped to it (e.g., a), and w′′ that has
individuals with loves(w, c) mapped to it (e.g., b). This new refined Abox is still
inconsistent, with a new justification J which contains the individuals w′′ and
c. Refinement of w′′ or c however is no longer possible, because every individual
in A that is mapped to w′′ also has the loves(c, ,) and every individual mapped
to c has the same edge (here c is the same as the summary node c). At this
point, the justification J is precise, in that it cannot be refined further, and we
conclude that all individuals in A mapped to w′′ are solutions to the query.

For the second step, ¬WomanWithHobby is added to a tested summary
individual p. The resulting Abox is inconsistent, and this time there is the jus-

99

! !

!

"

##$

#%

#&

##'

###()**+,-#.,+$'

/0+%'0,12
&(3/)"04/12

5670(

!

"

##$

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(

!

"

##$

#%

#&

##'

2&,(/#,02&40*04/

&(3/)"04/12

5670(

!88

"

##$

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(

!!8

!

"

#988

#%

#&

##'

#####(0%64"#,02&40*04/

&(3/)"04/12

5670(

!88

"

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(!!8

##98
#

!

"

9:

#%

#&

##'

#######/'&,"#,02&40*04/

&(3/)"04/12

5670(

!88

"

#%

#&

##'

/0+%'0,12
&(3/)"04/12

5670(!!8

##98

9;

/0+%'0,12 /0+%'0,12

5670(

5670(

5670(
5670(

/0+%'0,12

/0+%'0,12
/0+%'0,12

<=+%/#>)(/&2&%+/&64>)(/&2&%+/&64

Fig. 3. Refinement Steps for Example

tification: isStudentOf(p, i), loves (likes, and loves(p, h), combined with the
axiom WomanCollege (∀hasStudent.Woman. The result of the second refine-
ment is shown in Figure 3. After this refinement, the subgraph containing p′ is
still inconsistent, and p′ is not refinable. Therefore, all individuals in A mapped
to p′, namely g, are solutions.

There is one final justification which is refinable: teacherOf(p′′, d), teacherOf(w′′, d),
w′′ : Woman, loves (likes, loves(w′′, c), and * (≤ 1isTaughtBy. After the
third refinement step, we conclude that f mapped to P1 is a solution.

On large knowledge bases, the cost of each additional refinement is significant,
so it is critical to reduce the number of refinements. We show in the next sections
how our hybrid reasoning approach can reduce the number of refinements for
this example.

100

5 Hybrid Algorithm

The key idea to reducing refinement iterations is to (a) quickly find solutions to
the query, (b) refine the summary to isolate these solutions into new summary
individuals, and (c) ignore these individuals for the rest of the refinement process.
We find solutions quickly by using a sound and incomplete reasoning algorithm
which does a form of query expansion described in Section 6. We point out that
other reasoner implementations (such as QuOnto) for less expressive logics may
also be plugged into this technique.

To illustrate the overall idea in terms of our example in Figure 2, we ex-
pand our query WomanWithHobby into the query WomanWithHobby(x) ,
(Woman(x) & likes(x, y)) , (Woman(x) & loves(x, y)). This query matches all
pairs of individuals in the Abox bound to both x and y, namely the pair (b,
c), and this constitutes our set of known bindings. Our next step is to refine
the summary Abox, so that the individuals in the solution, namely b and c, are
mapped to distinct new summary individuals. We do this by a refining the sum-
mary Abox in a manner similar to that described in Section 3; the only difference
is that we now partition the Abox individuals according to whether they were
bound to any variable in the query or not, rather than according to key sets.
That is, f(a) = f(b) after the refinement step iff a and b are mapped to the same
summary node before the refinement step and either both or neither a and b are
individuals in the set of known bindings. Our algorithm keeps track of the subset
of known bindings that actually are answers to the query, which is just b in this
case. Next, consistency checking is applied to this refined summary, and any re-
maining inconsistencies are resolved using the standard iterative refinement and
summarization process described in [3].

This approach has a nice property: in cases where the incomplete step ac-
tually does find all solutions and the summary itself is consistent, the complete
reasoning step may simply be a single consistency check on the refined summary.
Since there are no more solutions to be found, the only possible causes of incon-
sistency are spurious inconsistencies, which are the result of our summarization
technique. In practice, we find that the incomplete step captures all solutions
on most complex queries on most realistic datasets. This optimization there-
fore significantly reduces the number of refinements and makes query answering
practical for large Aboxes.

One non-obvious part of the hybrid algorithm is that it is important to
partition out all individuals that are bound to any variable in the query, and
not just the individuals that are are actual solutions to the query. To illustrate
why this is the case, consider a simple Abox shown in Figure 4 with 3 patients (q,
r, s) who each have an associated lab event (l, m, n), and each event indicates
a presence of organisms of different types, where x, y, and z indicate individuals
with organisms of type X, Y and Z, respectively. The summary Abox, as shown
in the Figure will contain one patient individual p, which has q, r and s mapped
to it, one lab event individual e which has l, m and n mapped to it, and 3
individual nodes for organisms x, y, and z. Consider a realistic query, which is
to find all patients who have a laboratory event which shows the presence of

101

the organism X. As shown in the Figure 4, if a summary is built with only the
solution individual q partitioned out, then it will contain spurious inconsistencies
which will cause unnecessary refinement. To avoid this issue, we should not only
partition out the solution individual q from p, but also other individuals bound
to other variables in the query, which in our example would be l and x.

Fig. 4. Partitioning Complexity

The pseudo-code for our overall algorithm is shown in the function Conjunc-
tiveQuery in Figure 5.

6 Query Expansion

Our sound but incomplete reasoning algorithm is based on the well-known recur-
sive query expansion technique suggested in the EL [5] and DL-Lite [6] solutions.
As discussed earlier, our approach differs in the following ways: (a) we refer to
an OWL-DL reasoner (Pellet) for computing subclasses of a concept when per-
forming the expansion, (b) we have an ABox pre-processing step that uses a
datalog reasoner to compute transitive relations in the Abox and same-as infer-
ences between ABox individuals due to functional property assertions. The same
individuals are used to expand query solutions, i.e, if individual a is found to be
a solution to the SQL query generated by query expansion, and sameAs(a,b) is
inferred by the datalog reasoner, we add b to the solution set.

For any given query a : C, we recursively traverse the definitions and sub-
classes of the concept C. For our sample query x : WomanWithHobby, we first
generate a union of SQL select statements which signify all the possible ways in
which this query can be expanded. The first disjunct in the union matches in-
dividuals of WomanWithHobby directly, rdf : type(x, WomanWithHobby). In
this case, however, the WomanWithHobby type does not appear in the Abox,
and so we drop this disjunct. Next we would generate disjuncts to match indi-
viduals that are in subclasses of WomanWithHobby, but in this case there are
no subclasses (checked by calling a standard DL reasoner). We then add any
complex subclasses of WomanWithHobby which can be inferred syntactically.
In our example, we have one such obvious subclass because WomanWithHobby

102

Function:ConjunctiveQuery

Input: Conjunctive Query CQ: Ci(x) ∧ ..Rj(x, y)
/* Get incomplete answers from sound but incomplete algorithm, which

can be translated to SQL */
sqlQuery ← BuildQuery(CQ);
/* Get the bindings for all variables in the expanded query, both

distinguished and non-distinguished variables */
result ← execute(sqlQuery);
/* Build filtered summary for query answering, which is the basic

summary Abox */
sum ← BuildSummary(A, CQ);
/* Separate the bindings for distinguished variables xdist from

bindings for existentially quantified variables */
sqlsolutions ← getBindings(result, xdist);
others ←

⋃
v∈vars(result)−xdist

getBindings(result, v);

/* Refine summary based on solutions found from SQL */
sum ← refineSummaryFromSolutions(sum, sqlsolutions ∪ others) ;
/* Find all summary nodes in new summary which have sqlSolutions

mapped to them */
sumSolutions ← getSummaryNodesForSQLSolutions(sum, sqlSolutions);
/* complete query answering, using refined summary */
restsolutions ← solveQuery(sum, allnodes - sumSolutions);
return sqlsolutions ∪ restsolutions

Fig. 5. Overall optimized complete query algorithm

is defined as equivalent to Woman & ≥ 1likes. The expansion process now re-
cursively continues and we expand this complex concept into a select statement
which is a disjunction of conjuncts; i.e., the selection must satisfy the two con-
ditions rdf : type(x, Woman) and likes(x, y), or alternatively, satisfy the two
conditions rdf : type(x, Woman) and loves(x, y), since likes has a subproperty
loves. These queries are applied against an Abox that has been processed to
include all edges materialized from the application of all deterministic merger
and transitivity rules.

One technical challenge in query expansion in general is keeping the query
relatively simple, especially when given very large Tboxes with deep subclass
and subproperty hierarchies. Our approach to this problem was to eliminate
forms of query expansion if the concept or role did not appear in the ABox. We
therefore maintained a simple cache of all roles and concepts that appeared in
the ABox, and limited our expansion to only these concepts and roles.

7 Evaluation

We evaluated our technique on two knowledge bases: the first is a real-world
knowledge base, and real queries of clinical data that we had used in previ-

103

ous work[1], and the second is the UOBM benchmark[8]. Our experiments were
conducted on a 2-way 2.4GHz AMD Dual Core Opteron system with 16GB of
memory running Linux, and we used IBM DB2 V9.1 as our database. Our Java
processes were given a maximum heap size of 8GB for clinical data, and 4GB
for UOBM.

7.1 Clinical trials dataset

In prior work [1], we reported on the use of expressive reasoning for matching
of patient records on clinical trials. The 1 year anonymized patient dataset we
used contained electronic medical records from Columbia University for 240,269
patients with 22,561 Tbox subclass assertions, 26 million type assertions, and
33 million role assertions. The 22,561 Tbox subclass assertions are a subset
of the a larger Tbox which combines SNOMED with Columbia’s local taxon-
omy called MED for a total of 523,368 concepts. For details of the partition-
ing algorithm used to define the subset see [1]. Although the expressivity of
the SNOMED version we used falls in the EL fragment of DL, the expres-
sivity needed to reason on the knowledge base is ALCH. This is because we
have type assertions in the Abox which includes assertions of the type ∀R.¬C,
where the concept C is itself defined in terms of a subclass or equivalence
axiom. As a concrete example, for a given patient, and a specific radiology
episode for the patient, the presence of ColonNeoplasm may be ruled out.
ColonNeoplasm has complex definitions in SNOMED (e.g., ColonNeoplasm ≡
∃AssociatedMorphology.Neoplasm & ∃FindingSite.Colon & ColonDisorder).
We selected the 9 clinical trials we evaluated in our earlier work which are
shown Table 1. Table 2 shows the DL version of the queries, in the order shown
in Table 1. For query NCT00001162, the results shown are for the union of 7
different disorders, only 4 of which are illustrated in Table 2.

ClinicalTrials.gov ID Description
NCT00084266 Patients with MRSA
NCT00288808 Patients on warfarin
NCT00393341 Patients with breast neoplasm
NCT00419978 Patients with colon neoplasm

NCT00304382
Patients with pneumococcal pneumonia where source
specimen is blood or sputum

NCT00304889 Patients on metronidazole

NCT00001162
Patients with acute amebiasis, giardisis, cyclosporiasis
or strongloides...

NCT00298870 Patients on steroids or cyclosporine
NCT00419068 Patients on corticosteroid or cytotoxic agent

Table 1. Clinical Trial Requirements Evaluated

Table 3 shows the queries, the number of patients matched to the queries,
the time to process the queries in minutes, the time in minutes for our hybrid

104

DL Query
∃associatedObservation.MRSA
∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.Warfarin

∃associatedObservation.BreastNeoplasm
∃associatedObservation.ColonNeoplasm
∃associatedObservation.(

PneumococcalPneumonia
+
∃hasSpecimenSource.Blood , Sputum

)

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.Metronidazole

∃associatedObservation.



acuteamebiasis,
giardisis,
cyclosporiasis,
strongloides,
. . .





∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.cyclosporine , steroids

∃associatedObservation.
∃roleGroup.
∃administeredSubstance.
∃roleGroup.∃hasActiveIngredient.corticosteroid , cytotoxicAgent

Table 2. DL Queries for Evaluated Clinical Trials

approach (HTime), the time in minutes for our previous approach (Time), the
number of refinements with our hybrid approach (HRefinements) and the number
of refinements with our previous approach (Refinements). As can be seen from
the table, the hybrid approach reduced the number of refinements to 1 in all
cases, which reflects the refinement needed to check that there are no additional
solutions after the incomplete algorithm has completed (The one case where 0
refinements occurred was because for that specific query, our expressivity checker
decided that no refinement was needed given the specific filtered Abox that was
built for the query and the Tbox.) The hybrid approach improved our overall
query times from 100.4 mins on average with a standard deviation of 113.7, to
15.6, with a standard deviation of 3.5. This is not surprising, given that the
entire variability in query answering in our previous approach was due to the
number of refinements.

105

Query Matched Patients Time (m) HTime (m) Refinements HRefinements
NCT00084266 1052 68.9 17.8 6 1
NCT00288808 3127 63.8 11.6 5 0
NCT00393341 74 26.4 12.1 2 1
NCT00419978 164 31.8 12.4 3 1
NCT00304382 107 56.4 15.1 8 1
NCT00304889 2 61.4 20.7 3 1
NCT00001162 1357 370.8 13.5 58 1
NCT00298870 5555 145.5 19.3 8 1
NCT00419068 4794 78.8 17.5 5 1

Table 3. Patient Matches for Trial DL Queries for 240,269 Patients

7.2 UOBM

We evaluated our approach on the UOBM benchmark, modified to SHIN ex-
pressivity. This was done by adding a new concept to correspond to each of
the nominals in the dataset (e.g. SwimmingClass for Swimming), adding a type
assertion for each nominal (e.g., Swimming : SwimmingClass), and changing
any of the references to nominals in the Tbox to point to the class. Currently,
we have evaluated membership query answering, and we tested one membership
query for each concept in the benchmark6, comparing the hybrid approach with
our prior techniques. We report results for UOBM size 100—with roughly 7.8
million type assertions and 22.4 million role assertions—and UOBM size 150—
with about 11.7 million type assertions and 33.5 million role assertions. The
queries naturally fall into three categories:

empty Concepts that have no instances in the Abox.
simple Concepts that have only simple solutions (i.e. reasoning does not require

iterative refinement because the justification viewed as a graph does not have
path lengths greater than 1).

complex Concepts that have complex solutions (i.e. reasoning requires itera-
tive refinement because the justification viewed as a graph has path lengths
greater than 1).

We expect the hybrid approach to benefit only the third category of queries.
One complication is that the summary Abox for the UOBM benchmark has a
spurious inconsistency induced by the summarization process, so all membership
query answering require 2 passes of refinement in order to make the summary
consistent.

Table 4 shows results for the 3 query categories for UOBM sizes 100 and
150. The first three columns list the UOBM dataset size, the category of query,
and how many such queries there are. For both sizes and each query category,
we report the average and standard deviation for the query time and the num-
ber of passes of refinement. For both datasets, we timed out queries that took
6 That is, all classes in the original benchmark. The extra classes introduced by our

transformation to SHIN are ignored.

106

Time (seconds) Refinement
Original Hybrid Original Hybrid

Size Category Count Average Stdev Average Stdev Average Stdev Average Stdev
100 empty 11 214 37 214 19 2 0 2 0
100 simple 43 255 83 265 47 2 0 2 0
100 complex 14 891∗ 386∗ 377 105 14∗ 11∗ 3 .3
150 empty 11 301 35 347 45 2 0 2 0
150 simple 43 340 88 416 85 2 0 2 0
150 complex 14 1368∗ 508∗ 647 198 14∗ 11∗ 3 .3

Table 4. Results for UOBM Membership Queries for sizes 100 and 150

longer than 30 minutes to complete; the timeouts occured on both the 100 size
(1 timeout) and the 150 size (6 timeouts) for the original approach. Hence,
those averages and standard deviations are significant underestimates, and so
are marked with a ∗ in the table.

As one might expect, there is some overhead for executing the incomplete
query, and so the simpler queries actually show some slowdown in the hybrid
approach. However, the results do indicate that our hybrid approach greatly
reduces the time for the complex queries, which were the most expensive ones
with our previous approach. In fact, for all but one query, the incomplete rea-
soning algorithm found all the solutions. The one query which was the outlier,
GraduateCourse, required propagation from a universal restriction for reason-
ing, which was not accounted for by our incomplete algorithm. In this case, we
proceeded to find the answer through our prior complete reasoning algorithm.

8 Conclusion and Future Work

We have developed an efficient, scalable query answering system for large expres-
sive ABoxes. The hybrid approach proposed in this paper combines our novel
summarization and refinement technology to do sound and complete OWL-DL
reasoning with any incomplete reasoning implementation (possibly for a subset
of OWL).

We have used our hybrid solution to build a web-based semantic search en-
gine for biomedical literature, known as Anatomy Lens, details of which can be
found in [9]. Anatomy Lens has indexed 300 million RDF triples dealing with
PubMed data, and utilizes ontological information from three large biomedical
ontologies (Gene ontology, Foundational Model of Anatomy, and MeSH), doing
query answering in a few seconds. Performing web-time reasoning for such a
large expressive dataset would not have been possible without our approach.

We plan to further optimize our query expansion algorithm by pruning ir-
relevant queries considering the summary ABox, and to continue to explore the
use of SHER in real world semantic web applications.

107

References

1. C.Patel, J.Cimino, J.Dolby, A.Fokoue, A.Kershenbaum, L.Ma, E.Schonberg,
K.Srinivas: Matching patient records to clinical trials. Proc. of the Int. Seman-
tic Web Conf. (ISWC 2007) (2007)

2. A.Fokoue, A.Kershenbaum, L.Ma, E.Schonberg, K.Srinivas: The summary abox:
Cutting ontologies down to size. Proc. of the Int. Semantic Web Conf. (ISWC 2006)
(2006) 136–145

3. Dolby, J., A.Fokoue, Kalyanpur, A., A.Kershenbaum, L.Ma, E.Schonberg,
K.Srinivas: Scalable semantic retrieval through summarization and refinement.
Proc. of the 22nd Conf. on Artificial Intelligence (AAAI 2007) (2007)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proceedings of
the Nineteenth International Joint Conference on Artificial Intelligence IJCAI-05,
Edinburgh, UK, Morgan-Kaufmann Publishers (2005)

5. Rosati, R.: On conjunctive query answering in EL, CEUR Electronic Workshop
Proceedings (2007)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Dl-lite:
Tractable description logics for ontologies. Proc. of AAAI (2005)

7. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In: ISWC ’08: Proceedings of the 7th International Conference on The
Semantic Web, Berlin, Heidelberg, Springer-Verlag (2008) 403–418

8. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology
benchmark. In: Proc. of the third European Semantic Web Conf.(ESWC 2006).
(2006) 124–139

9. Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable
highly expressive reasoner (sher). In: Journal of Web Semantics, (accepted),
http://dx.doi.org/10.1016/j.websem.2009.05.002 (2009)

108

A Semantic Web Knowledge Base System that Supports
Large Scale Data Integration

Zhengxiang Pan, Yingjie Li and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.
{zhp2, yil308, heflin}@cse.lehigh.edu

Abstract. A true Semantic Web knowledge base system must scale both in terms
of number of ontologies and quantity of data. It should also support reasoning us-
ing different points of view about the meanings and relationships of concepts and
roles. We present our DLDB3 system that supports large scale data integration,
and is provably sound and complete on a fragment of OWL DL when answering
extensional conjunctive queries. By delegating TBox reasoning to a DL reasoner,
we focus on the design of the table schema, database views, and algorithms that
achieve essential ABox reasoning over an RDBMS. The ABox inferences from
cyclic axioms are materialized at load time, while other inferences are computed
at query time. Instance data are directly loaded into the database tables. We evalu-
ate the system using synthetic benchmarks and compare performances with other
systems. We also validate our approach on data integration using multiple ontolo-
gies and data sources.

1 Introduction

The Semantic Web is growing and clearly scalability is an important requirement for
Semantic Web systems. Furthermore, the Semantic Web is an open and decentralized
system where different parties can and will, in general, adopt different ontologies. Thus,
merely using ontologies, does not reduce heterogeneity: it just raises heterogeneity
problems to a different level. Without some form of alignment, the data that is described
in terms of one ontology will be inaccessible to users that ask questions in terms of an-
other ontology. Our ontology, perspective semantics provides a framework to integrate
data sources using different ontologies. This framework uses only standard OWL ax-
ioms and hence would not add any additional reasoning complexity to the knowledge
base system. Another unique feature of this framework is that different viewpoints re-
garding the integration (or mapping) could coexist in one knowledge base system, even
when they are contradictory. We think this is important for the Semantic Web, which is
inherently distributed and inconsistent.

Based upon this framework, we built DLDB3, a scalable Semantic Web knowledge
base system that allows queries from different points of view. DLDB3 has major im-
provements over DLDB2 [16], including a novel approach to handle cyclic (recursive)
axioms in relational databases. Although relational databases are optimized for scalable
query answering, they usually require special purpose algorithms to handle recursive
queries [17]. Our approach identifies cyclic axioms that cannot be directly handled by

125

precomputed database views and materializes the inferences entailed by these axioms.
Our resulting system is complete for 10 of 14 queries in UOBM DL benchmark and all
of the LUBM [8] queries, and can load 130 million triples with 24 hours.

The kinds of cycles that lead to incompleteness in a database view approach like
DLDB include transitive axioms and property restrictions where the same class appears
on both sides of a general concept inclusion axioms (e.g. ∃P.C " C). Wang et al. [20]
surveyed 1275 ontologies and only found 39 (3%) that contained a transitive property.
In our own analysis of Swoogle’s [5] Semantic Web data collection, we could not find
any cycles that involves an existential restriction. Only 1.6% out of 16285 ontologies
define transitive properties. The number of transitive properties defined in all ontologies
is 459, merely 1.4% of the total number of properties. Given that such cycles are rare,
we believe that they should be handled as special cases, and our RDBMS-based archi-
tecture should be preserved. We hypothesize that selectively materializing these axioms
will only lead to minor increases in load time and overall repository size using our ap-
proach. In prior work, we added materialization of transitive properties to DLDB2 [16].
In this paper we generalize this to materialize all other cyclic axioms. A key element
to this approach is ensuring that the materialized data only appears in the appropriate
perspectives.

In what follows, we first introduce ontology perspectives. We then present the DLDB3
system’s reasoning algorithms, architecture, design and implementation with a focus on
how the reasoning is achieved and perspectives are supported. Finally we evaluate the
system using benchmarks as well as multi-ontology data sets and queries.

2 Ontology Perspectives

In prior work, we have defined ontology perspectives which allows the same set of data
sources to be viewed from different contexts, using different assumptions and back-
ground information [9]. That work also presents a model theoretic description of per-
spectives. In this section, we set aside the versioning issues of that paper and introduce
some essential definitions.

Each perspective is based on an ontology, hereafter called the basis ontology or base
of the perspective. By providing a set of terms and a standard set of axioms, an ontology
provides a shared context. Thus, data sources that commit to the same ontology have
implicitly agreed to share a context. When it makes sense, we also want to maximize
integration by including data sources that commit to different ontologies.

We now provide informal definitions to describe our model of the Semantic Web.
A Semantic Web space W is a pair 〈O,S〉, where O is a set of ontologies and S is a
set of data sources. An ontology O in O is a four-tuple 〈C,R, T , E〉, where C is a set
of concepts; R is a set of roles; T is a TBox that consists of a set of axioms; E ⊂ O is
the set of ontologies that are extended by O. Note extension is sometimes referred to as
inclusion or importing.

An ancestor of an ontology is an ontology extended either directly or indirectly by
it. If O2 is an ancestor of O1, we write O2 ∈ anc(O1). Note the ancestor function
returns the extension closure of an ontology, which does not include the ontology itself.

126

For ontology extension to have its intuitive meaning, all models of an ontology
should also be models of every ontology extended by it. Here we assume that the models
of T are described by the semantics of OWL, for example see [10]. We now define the
semantics of a data source.

