

# Where is the Semantics on the Semantic Web?

# Ontologies and Agents Workshop Autonomous Agents

Montreal, 29 May 2001

#### Mike Uschold

Mathematics and Computing Technology
Boeing Phantom Works

# **Acknowledgements**

# Material from this lecture was drawn from many fruitful discussions with:

- Peter Clark
- John Thompson
- Rob Jasper
- Anita Tyler
- Dieter Fensel
- Frank vanHarmlen
- Michael Gruninger



# The Evolving Web

- Locating Resources
  - free text & keyword search → semantic search
- Web Users
  - primarily humans → both humans and machines
- Web Tasks & Services
  - a place to find things → a place to do things

#### **Semantics is the Core Requirement**

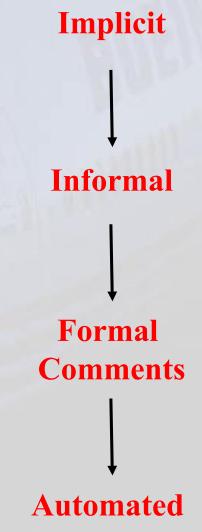
web content with no semantics → with semantics



## **Agents and the Semantic Web**

- Semantic Web: killer 'app' for agents?
- Agents need to communicate and understand meaning.
  - Advertise and require capabilities
  - Locate meaningful information resources on web
     & combine them in meaningful ways to perform tasks
  - How to interpret communication acts?
- But what do we mean by the Semantic Web?




## **TBL's Vision**

- Extension of current web;
- Layered, extendible, composable;
- Meta-data, Ontologies, KBs, Agents, WWKB
  - Inference, proofs, queries
- 'Semantics' in machine processible form.



# What do we mean by 'Semantics'?

- Semantics of What?
  - language?, term?, expression?
  - communication protocol?
  - domain ontology & markup!
- Plicity: Are the semantics implicit or explicit?
- Formality: How are semantics expressed?
- Semantics Processing: Who are they for?
  - human only fully manual
  - human and computer partially automated
  - computer only fully automated





## **Examples**

- Implicit: based on human consensus, shared understanding
  - Typical XML tags

```
- <price> 200 </price>
- <address> ... </address>
- <delivery-date> ... </delivery-date>
```

- Used by screen-scrapers, wrappers
- Rife with ambiguity.
- Informal: only humans can use (until NLP solved)
  - Text specification document for HTML e.g. <h2>
  - UML semantics document
  - Java language definition, for compiler writers
  - Still ambiguous



# **Examples**

#### 'Formal Comments'

- Semantics of FIPA ACL 'inform' in modal logic
- Formal definitions in any requirements spec (e.g. Z)
- Many axioms in Ontolingua ontologies
- Much less ambiguous
- Still error-prone, human in the loop.

#### Automated

- RDF(S), DAML+OIL term definitions
   e.g. mammal, date
- How does the machine process the semantics?



### **Machine Processible Semantics**

- How can an agent learn the meaning of a term?
- Procedural Semantics
  - How does an agent system know what to do when it sees the term 'inform'
  - The (possibly informal) semantics of 'inform' is embedded in a procedure by a human.
  - The system places a call to the procedure when it encounters 'inform'.
  - The 'meaning' of 'inform' is what happens when this procedure is called.
- Machine processible semantics? perhaps.



### **Machine Processible Semantics**

- Learning the meaning of a term from a formal declarative specification of the semantics...
- General case: no assumptions, nothing shared
  - all symbols might as well be in 'Greek' script
  - no knowledge of language syntax, or semantics
  - Cryptography, impossible to automate
  - So, we have to cheat…
- We must make some assumptions...



# **Assumptions: language**

- Shared language syntax and semantics,
  - e.g. KIF, RDF(S), DAML+OIL

- But: may have incompatible assumptions in conceptualization.
  - Time point, vs. time interval
  - Agent can never incorporate meaning of new term in its axioms.



## More Assumptions: compatibility

- Logical compatibility as well as language.
- But: Different people build different ontologies for the same domain.
  - Two terms, same meaning, or vica versa;
  - Same concept modeled at different level of detail;
  - Different language primitives used for same concept;
    - e.g. red an attribute, or RedThings a class.
- Computationally intractable to determine if two terms actually mean the same thing.
  - I.e. have same set of models



# **More Assumptions: sharing**

#### Term explicitly mapped to a shared concept

- Encounter new term, leprechaun, a subclass of mammal.
- 'mammal' defined in shared animal ontology in OIL.

#### Machine can learn something about meaning.

- I.e. there are now more things that it cannot be.
- Still plenty of scope for ambiguity;
- Definition of mammal in OIL can never be complete.

#### Can do some inference

 e.g. for search application looking for content about mammals.



# **Processing Semantics**

- Relies on a formal semantics of OIL to infer semantics of terms and expressions in OIL.
- OIL semantics is for humans
  - it helps build inference engines;
  - not machine processible.
- Humans may still embed some meaning in code
  - May be dangerous to do so or –
  - May be necessary to do so...
- The shared concept referred to may not be formally defined (e.g. Dublin Core terms)



# Enter: Opinion and Speculation Mode



#### When is Semantic Web Needed?

- Good Question! Where are the use cases?
- No case made for search, at least not for humans. Google works brilliantly!
- Build it and they will come! Or will they?
- Analogy: So what if my toaster can talk to my washing machine!
  - What would they say?
  - Does this improve my life?



## Law of the Semantic Web?

The more agreement there is, the less it is necessary to have "machine sensible semantics".

- E.g. <h2> in HTML specification;
- No need to do inference;
- Just embed the semantics in the browsers.



# **Two Show Stoppers**

#### Mapping

- There will never be global standards
- Mapping will always be necessary
- Hard to automate
- Time-consuming to do manually

#### Markup

- Noone will do this unless it is painless.
- Can't get anywhere without it.



# **How to Cope?**

#### Mapping

- Get agreement where possible, standards in limited communities and scope;
- Create mappings as necessary;
- Do lots of research!

#### Markup

- Many good statistical techniques from IR
  - Limited to putting things in buckets, not fine grained semantic markup
- Markup for 'free' ala Hendler's recent paper "Agents on the Semantic Web" (or similar)



# **Summary:**Where <u>IS</u> the semantics?

- Often just in the human.
- Informally in specification documents.
- Embedded in implemented code.
- Formal Comments to help humans understand and/or write code.
- Formally encoded for machine processing
- In the representation language specification



# **Summary: Characterizing the Semantic Web**

- Purpose, Benefits, Mechanisms of semantics
  - Needs a lot more work!
- What has the semantics?
  - Language? Terms? Communication protocols?
- Representing and Processing semantics
  - Implicit or Explicit?
  - Formal or Informal?
  - For human or for computer?
- Agreement and Sharing of semantics
  - Does agreement reduce need for explicit semantics?