Definition 1 A data source s is a pair 〈A, O〉, where A is an ABox that consists of a
set of formulas and O is the ontology that s commits to. A model of s is a model of both
A and O.

When a data source commits to an ontology, it has agreed to the terminology and
definitions of the ontology. It means that for data source s = 〈As, Os〉, all the concepts
and roles that are referenced in As should be either from the ontology Os or anc(Os).

We now define an ontology perspective model of a Semantic Web space. This defi-
nition presumes that each ontology can be used to provide a different viewpoint of the
Semantic Web.

Definition 2 (Ontology Perspective Model) An interpretation I is an ontology per-
spective model of a semantic web space W = 〈O,S〉 based on O ∈ O (written
I|=OW) iff: 1) I is a model of O and 2) for each s = 〈As, Os〉 ∈ S such that Os = O
or Os = anc(O), I is a model of s.

Based on this definition, entailment is defined in the usual way, where W|=Oφ is
read as “W O-entails φ”.

Theoretically, each O-entailment relation (perspective) represents a set of beliefs
about the state of the world, and could be considered a knowledge base. Thus, the
answer to a Semantic Web query must be relative to a specific perspective. We now
define a Semantic Web query.

Definition 3 Given a Semantic Web Space W = 〈O,S〉, a Semantic Web query is a
pair 〈O, ρ〉 where O ∈ O is the base ontology of the perspective and ρ is a conjunction
of query terms q1,....., qn. Each query term qi is of the form x:c or 〈x, y〉:r, where c is
an atomic concept and r is an atomic role from O or ancestor of O and x, y are either
individual names or existentially quantified variables.

An answer to the query 〈O, ρ〉 is θ iff for each qi,W|=Oθqi where θ is a substitution
for the variables in ρ.

We argue that our perspectives have at least two advantages over traditional knowl-
edge representation languages. First, the occurrence of inconsistency is reduced com-
pared to using a global view, since only a relevant subset of the Semantic Web is in-
volved in processing a query. Even if two ontologies have conflicting axioms, the in-
consistency would only be propagated to perspectives based on common descendants of
the conflicting ontologies. Second, the integration of information resources is flexible,
i.e. two data sources can be included in the same perspective as long as the ontologies
they commit to are both being extended by a third ontology.

3 A Scalable Algorithm for Semantic Web Query Answering

Our approach was inspired and based on the work of Description Horn Logic (DHL)[7],
a fragment of DL that can be translated into logic programming. Although the DHL

127

work has a general description on how the datalog programs can be implemented on re-
lational databases, details or working algorithms are not present, especially for handling
(cyclic) recursive rules. To our best knowledge, none of the publicly available Semantic
Web knowledge base systems has took this route of combining datalog programs with
relational databases. Although deductive databases directly implement datalog, their
techniques are currently not mature enough for handling large scale data.

3.1 Defining the Language

The DHL language and its mapping to other formalisms has been described in detail in
[7]. Here we provide a quick summary for the convenience of discussion. Formally, in
DHL:

Concepts are defined as Roles are defined as
D ::= A|D1 !D2|∀R.D R ::= P |P−

C ::= A|∃R.C|C1 ! C2|C1 $ C2 Where P denotes atomic role.
Where A denotes atomic concept.
The axioms have form: The assertions have form:
C % D a : C
R1 % R2 (a, b) : R
R+ % R means R is a transitive property where a, b are named individuals.
Func(R) means R is a functional property 1

Translation input Translate to
Trans(A, x) A(x)
Trans(C % D, x) Trans(C, x)→ Trans(D, x)
Trans(C1 ! C2, x) Trans(C1, x) ∧ Trans(C2, x)
Trans(C1 $ C2, x) Trans(C1, x) ∨ Trans(C2, x)
Trans(∃R.C, x) Trans(R, x, y) ∧ Trans(C, y)
Trans(∀R.D, x) Trans(R, x, y) → Trans(D, y)
Trans(R1 % R2, x, y) Trans(R1, x, y) → Trans(R2, x, y)
Trans(R+ % R) Trans(R, x, y) ∧ Trans(R, y, z) → Trans(R, x, z)
Trans(P−, x, y) Trans(P, y, x)
Trans(P, x, y) P(x, y)

Table 1. Translation Function from DL axioms to Horn rules

The DL constructors and axioms can be recursively mapped to First Order Logic
rules. By applying Lloyd-Topor transformation to rewrite rules with conjunctions in the

1 This feature will be handled separately in our system, and will not be translated into horn rules.

128

head and disjunctions in the body, we can ensure the resulting rules are all horn rules.
The equivalences can be rewritten into two subsumptions.

3.2 Reasoning

Our approach uses a relational database to store, manage and retrieve instance data. For
each predicate P (class or property) that is defined in an Ontology, we create a dedi-
cated table Ptable to store the explicit facts. In order to reflect the perspective, we use
PO

table to represent the explicit or materialized facts of P that committed to ontology O
or anc(O). Note in actual implementation, PO

table doesn’t have to be a real table in the
database, it can be implemented as a filter of ontology commitment on top of Ptable.
When facts are stored as tuples in the database, their “provenance” or “source” infor-
mation are also preserved in the form of the identifier of the ontology they commit to.
We use PO

view to represent all instances of P , explicit or implicit, from the perspective
based on O. For convenience, we define extensional disjunctive normal form.

Definition 4 A logical formula in first order logic is in extensional disjunctive normal
form (E-DNF) if and only if it is a disjunction of one or more conjunctions of one or
more atoms, where all predicates correspond to extensional tables.

Algorithm 1 shows how the reasoning is conducted in our approach. First, we con-
vert axioms in a given ontology into a set of horn rules using the translation function
defined above. Note the DL axioms can be reasoned and enriched by a DL reasoner, but
it is not necessary in our algorithm. Then for a set of horn rules with a common head,
we convert them into a single FOL rule, where the left hand side is in E-DNF. This con-
version is processed recursively by applying Modus Pones in a reverse direction until
all predicates are primitive (correspond to extensional tables). Next, we separate acyclic
portion of disjuncts from the cyclic portion. For acyclic rules, we create view for the
head’s predicate using straightforward translation from rule to SQL, where conjunc-
tions correspond to joins on common variables and disjunctions correspond to UNION
in SQL. Each ontology has a distinct view for each predicate defined by it or one of
its ancestors. Periodically when data is being loaded, we use Algorithm 2 to handle
cyclic rules left from Algorithm 1. During the computation, we materialize new tuples
in the tables so that the computation does not need to be invoked at query time. The
materialization would also set the ontology commitment information to be the ontology
that invokes this round of computation, such that these “derived” facts can be correctly
managed using perspectives. When answering extensional conjunctive query 〈O, ρ〉 as
defined in section 2, each predicate P is directly translated into a view PO

view that not
only contains the implicit facts through subsumptions, but also the explicit and materi-
alized facts in the underlying table.

Theorem 1 Given a knowledge base consists of ontologies and data sources in DHL,
the reasoning algorithms described above is sound and complete w.r.t any Semantic
Web Query 〈O, p〉.

PROOF. (Sketch) When we load an ontology O, the axioms of O and anc(O) are used
to generate database views for the perspective based on O. This is consistent with the

129

Algorithm 1 Load an ontology into the knowledge base
LOADONTOLOGY(O)
1: Translate axioms in O and anc(O) into a set of horn rules H
2: Initialize sets F, F*, each holds a set of FOL rules
3: for each predicate P in H do
4: Convert the set of horn rules whose heads’ predicate is P to L, where the body of L is a

E-DNF FOL formula
5: for each disjunct B in L such that one of the predicates is P but with different arguments

do
6: remove B from L and add B as a disjunct into the body of L∗ where the head of L∗ is

also P
7: F = F $ L, F ∗ = F ∗ $ L∗

8: end for
9: end for

10: for each FOL rule L ∈ F do
11: create view P O

view as a SQL expression that joins the conjuncts and unions the disjuncts.
Each predicate A in the body of L is translated into AO

table.
12: end for

Algorithm 2 Fix point computation of cyclic rules
FIXPOINTCOMPUTE(F ∗, O)
1: repeat
2: for each FOL rule L∗ in F ∗, where the head’s predicate is P do
3: Translate the body of L∗ into SQL query q, where each predicate A are replaced by

views AO
view

4: Execute q, add new tuples into P O
table

5: end for
6: until A fix point has reached, which means none of the iterations generates new tuples

Ontology Perspective Model in 2. It has been shown in [7] that the translation from
DL axioms in DHL to horn rules preserves semantic equivalence. Further on, the con-
version to extensional disjunctive normal form in essence is backward chaining and
syntactical rewriting of rules by applying Modus Pones in a reverse direction. This kind
of conversion does not alter their semantics and logical consequences in FOL. The sep-
aration of acyclic rules from cyclic rules is a variation of Lloyd-Topor transformation
for disjunctions in the body. Thus again, the changes are only syntactic. For the acyclic
rules, their correspondence in SQL has been shown in previous work such as [19]. For
the cyclic rules, the correctness of fix point algorithms has also been proved in [19]. To
summarize, the query on each database view of a predicate A would get the exact same
set of facts as a sound and complete reasoning algorithm would infer for A(x) since the
algorithms behind the view exercise all and only the axioms in the knowledge base that
the perspective represents.

130

4 Implementation of DLDB3 System

4.1 Architecture

DLDB3 is a knowledge base system that combines a relational database management
system with additional capabilities for partial OWL reasoning. It is freely available as
an open source project under the HAWK framework 2.

The DLDB3 core consists of a Load API and a Query API implemented in Java.
Any DL Implementation Group (DIG) compliant DL reasoner and any SQL compliant
RDBMS with a JDBC driver can be plugged into DLDB3. This flexible architecture
maximizes its customizability and allows reasoners and RDBMSs to run as services or
even clustered on multiple machines.

It is known that the complexity of complete OWL DL reasoning is NEXPTime-
complete. Our pragmatic approach is to trade some completeness for performance. The
overall strategy of DLDB3 is to find the ideal balance of precomputation of inference
and run-time query execution via standard database operations. The consideration be-
hind this approach is that DL reasoners are optimized for reasoning over ontologies, as
opposed to instance data.

Following our algorithm described in the last section, creating tables corresponds to
the definition of classes or properties in ontology. Each class and property has a table
named using its URI.

Normally, the ’sub’ and ’obj’ fields are foreign keys from the ’ID’ field of the class
tables that are the domain or range of the property, respectively. However, if the prop-
erty’s range is a declared data type, then the ’object’ field is of the corresponding data
type (RDF and OWL use XML Schema data types). Currently DLDB3 supports integer,
float and date in addition to string.

DLDB3’s table schema is different from the vertical (also called “schema-oblivious”)
approach [18], which uses a single table for storing both RDF/S schemata and resource
descriptions under the form of triples (subject-predicate-object). Note, when new on-
tologies are loaded, the correspondent tables are created for their classes and properties.

We think the table design of DLDB3 has two advantages over the vertical approach.
First, it will contain smaller tables than the vertical scheme. Second, it preserves the data
types of the properties and hence can directly and efficiently answer queries involving
numeric comparison, such as finding individuals whose ages are under 21. Compared to
the traditional relational model, where properties correspond to columns, multi-valued
properties (attributes) in DLDB3 don’t need to be identified at ontology design time.

In addition to the basic table design, some details should be taken into account when
implementing the database schemas for the system. First, we need a scheme for nam-
ing the class and property tables. Note, using the full URI will not work, because these
URIs often exceed the RDBMS’s limits on the length of table names. However, the local
name is also insufficient because many ontologies may include the same local name. So
we assign a unique sequence number to each loaded ontology. Then each table’s name
is a class or property’s local name plus its ontology’s sequence number. This is sup-
ported by an extra table:

2 http://swat.cse.lehigh.edu/downloads/hawk.html

131

ONTOLOGIES INDEX(Url, SeqNum)
that is used to register and manage all the ontologies in the knowledge base. The se-
quence number will be assigned by the system when an ontology is first loaded into the
database.

Since each row in the class tables corresponds to an instance of the class, an ’ID’
field is needed here to record the ID of the instances. The rest of the data about an
instance is recorded using the table per property (a.k.a. decompositional) approach.
Each instance of a property must have a subject and an object, which together identify
the instance itself. Thus the ’sub’ and ’obj’ fields are set in each table for property.

Sometimes it is important to know which document a particular statement came
from, or how many documents contain a particular statement. We support this capability
by including a ’Src’ field in each class and property table. Together with other fields,
it serves as the multiple-field primary key of the table. In other words, the combination
of all the information of one record identifies each instance stored in the knowledge
base. In order to support perspectives described in section 2, the ontology to which the
individual data commits is also needed. Thus an ’Onto’ field is include in the tables. This
field is used to record the committed ontology from Algorithm 1 and 2. An example of
class and property tables might be:
STUDENT:1(Id, Src, Onto)
TAKESCOURSE:1(Sub, Obj, Src, Onto)

In order to shrink the size of the database and hence reduce the average query time,
DLDB assigns each URI a unique numeric ID in the system. We use a table:
URI INDEX(Uri, Id)
to record the URI-ID pairs. Thus, for a particular resource, its URI is only stored once;
its corresponding ID number will be supplied to any other tables. Since the typical URI
is often 20-50 characters long and the size of an integer is only 4 bytes in the database,
this leads to a significant savings in disk space. Furthermore, query performance is also
improved due to the faster joins on integers instead of strings and the reduced table size.
By discriminating the DataType properties and ObjectType properties, the literals are
kept in their original form without being substituted by ID numbers. The reason why
we don’t assign IDs to literals is 1) literals are less likely to be repeated in the data; and
2) literals are less likely to be joined with other tables because they are never used as
database keys.

Unsurprisingly, the tradeoff of doing the URI-ID translation is an increase in load
time. We use a hash table to cache URI-ID pairs found recently during the current load-
ing process. Since URIs are likely to repeat in one document or neighboring documents,
this cache saves a lot of time by avoiding lookup queries when possible.

When DLDB3 loads an ontology, it uses Algorithm 1 to do reasoning. Note if there
are instance data in the ontology, they are processed in the same way as if they come
from a data source which commits to this ontology.

It is worth noting that DLDB3 uses a DL reasoner to make inferences on DL axioms
before these axioms are translated into horn rules. In result, although the horn rules
implemented in the DLDB3’s relational database system correspond to a subset of DHL,
DLDB3 does support reasoning on DL ontologies richer than DHL. For example, the
axioms A " B'C and A " ¬B are both beyond the expressiveness of DHL. However,

132

the DL reasoner will compute and return A " C assuming A and C are both atomic
classes. Unfortunately, it is difficulty to characterize this expressivity formally since
some other axioms involving disjunction or negation are not supported.

In general, data loading in DLDB3 is straight-forward. Each rdf:type triple inserts
a row into a class table, while each triple of other predicates inserts a row into a role
table corresponding to the predicate. If a data document imports multiple ontologies,
the value of the ’Onto’ field is decided by the ontology that introduces the term that
the table corresponds to. However, DLDB3 materializes certain inferences at data load
time, as discussed in the next sections.

4.2 Inference on Individual Equality

This subsection focuses on precomputations that simplify reasoning at query time.
These ABox reasoning routines along with the rule-based reasoning algorithm make
the system complete on a significant subset of OWL DL.

OWL does not make the unique names assumption, which means that different
names do not necessarily imply different objects. Given that many individuals con-
tribute to the Web, it is highly likely that different IDs will be used to refer to the same
object. Such IDs are said to be equal. A Semantic Web knowledge base system thus
needs an inference mechanism that actually treats them as one object. Usually, equality
is encoded in OWL as (a owl:sameAs b), where a and b are URIs.

In DLDB3, each unique URI is assigned a unique integer id in order to save storage
space and improve the query performance (via faster joins on integers than strings). Our
approach to equality is to designate one id as the canonical id and globally substitute the
other id with this canonical id in the knowledge base. The advantage of this approach is
that there is effectively only one system identifier for the (known) individual, neverthe-
less that identifier could be translated into multiple URIs. Since reasoning in DLDB3 is
based on these identifiers instead of URIs, the existing inference and query algorithms
do not need to be changed to support equalities.

However, in many cases, the equality information is found much later than the data
that it “merges”. Thus, each URI is likely to have been already used in multiple asser-
tions. Finding those assertions is especially difficult given the table design of DLDB3,
where assertions are scattered into a number of tables. It is extremely expensive to scan
all the tables in the knowledge base to find all the rows that use a particular id, espe-
cially if you consider that the number of tables is equal to the number of classes plus
the number of properties. For this reason, We use auxiliary tables to keep track of the
tables that each id appears in.

Often times, the knowledge on equality is not given explicitly. Equality could result
from inferences across documents: owl:FunctionalProperty, owl:maxCardinality and
owl:InverseFunctionalProperty can all be used to infer equalities. DLDB3 is able to
discover equality on individuals using a simple approach. If two URIs have the same
value for an owl:InverseFunctionalProperty, they are regarded as representing the same
individual. A naive approach is to test for this event every time a value is inserted into
an inverse functional property table. However, this requires a large number of queries
and potentially a large number of update operations. In order to improve the throughput

133

of loading, we developed a more sophisticated approach which queries the inverse func-
tional property table periodically during the load. This happens after a certain number of
triples have been loaded into the system. The specific interval is specified by users based
upon their application requirements and hardware configurations (we used 1.5 million
in our experiment). This approach not only reduces the number of database operations,
but also speeds up the executions by bundling a number of database operations as a
stored procedure. DLDB3 also supports the same approach on owl:FunctionalProperty.

4.3 Handling Different Kinds of Cyclic Axioms

Although Algorithm 1 deals with cyclic axioms in general, our implementation handles
two categories differently. Class and Property Equalities is a form of cyclic axioms.
However, they do not need fix point computation in our algorithm since they are solved
during the atom expansion process. The fundamental difference between these equali-
ties and other forms of cyclic axioms such as the transitive property is that they do not
involve self-joinings or iterative procedures. They simply require that we synchronize
the subsumptions between two equivalent terms. For named classes and properties, this
synchronization has been taken care of by the DL reasoner.

In actual implementation, transitive properties are obvious cyclic axioms and hence
they do not need to be identified by translating into FOL rules. Our solution is to period-
ically run an algorithm that self-joins the view (not the table) on the transitive property
iteratively until a fixed point is reached. This algorithm also takes care of the perspec-
tives, which allows different ontologies to independently describe a property as transi-
tive or not. The other forms of cyclic axioms are handled by repeating iterations until
no new tuples are generated. For new tuples generated during the iterations, their ’onto’
field is set to the value of the ontology that invokes this round of fix point computation
(as shown in Algorithm 2).

4.4 Special Handling on Domain and Range

Normally, DHL allows universal restrictions on the right hand side. Domain and range
axioms are both special cases of universal restriction ((" ∀P.C and (" ∀P−.C, re-
spectively). The reasoning algorithm would include such rules and their corresponding
SQL expressions in the view definition of classes. Our initial implementation experi-
ence shows this kind of axioms can lead to efficiency issues at query time. In particular,
when the property involved has many triples, this leads to inference of class mem-
bership for a large number of instances. However, since OWL-DL requires that every
instance has a type, these inferences are possibly redundant with explicit information
on the knowledge base. Note, explicit universal restrictions that involve specific classes
on the left hand side usually are not as bad as domain and range, simply because the
join would reduce the number of facts that need to be compared with existing facts.

In order to improve the query efficiency, DLDB3 handles domain and range axioms
at load time. Following the same translation method that translate the Horn rules into
SQL expressions, we execute these expressions periodically during load time and effec-
tively materialize the new facts into the corresponding tables. Then at query time, there
is no need to invoke the inferences for domain and range axioms. Our initial analysis

134

has shown that this special treatment for domain and range axioms can improve the
overall performance of the system, considering the same domain or range class could
be queried over and over. Note this special handling would not alter the soundness and
completeness of the reasoning algorithm.

4.5 Query Answering

The query API of DLDB3 currently supports SPARQL encodings of conjunctive queries
as defined in section 2. During execution, predicates and variables in the query are sub-
stituted by table names and field names through translation. Depending on the perspec-
tive being selected, the table names are further substituted by corresponding database
view names. Finally, a standard SQL query sentence is formed and sent to the database
via JDBC. Then the RDBMS processes the SQL query and returns appropriate results.

Since we build the class and property hierarchy when loading the ontology, there is
no need to call the DL reasoner at query time. The results returned by the RDBMS can
be directly served as the answer to the original query. We think this approach makes the
query answering system much more efficient than conducting DL reasoning at query
time. To improve the query performance. DLDB3 system independently maintains in-
dexes without the intervention from database administrators.

5 Related Work

The C-OWL work [2] proposed that ontologies could be contextualized to represent lo-
cal models from a view of a local domain. The authors suggested that each ontology is
an independent local model. If some other ontologies’ vocabularies need to be shared,
some bridge rules should be appended to the ontology which extends those vocabu-
laries. Compared to C-OWL, our perspective approach also provides multiple models
from different views without modifying the current Semantic Web languages.

Our work differs from deciding the conservative extensions [14] in that we do not
study the characteristics of the logical consequences of integrating two ontologies. In-
stead, we focus on how to efficiently integrate data that commits to those ontologies
assuming that the logical consequences have been explored and approved by the user.

In order to improve the scalability of ABox reasoning, a number of “tractable frag-
ments” of OWL have been proposed and studied. Compare to DHL, DL-Lite [3] sup-
ports a limited form of existential restrictions on both sides of class inclusion. It also
supports negation on classes and properties. However, it does not support transitive
properties. EL++ [1], on the other hand, supports qualified existential restrictions and
negation on classes but does not support inverse properties. Both DL-lite and EL++
do not support universal restrictions. In terms of expressiveness, DHL is more or less
close to those subsets of OWL DL. It is noteworthy that in the upcoming W3C rec-
ommendation OWL 2, EL++ and DL-Lite are the bases of EL profile and QL profile
respectively.

In recent years there has been a growing interest in the development of systems that
will store and process large amount of Semantic Web data. The general design goal of
these systems is often similar to ours, in the sense that they use some database systems

135

to gain scalability while supporting as much inference as possible by processing and
storing entailments. However, most of these systems emphasize RDF and RDF(S) data
at the expense of OWL reasoning. Some systems resemble the capabilities of DLDB3,
such as KAON2 [11], which uses a novel algorithm to reduce OWL DL into disjunctive
datalog programs. SwiftOWLIM [12] uses a rule engine to support a limited OWL-
Lite reasoning. SOR [13] uses DL reasoner to do TBox reasoning and a rule engine to
do ABox reasoning. SHER [6] aims at scalable ABox reasoning using a summary of
ABox. To the best of our knowledge, none of the systems above supports queries from
different perspectives.

6 Evaluation

6.1 Performance on Benchmarks

We evaluated DLDB3 using LUBM [8] and UOBM (DL)[15]. UOBM extends LUBM
with additional reasoning requirements and links between data. The evaluation is done
on a desktop with P4 3.2G CPU and 3G memory running Windows XP professional.
We configured DLDB3 to use Pellet 2.0 as its DL reasoner and MySQL 5.0 community
version as its backend RDBMS. For comparison, we also tested SHER, SOR (version
1.5), KAON2 and SwiftOWLim (v2.9) on the same machine. IBM DB2 Express-C V9.5
was used as SHER and SOR’s backend database.

Fig. 1. Load time on Benchmarks

Note UOBM only provides datasets in four sizes and has no publicly available data
generator. The largest dataset, UOBM-30 has 6.6 million triples. In our experiment,
DLDB3 can load 130 million triples from LUBM(1000,0) with 24 hours and be com-
plete on all the queries in LUBM.

The smaller diagram on Figure 1 shows the load time of KAON2 and SwiftOWLim
on UOBM. These two systems are memory based so that they are fast at loading. How-
ever, their scalability are limited by the memory size. KAON2 could not finish reasoning

136

on UOBM-10 in our experiment. SHER, SOR and DLDB3 all use a backend RDBMS
and hence would scale better than memory based systems. DLDB3 is faster on loading
than SOR and SHER. It is reasonable for SOR since it materializes all inferred facts at
load time. For reasons that we cannot explain, SHER failed to load datasets larger than
UOBM-5. SOR did not finish the loading of UOBM-30 within a 72 hours period in our
experiment.

Figure 2 shows the average query response time (average on 14 queries) for all sys-
tems on UOBM. DLDB3 is faster than KAON2 and SHER on all datasets, and keeps
up with SwiftOWLim as the size of the knowledge base increases. The standard de-
viation on query response times gives no surprise: DLDB3 has higher variation than
SwiftOWLim. For DLDB3, all the queries can be finished under 4 minutes across the
datasets.

Fig. 2. Query Response Time on UOBM

As shown in Table 2, DLDB3 is complete on 11 out of the 14 queries in UOBM.
Two of the queries (Q12 and Q14) are not complete due to cardinalities. Another query
(Q13) involves inference using negation. SwiftOWLim is incomplete on only one query
(Q13); SOR is incomplete on two queries (Q12 and Q14) and SHER is only complete
on 6 queries.

Q1 - Q11 Q12 Q13 Q14
DLDB3 100% 80% 96% 0%
SOR 100% 63% 100% 63%
SwiftOWLim 100% 100% 96% 100%

Table 2. Completeness on UOBM-1

6.2 Multi-ontology Evaluation

Both LUBM and UOBM only have a single ontology in their test dataset, which means
they cannot be used to test the system’s capability on data integration. In addition,

137

both benchmark ontologies contain no cycles besides transitive properties. In order to
empirically validate our implementation on perspectives and cyclic axiom handling, we
used a synthetic data generator to generate a multi-ontology test dataset. The details
about the data generator is described in [4]. The dataset we chose features 10 domain
ontologies and 10 mapping ontologies that map between the domain ontologies, the
expressivity of the ontologies was limited to DHL. There are 20,000 data files and about
1 million triples in total. 10 random generated queries associated with one particular
ontology were picked as test query. Note the ontologies in this dataset have a number
of cyclic axioms, some of them form cycles across ontologies.

The experiment set-up was the same as the UOBM benchmark described above.
KAON2 and DLDB3 were tested using this multi-ontology dataset. Since KAON2 is
proved to be sound and complete on DHL, the results of KAON2 is used as reference. In
order to verify the correctness of DLDB3, each test queries was issued using different
perspectives. For a query 〈O, ρ〉, the reference result sets were collected by loading the
ontologies and data sources that are included in the perspective model based on O (see
definition 2) into KAON2, and then issue the conjunctive query ρ to KAON2.

All the query results from DLDB3 match the references from KAON2. This ex-
periment has shown that DLDB3 is sound and complete w.r.t the logical consequences
defined in section 2, and correctly implements the algorithm that handles cyclic axioms.

We also did some initial analysis on the scalability of the perspective approach. Fig-
ure 3 shows that as the number of ontologies included (though mappping) in the per-
spective increases, the query response time would increase. However, more ontologies
bring more results to the query, which at large extent justifies the increase of response
time.

Fig. 3. Number of Ontologies V.S. Avg. Number of Query Results

On the other hand, as shown in Figure 4 the depth of the mapping (the maximum
length of the mapping chain from the query term to the term that data commits to) only
has small impact on the query response time. Again, when compared with the number
of results, the increase of query response time is justified. Overall, we have seen that the

138

Fig. 4. Depth of Mapping V.S. Avg. Number of Query Results

query performance of DLDB3 would degrade gracefully as the depth or breadth of the
perspective increases, but largely due to the gaining of new results through integration.

7 Conclusion and Future Work

In this paper we present our DLDB3 system, which takes advantage of the scalabil-
ity of relational databases and the inference capability of description logic reasoners.
Our scalable querying answering algorithm is guaranteed to be sound and complete
on DHL. Our evaluation shows that DLDB3 scales well both in load and query com-
paring to other systems. It has achieved a good balance between scalability and query
completeness. Based on ontology perspectives which use existing language constructs,
DLDB3 can support queries from different view points. Real-world data using multiple
ontologies and realistic queries show that DLDB3 has achieved this capability without
any significant performance degradation.

Although we believe our work is a first step in the right direction, we have dis-
covered many issues that remain unsolved. First, to ensure the freshness of data, we
plan to support efficient updates on documents. Second, we will investigate query opti-
mization techniques that can improve the query response time. Third, we will evaluate
our system’s capability on perspectives more extensively and comprehensively using
real-world datasets.

8 Acknowledgment

This material is based upon work supported by the National Science Foundation (NSF)
under Grant No. IIS-0346963. The authors would like to thank Tim Finnin of UMBC
for providing access to the Swoogle’s index of URLs. Graduate students Abir Qasem
also contributed to the evaluations in this paper.

139

References

1. F. Baader, S. Brand, and C. Lutz. Pushing the el envelope. In In Proc. of IJCAI 2005, pages
364–369. Morgan-Kaufmann Publishers, 2005.

2. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. C-OWL:
Contextualizing ontologies. In Proc. of the 2003 Int’l Semantic Web Conf. (ISWC 2003),
LNCS 2870, pages 164–179. Springer, 2003.

3. D. Calvanese, D. Lembo, M. Lenzerini, and R. Rosati. Tailoring owl for data intensive
ontologies. In In Proc. of the Workshop on OWL: Experiences and Directions, 2005.

4. A. Chitnis, A. Qasem, and J. Heflin. Benchmarking reasoners for multi-ontology applica-
tions. In In Proc. of Workshop on Evaluation of Ontologies and Ontology-Based Tools. ISWC
07, 2007.

5. L. Ding, T. Finin, A. Joshi, Y. Peng, R. Pan, and P. Reddivari. Search on the semantic web.
IEEE Computer, 10(38):62–69, October 2005.

6. J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg, K. Srinivas, and X. Sun. Scal-
able grounded conjunctive query evaluation over large and expressive knowledge bases. In
International Semantic Web Conference, pages 403–418, 2008.

7. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. In Proceedings of WWW2003, Budapest, Hungary,
May 2003. World Wide Web Consortium.

8. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for owl knowledge base systems.
Journal of Web Semantics, 3(2):158–182, 2005.

9. J. Heflin and Z. Pan. A model theoretic semantics for ontology versioning. In Proc. of the
3rd International Semantic Web Conference, pages 62–76, 2004.

10. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logics satis-
fiability. In Proceedings of the Second International Semantic Web Conference, pages 17–29,
2003.

11. U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ description logic to disjunctive datalog
programs. In Proc. of the 9th International Conference on Knowledge Representation and
Reasoning, pages 152–162, 2004.

12. A. Kiryakov. OWLIM: balancing between scalable repository and light-weight reasoner. In
Developer’s Track of WWW2006, 2006.

13. J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan, and Y. Yu. Sor: a practical system for
ontology storage, reasoning and search. In VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 1402–1405. VLDB Endowment, 2007.

14. C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive description logics.
In In Proc. of IJCAI-2007, pages 453–459. AAAI Press, 2007.

15. L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology
benchmark. In ESWC, pages 125–139, 2006.

16. Z. Pan, X. Zhang, and J. Heflin. Dldb2: A scalable multi-perspective semantic web reposi-
tory. In Web Intelligence, pages 489–495, 2008.

17. G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in
database and logic programming systems. Theory Pract. Log. Program., 8(2):129–165, 2008.

18. Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking database represen-
tations of rdf/s stores. In Proc. of the 4th International Semantic Web Conference, pages
685–701, 2005.

19. J. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Computer
Science Press, Rockville, MD, 1988.

20. T. D. Wang, B. Parsia, and J. Hendler. A survey of the web ontology landscape. In Proc. of
the 5th Int. Semantic Web Conference (ISWC 2006), Athens, Georgia, 2006.

140

Representing and Integrating Light-weight Semantic

Web Models in the Large

Matteo Palmonari, Carlo Batini

Department of Computer Science, Systems and Communication (DISCo)

University of Milan - Bicocca

via Bicocca degli Arcimboldi, 8

20126 - Milan (Italy)

tel +39 02 64487857 - fax +39 02 64487839

{palmonari,batini}@disco.unimib.it

Abstract. Semantic Web model representation and integration can be exploited

to provide organizations that deal with a large amount of data sources with an

integrated view on the overall information managed. In order to support seman-

tic Web model representation and integration in the large users must be provided

with light-weight languages to represent and integrate the models, in particular

avoiding the design of complex Tbox axioms. Assuming to adopt at the front-

end level graph-based Concept-to-Concept Relationship (CCR) representations,

in this paper we question about two semantic issues. First, we inquire whether

light-weight semantic Web languages such as RDFS and DL-Lite can be used

to provide the semantics of individual CCR models. Second, we inquire whether

these languages can be used to provide appropriate semantics for the mappings

needed for model integration. Discussing a case study in the eGovernment do-

main we claim that both the answer are negative. Therefore, we propose a new

semantic interpretation for CCR models and we define three main classes of in-

tegration and abstraction relations defining their semantics.

1 Introduction

Semantic Web technologies and languages such as RDF, RDFS and OWL provide

knowledge sharing and logical modeling capabilities based on ontologies [1], and tech-

niques to achieve data and schema integration [2]. Web ontologies (ontologies rep-

resented in a semantic Web language) can support meta-data management, but also

different applications targeted to data integration, document management, or service

provision [1] by representing Web-compliant conceptual model referring to logical and

conceptual schemata. Moreover, Web ontologies map to different data models of infor-

mation sources, ranging from XML, to RDBMS [2]. The level of expressiveness ranges

from light-weight ontologies, with taxonomies as the least expressive one, to heavy-

weight ontologies with very-expressive constraints as the most expressive representa-

tive [3]. Scalability in Semantic Web ontologies is related to at least two problems.

A first problem is related to the expressiveness/complexity trade-off w.r.t. reasoning:

roughly speaking, the more the language of an ontology is expressive the more com-

plex is reasoning on the ontology [1]. A second scalability problem is related to an

141

expressiveness/cost trade-off in ontology management and engineering according w.r.t.

a cost/benefit model: roughly speaking, the more a language is expressive the more it

costs to manage and engineer it (design, development, maintenance and so on) [4–6, 3].

This paper focuses on the latter scalability problem in semantic Web ontologies,

which is gaining more and more attention in the last few years. A number of studies

showed that rich Web ontologies represented in languages like OWL-DL are too costly

in the large and are difficult to use for people with little formal background [5]; in par-

ticular, mastering the complex Tbox-level OWL axioms’ semantics can be difficult and

impacts on a number of ontology engineering costs [4]. RDFS is simpler and easier than

OWL, as proved by the number of RDFS ontologies actually published on the Web [5];

in this paper, we refer to RDFS as the main light-weight semantic Web language. DL-

Lite [7] provides the logical foundation for the OWL 2 QL profile of OWL 2, which

is another semantic Web language that we consider to a certain extent light-weight (we

will refer to this language as DL-Lite throughout the paper); in fact, it is more expres-

sive than RDFS but by far less expressive than OWL-DL. Ontology frameworks such

as semantic wikis [8, 9], which are explicitly targeted to support end-users in collab-

orative ontology design, provide tools to simplify the design process; in these tools a

simplified syntax for the specification of simple ontology axioms (domain and range re-

strictions on properties) prevent users from defining complex axioms using quantifiers

and complex concept constructors.

Based on the above considerations, it seems that the languages/tools that are more

used in fact by non skilled ontology designers, e.g. RDFS and semantic wikis, tend to

present ontologies, at the front-end level, as graphs where nodes represent concepts and

arcs represent relationships among these concepts in this paper we will call these mod-

els Concept-To-Concept Relationship (CCR) models. Different languages or subsets of

them isomorphic to CCR models (e.g. RDFS, and DL-Lite, the Semantic Media Wiki

syntax), or visual interfaces based on graphs or quantifiers-free forms (e.g. [9]) can be

considered as front-end concrete languages for light-weight ontology design.

Of course the expressiveness/cost trade-off need to be considered w.r.t. a cost/benefit

model, where the benefit depends on specific application contexts (e.g. DL-Lite is par-

ticularly useful for vertical data integration applications with few information sources

because of its good computational properties). In this paper, we focus on contexts where

conceptual models of many different sources, semantically heterogeneous and referring

to different domains need to be represented and integrated; as an example consider to

represent and integrate about 500 models representing the databases of the Italian public

administrations. This scenario is typical when large organizations need to be provided

with an overall view of the information they manage, and of their semantics, to improve

the government of their data. We refer to this context as to conceptual schema represen-

tation and integration in the large. In this context, we often call conceptual schemata,

or schemata for short, the semantic Web models to represent and integrate.

Assuming to represent light-weight ontologies as isomorphic to CCR schemata at

the front-end level, this paper questions whether the current available semantic Web

language are suitable in this context. In particular; a first research question considered

in the paper is the following “in the context of conceptual schema representation and

integration in the large, are the available light-weight semantic Web languages and their

142

traditional semantics appropriate for the representation of each CCR schema?” (Q1).

A second research question considered in the paper is “in the context of conceptual

schema representation and integration in the large, are the current light-weight semantic

Web languages, and their traditional semantics, suitable for designing the integration of

such schemata?” (Q2).

By discussing a case study in conceptual schema representation and integration in

the large in the eGovernment domain, the paper argues that the answer to both the ques-

tions is negative. W.r.t. Q1, the interpretation of CCR models based on standard pro-

posal (RDFS, DL-Light) are too restrictive. An alternative semantics for CCR models is

proposed to overcome the discussed limitations. W.r.t. Q2, the available languages fails

to cover important loose abstraction relations among concepts of different conceptual

schemata needed in the integration process. Based on the literature the paper proposes

three kinds of integration-abstraction relationships, and discusses their semantics.

The paper is organized as follows: the problem context and the case study are in-

troduced in Section 2; the problems and the proposed solution for individual schema

representation and their integration are discussed in Section 3; related works are dis-

cussed in Section 4; conclusions end the paper in Section 5.

2 Schema Representation and Integration in the Large

Fig. 1: The multi-layered conceptual schemata’ repository of the Italian central public adminis-

trations

Schema representation and integration in the large support conceptual meta-data

management, in order to provide large organizations, or networked enterprises with an

integrated view of the information managed. To make an example we consider a case

143

study referring to past experiences in the design of repository of conceptual schemata

in the eGovernment domain.

Experiences in the design and exploitation of structured repositories of conceptual

schemata (Entity Realtionship schemata) related to the most relevant databases of the

Italian central public administrations are described in [10]. A Central Public Adminis-

tration repository of schemata (CPA repository) has been developed to provides public

institutions with a conceptual meta-data management framework; the structure of the

repository is shown in Figure 1, where each node in the hierarchy represents an ER

schema. The bottom level of the CPA repository consists of approximately 500 concep-

tual schemata representing at the conceptual level logical schemata of the information

sources (basic schemata - not represented in the figure); these basic schemata are re-

cursively clustered and integrated by exploiting integration and abstraction primitives

defined in [11]; the bottom level of the figure shows the conceptual schemata obtained

from the basic schemata at the first integration and abstraction step.

The benefits of exploiting structured repositories of schemata at the back-end and at

the front-end level, e.g. to improve government-to-citizen and government-to-business

relationships, have been discussed in [10]. As for the exploitation of repositories at the

application level, the CPA repository has been exploited to support the semi-automatic

construction of a Local Public Administration (LPA) repository based on reverse en-

gineering techniques [10]. Building such a repository with current semantic Web lan-

guages could bring even more benefits, such as the possibility to exploit the concepts

and relationships for semantic annotation and search in SOA, document management

or data integration initiatives.

2.1 Conceptual Schema Representation

Focusing on the representation of individual schemata in the repository, the context of

conceptual schema integration in the large is characterized by the necessity of repre-

senting and integrating many schemata (about 500 in the example), referring to many

heterogeneous domains (e.g. financial resources, certifications, justice, security, edu-

cation, and so on). However, a number of concepts are shared among the different

schemata (e.g. the concept of Subject appear in most of the different eGovernment

domains); these concepts are the key concepts to integrate the different schemata [10].

Such a scenario requires a lot of effort for ontology design and engineering. It is very

difficult to commit such an effort to one skilled and experienced ontology designer. Ex-

perts in the domain need to be provided with tools to design their models. Because of

the amount of the schemata to design and integrate, and the designers’ profiles (domain

experts with little formal background), light weight languages are needed to cope with

the expressiveness/cost trade-off. Moreover, capturing deep ontological commitments

(e.g. with cardinality restrictions) it is often difficult (e.g. at the more abstract levels)

and not useful (e.g. to support softer tasks such as navigation, semantic annotation and

search rather than more specific reasoning-based tasks such as data integration).

In order to support scalable design of the schamas in the large, it is important to con-

sider the knowledge continuum perspective [3]. According to this perspective, knowl-

edge is represented in a continuum of knowledge artifacts represented in languages with

different expressivity. In the context addressed in this paper, focusing on schemata of

144

semi-structured and structured information sources, this means that light-weight seman-

tic models could be used as sketches to develop more expressive Web ontologies when

needed. As an example, suppose that a new eGovernment data integration project tar-

geted to the Human Resources’ data sources (see Figure 1) is started: richer ontologies

with more expressive axioms might be needed in this case. However, the reuse of the

light-weight models defined at the conceptual meta-data management level should be

guaranteed: the semantics of such light-weight models need not to be inconsistent with

the new axioms. We will refer to this point as to the knowledge continuum issue.

Given the amount of schemata to represent, their levels of detail and the need for a

collaborative design process carried out by domain experts, the CCR expressivity level

can be considered a good compromise between the need of exploiting at the front-end

level a language easy to be used, and the need of going beyond taxonomies represent-

ing at least the relationships between concepts. Considering the case study discussed,

although the CPA repository is based on the ER model, the schemata represented are

not far from CCR models (no cardinality restrictions are used and relationships with

arity greater than 2 represents less than 5% of the total number of relationships used).

2.2 Conceptual Schema Integration

In the context addressed in the paper (when many schemata are considered) a one-

step integration is nearly impossible, and schemata need to be integrated in a recursive

way: sets of schemata clustered according to similarity criteria and balanced according

to their levels of detail (LOD) are merged together by means of a schema integration

primitive (see [12] for schema integration mechanisms); the process is iterated on the

resulting set of schemata. However, the integration of schemata would easily lead to

schema very large in size with difficulties in their management and comprehension.

Schema abstraction primitives can be applied to obtain a schema at coarser LOD from

a given schema. When considering the application of an integration or an abstraction

primitive, we will call source schemata the schemata to which the primitive is applied,

and target schema the schema resulting from the application of the primitive; we will

call source concepts the concepts of the source schemata and target concepts the con-

cepts of the target schemata. In practice, integration and abstraction primitives are often

applied together to obtain an integrated target schema at a coarser LOD. We will refer

to this primitive as integration-abstraction; observe that this primitive is more general

than abstraction, and the application of an abstraction primitive can be considered a

special case of integration-abstraction applied to a single schema. As a result, this itera-

tive integration-abstraction process leads to consider schemata at progressively coarser

LOD, that is, that are progressively more abstract.

For the details of the methodology to carry out this iterative integration process

we refer to [11]. In order to provide a more detailed example of schema integration-

abstraction, we consider the Customs domain highlighted in Figure 1; the conceptual

schema of the Custom domain is obtained by means of integration-abstraction mech-

anisms applied to three basic schemata, namely Custom Agencies, Custom Declara-

tions and Item Categorization. Figure 2 represents a simplified version of this exam-

ple (the size of the schemata is reduced to illustrate the main points addressed in this

paper); broken-lined arrows represent subclass relationships, thick A-arrows represent

145

Fig. 2: Examples of integration and abstraction of ER conceptual schemata

schema abstraction primitives, and thick IA-arrows represents integration-abstraction

primitives; four LODs are represented (only the schema CA0 - Custom Agency at level

0 - is drawn as representative of the bottom level; the schemata CD0 and IC0 are omit-

ted); the schemata are represented as CCR models. An abstraction primitive is applied

to CA0, producing the schema CA1 (where the locations the custom agencies are asso-

ciated with are discarded). The schemata CA1, CD1 and IC1 are integrated-abstracted

in the schema C2. The schema C2 is abstracted into the schema C3, where the two con-

cepts Custom Agency and Custom Declaration are replaced by the concept Customs, in

order to express, at a more abstract level, that Goods are declared to Customs.

The question Q2 addressed in the paper concerns the suitability of available light-

weight ontology Web languages to represent these kind of integration-abstraction prim-

itives. Assuming to represent each source schema as a Web ontology, standard import

and namespace mechanisms in OWL and RDFS easily allows for the integration of

schemata at the architectural level (e.g. to define that C2 integrates the three schemata

CA1, CD1 and IC1 one could define a Web ontology C2 importing CA1, CD1 and

IC1). The question therefore focuses on the representation of the mappings between the

schema concepts: are the available language suitable to represent the set of significant

relations occurring between the entities of the source and the target schemata? As an

example, is it possible to trace out that the specific locations associated with the three

types of custom agencies in the schema C0 of Figure 2 are forgot in CA1?

146

3 Semantics for Conceptual Schema Integration Based on CCR

Models

In order to better define the problem, we introduce the notion of schema integration-

abstraction framework and an abstract CCR formalism.

Given a set of schemata Σ, a schema integration-abstraction framework can be
formalized by a schema integration-abstraction operation fΣ : P (Σ) !−→ Σ; as an
example, the schema integration-abstraction framework based on Figure 2 is defined by

a fΣ such that fΣ({CA0, CD0, IC0}) = C1, and fΣ({C1}) = C2. In the following
we assume that the schema integration-abstraction frameworks are partitive, that is,

each schema is integrated-abstracted in only one schema).

The abstract CCR formalism is defined through a language (CCR language from

now on) that represents concepts, binary relationships between concepts and subcon-

cept relationships; moreover, since the notion of inverse property is quite intuitive for

binary directed relationships, the notion of inverse property is introduced (scalability

w.r.t. reasoning is not addressed in this paper); finally, specific relationships to repre-

sent inter-schema integration-abstractions mappings are introduced. In order to avoid

misunderstandings w.r.t. to technical notions from standard ontology Web languages

(in particular in the next sections when a translation-based semantics is provided), we

adopt the following conventions inspired by the Entity Relationship model: concepts in

the CCR formalisms will be called entities and subconcept relationships will be called

generalization relationships.

Formally, the CCR syntax is defined as follows.

Definition 1. Concept-to-Concept Relationship (CCR) Alphabet. An CCR alphabet

A = (Σ, E,R, gen, IA, iinv), is a tuple where: Σ is a set of schema names, E is

a set of entity names, R is a set of binary relationship names, gen is the generaliza-

tion relation symbol, IA is a set of names of integration-abstraction relations, iinv =
R → R associates relation names with names of their inverse relations, and the sets

Σ, E,R, gen, IA are pairwise disjoint.

Definition 2. CCR language and CCR schemata. Given a CCR alphabet

A = (Σ, E,R, gen, IA, iinv), a CCR language LCCR based on A is the set of sen-

tences having the form:

– intra-schema LCCR sentences

• S:r(S:e, S:f);
• S:r−(S:e, S:f);
• gen(S:e, S:f);

– inter-schema LCCR sentences

• ia ∗ (S:e, S′:f)

where S ∈ Σ, r ∈ R,{e, f} ∈ E, and ia∗ ∈ IA, and (r− is a short for iinv(r)).
Given a language LCCR defined over an alphabet A, an CCR schema S is a set of

intra-schema sentences Φ ⊆ LCCR. Statements having the form S:r(S:e, S:f) and
S:r−(S:e, S:f) are called CCR patterns; a CCR pattern whose relation is r is called
CCR r-pattern. Given a schema integration-abstraction framework defined on Σ by a

147

structuring function fΣ , a set of inter-schema LCCR sentences Ψ is valid iff for every

S and S′ such that ia ∗ (S:e, S′:f) ∈ Ψ there exist a set of schemata T ⊆ Σ such that

S ∈ T and fΣ(S) = S′.

As an example, the schema CD1 of Figure 2) is conceptually represented in the

CCR language by means of the following statements:

CD1:import − export(CD1:Subject, CD1:Good),
CD1:declared in(CD1:Good,CD1:Cus. Decl.),
CD1:presented to(CD1:Cus. Decl., CD1:Cus. Agency) (in order to avoid long
names the following abbreviations are used in the paper: “Cus.” for Custom, “Decl.”

for declaration, “Adv.” for adventure). In the following, when the schema that intra-

schema LCCR sentences refer to is clear from the context, or not relevant, the schema

reference will be avoided for sake of clearness (the more compact notation r(e, f) will
be used to denote CCR patterns).

One of the peculiar characteristics of CCR schemata is theMultiple Use of Relation-

ship Names (MURN) in a same schema; as an example, more than one in relationships

are represented in the CA0 schema of Figure 2. Many conceptual modeling languages,

e.g. the ER language, formally assume the Single Use of Relationship Names (SURN).

SURN means that a schema such as CA0 of Figure 2 cannot be represented and specific

different names for each of the involved relationship need to be introduced (e.g. in#1,
in#2, etc.). SURN can be defined more formally as follows.

Definition 3. SURN condition and SURN assumption.Given a schema S = ϕ1, ...,ϕn

defined over a language LCCR, the SURN property holds for S iff there not exist two

CCR patterns r(e1, e2) and r′(f1, f2) in S such that r = r′. We call a SURN-schema a
schema for which the SURN property holds. Given a set Σ of CCR schamas, the SURN

assumption holds for Σ iff every schema S ∈ Σ is a SURN-schema.

We call MURN-schemata the CCR schemata for which the SURN property is not

required to hold, and we call MURN the relaxation of the SURN assumption for a set

of schemata. Observe that SURN-schemata are MURN-schemata, while the converse

does not hold.

3.1 Representing MURN CCR schemata with sound semantics

In the following we exploit a DL notation defined for OWL (SHOIQD) and RDFS

(based onDL−Lite), as defined respectively in [1] and [7]; the DL-Lite axioms ∃R ⊆
C and ∃R− ⊆ C (equivalent to ∃R.(⊆ C and ∃R−.(⊆ C in SHOIQD) represent

that C is respectively the domain or the range of the DL role R, where R− denotes the

inverse role of R.
The representation of MURN schemata is a crucial but often overlooked issue in

light-weight ontology modeling. First, consider the abstract nature of the models rep-

resented in the schemata. SURN forces a proliferation of relationship names for re-

lationships with a unique intuitive meaning (e.g. three relationship names in 1,in 2,
and in 3 would be needed - under SURN - in the CA0 schema of Figure 2). In the
context addressed in this paper this point is particularly relevant: besides the amount

148

of schemata to represent, many generic relationships are used (e.g. has, use, is related

to, part of, and so on), and particularly in the more abstract schemata. Second, there

are many references to MURN schemata in the literature: SURN is not assumed in the

early semantic nets and is often violated even for languages such as ER for which it

is supposed to hold (e.g. see examples in [13]). Third, in our past experiences in the

design of repositories of ER schemata SURN was not adopted by the designers: the

SURN assumption was systematically violated in the CPA repository (e.g. the “related

to” relationship is used up to 7/8 times in a same schema, which consists of less than

20 entities).

Representing MURN CCR schemata by means of a light-weight language such as

RDFS is not possible. RDFS easily maps to CCR under the assumption that CCR pat-

terns are represented by domain and range restrictions; e.g. in(Aiport Cus., Airport)
of CA0 in Figure 2 is interpreted as the assertion that Aiport Cus. and Airport are
respectively domain and range of the relationship in. However, according to the seman-
tics of RDFS, multiple domain and range assumptions have a conjunctive interpretation;

which means that in the CA0 schema the domain of in consists of the intersection of
all the concepts the arcs labelled as in start from (Aiport Cus.,Airport, and so on).
As a result, RDFS semantics does not capture the intended semantics of CCR patterns

in MURN schemata.

However, there can be other possible DL-Lite and OWL-DL interpretations of CCR

patterns that conflict with specific CCR pattern combinations, as shown in Figure 3. In

particular, it is remarkable that participation constraints that can be represented in DL-

Lite do not allow for (0,n) cardinality restrictions, which when representing abstract

schemata can be assumed as default cardinality restrictions (they impose the lighter

possible constraints on the underlying data models).

Fig. 3: Possible CCR pattern interpretations and conflicting CCR patters

To address the above problems we propose a new semantic interpretation for CCR

patterns based on an automatic deterministic translation of CCR light-weight schemata

into OWL-DL ontolgies. As usual, LCCR entities are interpreted as OWL-DL concepts

and LCCR relationship names are interpreted as OWL-DL properties. Our interpreta-

149

tion is characterized by three main assumptions. A very light interpretation of the first

entity in a CCR R-pattern as a concept included in the domain of R, and of the second
entity in the CCR R-pattern as a concept included in the range of R (domain/range

inclusion). A first epistemic closure that states that the domain (range) of a relation-

ships R is the disjunction of all the concepts corresponding to the entities occurring as

first (second) elements in any CCR R-pattern (domain/range global union). A second
epistemic closure that captures the conditional constraint represented in a CCR pattern

of the form r(e, f), that is, that when the first element of a tuple in r is of type e, then
the second element of the tuple is of type f ; of course we need to consider MURN and
adequately treat multiple conditional range (domain) restrictions (e.g. when two CCR

patterns r(e, f) and r(e, f ′) are considered); the strategy is analogous to domain/range
global union but it is conditional to specific domain/range concepts (domain/range con-

ditional union). Observe that domain/range inclusion and domain/range global union

can be represented by defining the domain/range to be equivalent to the union of all

the concepts occurring in the domain/range global union specifications (domain/range

global equivalence).

As an example, consider the relation in and the in-related patterns of schema CA0.
The concepts Aiport Cus., Sea Cus., Ground Cus., Airport, Border Station,
Port are subconcepts of the in domain (domain inclusion), which in CA0 consists
of the union of these concepts (domain global union); the concepts Airport,
Border Station, Port, and City are subconcepts of the in range (range inclusion),
which in CA0 consists of the union of these concepts (range global union); more-

over, given a tuple < x, y >∈ in: if x ∈ Aiport Cus., then y ∈ Airport; if x ∈
Sea Cus., then y ∈ Port; if x ∈ Ground Cus., then y ∈ Border Station; analo-
gous conditional interpretations occur for the other in-patterns in the schema; as for
domain conditional union, let us focus on the three in-patterns in(Airport, City),
in(Border Station,City), and in(Port, City): in this case the interpretation is that,
given a tuple< x, y >∈ in, if y ∈ City, then x ∈ Airport)Border Station)Port.

The formal conceptual semantics forLCCR can be defined translatingLCCR schemata

into OWL-DL ontologies, where entities are represented by OWL concepts, relation-

ships by OWL properties and CCR patterns by restrictions on properties, according to

the mappings defined in Table 1. In the table we adopt the following compact notation:

r(e, {f1, ..., fk}) represents the set ofLCCR assertions where e occurs as a first element
in a relation r, r({e1, ..., eh} , f) represents the set of LCCR assertions where f occurs
as second element in a relation r, and r({e1, ..., eh} , {f1, ..., fk}) represent the set of
all the LCCR assertions about a relation r where one element of the first set occurs as
first element and one element in the second set occurs as second element.

Observe that based on the epistemic closures, this semantic provides an interpreta-

tion of schemata that is relative to an epistemic state. If the schemata are changed, the

semantics should be computed again. This is consistent with the aim of this paper: we

do not propose to design CCR models with the OWL-DL language (we would not be

consistent with our assumptions). The semantics proposed is aimed at providing formal

translations at the back-end level for front-end CCRmodels, that is, in a transparent way

to the designers. In this paper we claim that our proposals allows for the more freedom

150

in the design of CCR models without conflicts with possible CCR patterns and without

giving up a set-theoretic semantics.

Table 1: Translation from binary LCCR MURN schemata to OWL − DL ontologies

LCCR SHOIQD (OWL-DL) Intuitive Semantics

e "→ Ce Concepts

r "→ P r Properties

r({e1, ..., eh} , "→ ∃R.% ≡ Ce1 ' ... ' Ceh , domain global equivalence

{f1, ..., fk}) ∃R−.% ≡ Cf1 ' ... ' Cfk range global equivalence

r({e1, ..., ek} , f) "→ Cf (∀R−.(Ce1 ' ... ' Cek), domain conditional union
r(e, {f1, ..., fk}) "→ Ce (∀R.(Cf1 ' ... ' Cfk); range conditional union

gen(e, f) "→ Ce (Cf

3.2 Loose integration of CCR schemata

A set of source schemata are integrated-abstracted in order to provide a target schema

that accounts for the knowledge represented in the source schemata at a coarse LOD.

The integration-abstraction primitive is based on the application of a set of abstraction

mechanisms that, given a set of source concepts, provide an abstract target concept

that represent the source concepts. The issue addressed in this paper is related to the

representation of the relationships (or mappings) that might occur between the source

concepts and the target concept that abstracts them.

Fig. 4: Examples of the three classes of integration-abstraction relationships

151

Different kinds of abstraction mechanisms can be applied as to a set of entities, re-

sulting in different kinds of integration-abstraction relations. In this paper we focus on

three abstraction mechanisms for CCR schemata, namely abstraction by generalization,

abstraction by forgetting and abstraction by collapsing; these abstraction mechanisms

are used in the case study described in Figure 2 and have been acknowledged in the lit-

erature, althought sometimes under different naming (see Section 4 for details). Figure

4 provides some examples of the application of three mechanisms taken from the case

study represented in Figure 2; sets of source concepts are replaced in the target schema

by one concept (observe that these sets might trivially consists of one schema, and that

the target concept might have the same name of the source schema).

We discuss the semantics of these abstraction mechanisms by introducing three dif-

ferent integration-abstraction relations - and the respective inverse relations - needed to

represent the respective abstraction mechanisms. These relations provide the character-

ization of the IA set in a LCCR language:

1. abstract−by−generalization (a-generalize for short), and the inverse abstracted−
by − generalization (a-generalized for short). This relation represents general-
izations between sets of entities of different schemata with standard subsumption

semantics; looking at the right-most example in the top-most section of Figure 4),

the entities Cus. Agency, Sea Cus., Airport Cus., and Ground Cus. of CA1
are a-generalized by the entity Cus. Agency of C2 (i.e.
a-generalized(C1:sea cus., C2:cus. agency), and so on).

2. abstract − by − forgetting (a-forget for short), and the inverse a-forgot. It
represents abstractions of source entities that are “sunk” in a more abstract target

entity, discarding some details in the source representations; looking at the right-

most example in the middle section of Figure 4), the entitiesGood andCategory of
IC1 are a-forgot in the entityGood of C2 (i.e. a-forgot(IC1:category, C2:good)
and a-forget(IC1:good, C2:good)).

3. abstract − by − collapsing (a-collapse for short), and the inverse a-collapsed.
It represents abstraction mechanisms in which the target concept has a different

meaning w.r.t. all the source concepts; looking at the example in the bottom-most

section of Figure 4), the entities Cus. Agency and Cus. Decl. of schema C2 are
a-collapsed in the entity Customs of schema C3 (i.e.
a-collapsed(C2:cus. agency, C3:cus) and a-collapsed(C2:cus decl., C3:cus)).

Intuitively, a-collapse and a-forget are quite similar, but a-forget relations are
polarized on an entity: there exists one entity in the source schema whose instances

can be considered also instances of the abstract entity. This can be modeled by intro-

ducing also an abstraction by generalization relation for such an entity: e.g. in Figure

4 the entity Good of C2 a-generalize the entity Good of IC1, which is represented
by the sentence a-generalize(C2:good, IC1:good). Generalizations cannot be estab-
lished for a-collapse, where for none of the source entities it can be assumed that
instances are also instances of the target entity; as an example, the entity Customs
in schema C3 represents the general notion of customs as public institutions; custom

declarations and custom agencies are not “customs” according to this meaning. For this

reason, the intuitive meaning of a-collapse includes “part of”-like aggregation and the
grouping relations introduced in [14] (customs as public institution are composed of

152

other entities, among which custom declarations and custom agencies), and is almost

equivalent to unfolding relations as introduced in [15]. Observe that this shift in mean-

ing might occur even when only one concept is a-collapsed into another concept (e.g.
imagine that custom agencies are represented by a concept named Custom).

How do available light-weight semantic Web languages behave w.r.t. the represen-

tation of the above mechanisms? First, consider that only abstraction by generalizations

can be natively codified as relations, namely subsumption relations (*), between two
concepts. These relations can easily be interpreted as subsumptive mappings tradition-

ally used in data integration [2]. If we consider abstraction by forgetting, subsumption

relations between the source concept the forgetting mechanism is polarized on can be

represented but the information about the other forget source concept is lost. If we

consider abstraction by collapsing, none of the source concept can be mapped with a

subsumption relation to the target concept. The representation of integration-abstraction

relations is not straightforward.

In order to overcome these problems one could introduce specific relations, e.g.

a-forgot and a-collapsed to be used in more complex axioms; as an example, con-
sider to represent that Cus. Agency of C2 is a-collapsed in Customs of C3. Here
different options are available: (A) Cus. Agency and Customs are respectively do-
main and range of a-collapsed; (B) Cus. Agency * ∀a-collapsed.Customs; (C)
Cus. Agency * ∃a-collapsed.Customs. The option (A) cannot be adopted because
a-collapsed relations have more than one concept as domain, as clearly represented in
Figure 4 (the label “0,n” in the figure refers to intended interpretations of a CCR pattern

r(c, d) as [O,n] cardinality constraints between two classes C and D, e.g. in the UML
model [14]); observe that the same argument applies to the inverse relations w.r.t. range

restrictions. Unfortunately (A) is the only option available assuming RDFS or DL-Lite;

hence the negative answer to Q1.

Moreover, assume to represent these multi-layered mappings (multi-layering) by

means of one ontology that import all the CCR schemata and defines their mappings.

The resulting ontology is clearly based on MURN, which means that more complex

strategies are needed to represent integration-abstraction relations in the context ad-

dressed in this paper. This is another argument against the adoption of the option (A).

The option (B) is safe against the above arguments, but does not capture the strong

commitments in the definition of the integration-abstraction relations. If option (C) is

applied to a-collapse and a-forget, we have a case similar to qualified universal re-
striction depicted in Figure 3. However, this does not occur if we consider their inverse

relations a-collapsed and a-forgot because a set of source concepts are a-collapsed
and a-forgot into at most one schema. We therefore propose a solution based on the
functional interpretation of the relations a-collapsed and a-forgot, and the exploita-
tion of inverse property axioms (last two rows of Table 2). Formally, this interpretation

is represented in Table 2.

4 Related Works

CCR models largely overlap with simple semantic nets whose nodes represent concepts

(and not instances). CCR models are isomorphic to Concept Maps [16] and to RDFS

153

Table 2: Semantics for LCCR ia-relations

LCCR SHOIQD (OWL-DL)

a-generalized(S:e, S′:f) "→ CS:e (CS′:f

a-forgot(S:e, S′:f) "→ CS:e (∀a-forgot.CS′:f

a-collapsed(S:e, S′:f) "→ CS:e (∀a-collapsed.CS′:f

a-generalize(S:e, S′:f) "→ CS′:f (CS:e

a-forget "→ a-forget ≡ a-forgot−

a-collapse "→ a-collapse ≡ a-collapsed−

under the interpretation given in Section 3 (if we assume not to consider property hi-

erarchies, not relevant to the claim of the paper); moreover, tools like Semantic Me-

diaWiki [8] and MoKi [9], which make the user specify global or local domain/range

restrictions through quantifier and cardinality-free forms or shortcuts, are based on a

front-end design language isomorphic to CCR models. CCR patterns in Semantic Me-

diaWiki are based on RDFS [8], which means that, in theory, only SURN schemata

can be represented. The interpretation of CCR patterns in MoKi is not clear from [9];

there are reason to believe that their interpretation is based on qualified existential range

restriction (the third top-most interpretation represented in Figure 3)

The work more related to our proposal the translation from concept maps to OWL

ontologies proposed in [6]. The proposed transformation covers more complex CCR

models than the one covered in this paper (e.g. it considers also instances as part of

the maps). They interpret Concept Maps propositions (analogous to CCR patterns) as

domain/range global union, and also refer to WordNet to disambiguate between in-

stances and concepts. However, they do not introduce any conditional domain/range

union semantics, and therefore they do not capture specific conditional dependencies

represented in the Concept Map propositions (see Section 3). Finally, the interpretation

they provide for the specification of multiple ranges for a same property looks coun-

terintuitive; e.g. the proposition (Activity, hasType, {Air Adv, Sea Adv}), is trans-
lated into the axiom Activity * ∃hasTypeAir Adv. ∩ ∃hasTypeSea Adv., from
which it can be derived that an activity has always two types.

The approach to schema integration in the large based on integration-abstraction

primitive is based on the approach introduced in [11]. However, that approach was based

on Entity Relationship schemata, while here we discuss how to exploit the approach in

a semantic Web framework. Moreover, the classification of the three abstraction mech-

anisms, the relations to represent them, and their semantics are new contribution of this

paper. This approach to schema integration is very close to traditional techniques for

data integration, where the concepts of local schemata are mapped to the concepts of a

global schema [2]. At a schema-level, we differ from traditional approach because we

do not consider only subsumption-based mappings, which are the mappings that most

of the techniques for ontology alignment provide [17], but more in general abstraction-

based mappings; moreover we adopt a multi-layered integration approach because of

the large amount of schema considered. As argued in the paper, nor RDFS or DL-Lite

provide provide specific language constructs to model different kinds of integration-

abstraction relationships.

154

Abstractions in conceptual modeling have been studied to support database design

[18], database comprehension and schema summarization [19], formal characteriza-

tions of generic relationships [14], and, recently, theories of ontology granularity [15].

Abstraction based on forgetting has been applied toWeb ontologies [20]. As for concep-

tual database design, abstraction primitives are exploited to refine or abstract concep-

tual schemata in top-down and bottom-up database design methodologies [18]. As for

database comprehension, several papers address the problem of dominating complexity

of large schemata by means of schema clustering techniques (see [21], [13] and refer-

ences therein). Abstraction are exploited also in [19] to make flat conceptual schemata

more comprehensible; the conceptual modeling language used in [19] is Object-Role

Modeling (ORM), which is more expressive than ER. All the above mentioned ap-

proaches do not explicitly define the abstraction relations between the clusters of en-

tities and their abstract representatives in terms of set-theoretic semantics; instead, the

abstraction mechanisms are defined in terms of operations carried out on the schemata.

Generic relationships and their semantics in conceptual models are analyzed in [14];

some of these generic relationships, i.e. aggregation, generalization and grouping can be

interpreted as or are related to abstraction relations between concepts. The exploitation

of abstraction to enhance comprehension of ontologies and conceptual models has been

also proposed in [15]. Three main types of abstractions representing three abstraction

mechanisms are introduced: (i) the relation is remodeled as a function; (ii) multiple

entities and relations fold into a different type of entity; (iii) semantically less relevant

entities and relations are deleted. The primitives used in this paper for ER conceptual

schemata overlap with the abstraction types discussed in [14],[15] and [20]. Forgetting

in CCR schemata is very close to deletion in ontologies as defined in [15].

5 Conclusions

In this paper we consider a context where the representation and integration of semantic

Web models (or schemata) is exploited to provide large organizations with an integrated

view of the information they manage. Discussing a case study in the eGovernment

domain and previous works of colleagues, we assume to adopt at the front-end level

light weight graph-based Concept-to-Concept Relationship (CCR) representations. We

therefore claim that, in the context of schema representation and integration in the large,

light-weight semantic Web languages such as RDFS and DL-Lite (i) cannot be used to

provide the semantics of individual CCR models and (ii) are not sufficient to provide

appropriate semantics for the definition of the loose mappings needed for model integra-

tion. We therefore propose a new interpretation of CCR models semantics; moreover,

based on the identification of three abstraction mechanisms exploited in the integra-

tion process, we define three main classes of integration-abstraction relations and their

semantics.

The approach and the translations defined in the paper allow for the reuse of the

methodology and the schemata in the repositories described in [10] in a semantic Web

framework. Current research is aimed to develop effective and user friendly graphical

interface to browse and edit multi-layered repositories of schemata.

155

References

1. Staab, S., Studer, R.: Handbook on Ontologies (International Handbooks on Information

Systems). SpringerVerlag (2004)

2. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33

(2004) 65–70

3. Baumeister, J., Reutelshoefer, J., Puppe, F.: Engineering on the knowledge formalization

continuum. In: SemWiki’09: Proceedings of 4th Semantic Wiki workshop. (2009)

4. Paslaru, E., Simperl, B., Tempich, C., Sure, Y.: Ontocom: A cost estimation model for

ontology engineering. In: Proceedings of the 5th International Semantic Web Conference

ISWC2006. (2006)

5. Hepp, M.: Possible ontologies: How reality constrains the development of relevant ontolo-

gies. IEEE Internet Computing 11 (2007) 90–96

6. Simón, A., Ceccaroni, L., Rosete, A.: Generation of OWL ontologies from concept maps in

shallow domains. (2007) 259–267

7. Calvanese, D., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable Description Logics

for ontologies. In: In Proc. of AAAI 2005. (2005) 602–607

8. Krötzsch, M., Vrandečić, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia. Web

Semant. 5 (2007) 251–261

9. Ghidini, C., Kump, B., Lindstaedt, S.N., Mahbub, N., Pammer, V., Rospocher, M., Serafini,

L.: Moki: The enterprise modelling wiki. In Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,

P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E.P.B., eds.: ESWC.

Volume 5554 of Lecture Notes in Computer Science., Springer (2009) 831–835

10. Batini, C., Barone, D., Garasi, M., Viscusi, G.: Design and use of ER repositories: Method-

ologies and experiences in egovernment initiatives. In Embley, D.W., Olivé, A., Ram, S.,

eds.: ER. Volume 4215 of Lecture Notes in Computer Science., Springer (2006) 399–412

11. Batini, C., Battista, G.D., Santucci, G.: Structuring primitives for a dictionary of entity

relationship data schemas. IEEE Trans. Softw. Eng. 19 (1993) 344–365

12. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. In McIlraith, S.A., Plex-

ousakis, D., van Harmelen, F., eds.: International Semantic Web Conference. Volume 3298

of Lecture Notes in Computer Science., Springer (2004) 713–725

13. Tavana, M., Joglekar, P., Redmond, M.A.: An automated entity-relationship clustering algo-

rithm for conceptual database design. Inf. Syst. 32 (2007) 773–792

14. Dahchour, M., Pirotte, A., Zimányi, E.: Generic relationships in information modeling. J.

Data Semantics IV 3730 (2005) 1–34

15. Keet, C.M.: Enhancing comprehension of ontologies and conceptual models through ab-

stractions. In: AI*IA ’07: Proceedings of the 10th Congress of the Italian Association for

Artificial Intelligence on AI*IA 2007, Berlin, Heidelberg, Springer-Verlag (2007) 813–821

16. Coffey, J.W., Hoffman, R.R., Cañas, A.J.: Concept map-based knowledge modeling: per-

spectives from information and knowledge visualization. Information Visualization 5 (2006)

192–201

17. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag, Heidelberg (DE) (2007)

18. Batini, C., Ceri, S., Navathe, S.B.: Conceptual database design: an Entity-relationship ap-

proach. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA (1992)

19. Campbell, L.J., Halpin, T.A., Proper, H.A.: Conceptual schemas with abstractions making

flat conceptual schemas more comprehensible. Data Knowl. Eng. 20 (1996) 39–85

20. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting concepts in DL-Lite. In Bechhofer,

S., Hauswirth, M., Hoffmann, J., Koubarakis, M., eds.: ESWC. Volume 5021 of Lecture

Notes in Computer Science., Springer (2008) 245–257

21. Sousa, P., de Jesus, L.P., Pereira, G., e Abreu, F.B.: Clustering relations into abstract er

schemas for database reverse engineering. Sci. Comput. Program. 45 (2002) 137–153

156

