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Abstract Publishing sensor observations on the Linked Data web is
the �rst step in enabling the development of semantic web applications
and mashups that can utilise sensor data. We present the design for a
prototype API exposing data from the Channel Coastal Observatory in
the UK. By combining REST and Linked Data principles we support
both Semantic Web clients, OGC GML clients, and hybrid applications
that can transpose between these, and other, representations.

1 Introduction

There have been numerous successful applications of semantics and Semantic
Web technology to sensor networks. But what happens once we have this se-
mantically enriched sensor data? Can the wider world access and make use of
it? Can we combine sensor data with other data sources in a useful manner?

The Linking Open Data project reminds us of the web part of Semantic Web

through extensive use of resolvable resources and the links between them. With
this in mind, we aim to design a high-level API for semantic mashups and web
applications based on three objectives:

1. to publish the sensor observations as linked data, enabling Semantic Web
client applications that can combine these observations with other domain
information retrieved from the linked data web (e.g. land use, transport).

2. to RESTfully publish sensor observations to clients that support existing
GML schema.

3. to allow the development of hybrid clients which can transpose between
linked data and GML (or other) representations, taking best advantage of
both.

In this paper we �rst introduce the key principles and practises of both Linked
Data and REST, before applying these principles to the RDF and GML resources
and representations of our web service.

We then describe, through examples, an instantiation of the API design over
observations from the Channel Coastal Observatory in the UK, before highlight-
ing some of the problems with the current design and potential extensions to
the API.
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2 Scope

This paper describes experiences designing a web service to expose sensor data on
the linked data web, and transposing between this semantic representation and
existing data encoding standards. As such it is primarily an infrastructure piece,
and while the use of ontologies is required for RDF representations of resources
in our implementation, we do not cover speci�c ontologies - or the design of
new ontologies - in any detail. As the service progresses toward public release
long-term support for the ontologies we utilise will become more important;
we believe the principles outlined here will be applicable as and when a more
permanent and complete ontology set is selected. In the meantime such ontologies
- both for sensor and observation concepts, and domain ontologies for features
and observed properties - are under active development both within the EU
Semantic Sensor Grids for Rapid Application Development for Environmental

Management project (SemSorGrid4Env), and forums such as the W3C Semantic
Sensor Networks Incubator Group.

3 Linked Data on the Semantic Web

Linked Data refers to data published on the Web in such a way that
it is machine-readable, its meaning is explicitly de�ned, it is linked to
other external data sets, and can in turn be linked to from external data
sets. [1]

Linked data can also be seen as an attempt to apply the de�ning characteristic
of the document Web - the link - to a machine-readable, self-describing, web
of data. Perhaps put another way, it's a reminder there is a `Web' as well as a
`Semantic' in `Semantic Web' !

The linked data web is constructed atop a number of principles and best
practice. These were �rst set out by Berners-Lee in his 2006 design note[2]:

1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL)
4. Include links to other URIs, so that they can discover more things

While the use of URIs is common throughout the Semantic Web - not least as
the basic element of RDF - the requirement to use HTTP URIs sets Linked
Data deployment apart. It is a departure from the use of URIs purely as unique
identi�ers within the graph; in Linked Data they are also a means of retrieving
parts of the graph relevant to that resource - the URIs can be dereferenced.

This dual use of HTTP URIs does not, however, remove the need to dis-
tinguish between the two uses: a web client must be able to tell the di�erence
between a URI representing the person Tim Berners-Lee (a non-information
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resource) and a URI providing information about Tim Berners-Lee (an infor-

mation resource); even if, in the linked data web, we dereference the former to
retrieve the latter.

A web server communicates this distinction to the client through a combina-
tion of the HTTP 303 See Other redirection code (referred to as the httpRange-
14 solution) and content negotiation, i.e. returning di�erent representations ac-
cording to the HTTP Accept header set by the client [3] .

There are two general cases for this solution (�gure 1):

1. if an information resource describing the non-information resource has multi-
ple representations (e.g. in RDF and HTML) of the same information then
the web server should �rst redirect the client (via a 303 response) to the
intermediate information resource URI (indicating the move from a non-
information resource to an information resource), and then use content ne-
gotiation to return the appropriate representation. The Content-Location

header should be used to con�rm the URI of this representation.

2. if the information resources describing the non-information resource contain
di�erent information depending on which representation is requested (e.g.
the RDF representation contains di�erent information to the HTML, not just
a di�erent representation), then the web server should redirect the client
(via a 303 response) directly to the information resource appropriate to
the requested content type, without an intermediate common information
resource. The Content-Location header should be used to con�rm the URI
of the returned representation.

Our implementation of this mechanism for sensor observations is detailed in
section 6.1.

Finally, it is noted that the use of resolvable (HTTP) URIs does not imply the
encoding of semantics within a URI, and that the syntax used by a web server
when returning a resource should not be interpreted as having such meaning.
Apparent abstractions of the URI API (e.g. http://example.com/<element>/
<type>/<time>) can not, and should not, be provided - certainly when describ-
ing the interaction with a client application. Use and manipulation of such an
abstraction might provide a useful shortcut for developers looking to manually
locate and trial resources; the use of such `friendly' URIs that may encourage
this misuse are not without merit when providing manageable endpoints for
developers and end-users; but a linked data client should primarily access new
resources via the links asserted within the (RDF) graph.

4 REST

Representational state transfer (REST) is a set of design principles which have
been popularly and successfully adopted in many (`RESTful') web services, and
is typically framed as an alternative to `heavyweight' web services, including as
the WS-* family.
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Figure 1. Dereferencing and content negotiation

REST aims to capture the features of the Web which have enabled it to scale
so successfully:

� everything is a resource which is addressable
� resources have multiple representations
� relationships between resources are expressed through hyperlinks
� all resources share a common interface with a limited set of operations
� client server communication is stateless

REST is not, however, de�ned in terms of, nor limited to, the web [4] (though
HTTP meets the REST criteria) and while there have been attempts to clar-
ify the application of REST to web services through de�nition of a Resource
Oriented Architecture [5] the term is still often loosely, sometimes incorrectly,
applied.

The key principle of REST is the use of resources for speci�c things that we
wish to reference, and the referencing of these resources using URIs. Represen-
tations of these resources � encoded in a particular format - are then accessed
through the URI, usually using HTTP. REST limits the operations exposed by
a web service to a small, well-de�ned, standard, set � for HTTP these are GET,
POST, PUT, and DELETE, which are intrinsically compatible with (and a part
of) Web architecture. This contrasts with a potentially expansive set of operators
(for RPC style web services) or message contracts (for SOA style web services).
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In the sense that they are both attempting to identify and replicate the
successful architectural style and scalability of the Web, REST and Linked Data
have shared aspirations; their focus on the use of resource URIs, Web style
linking, and implementation using HTTP, provide a common technical bedrock
which in, in both cases, leads to design strongly focused on the identi�cation of
resources and their representations.

As with Linked Data, URIs are both a retrieval mechanism and identi�er;
again the URI is opaque, and a client must access resources through the links
provided from one resource representation to another.

While in many respects the Linked Data approach would appear to be REST-
ful, di�erences are found in the nature of the representations returned when re-
solving, or dereferencing, a resource URI. This would primarily seem to be an
artifact of the data models typically associated with each approach: XML and
RDF. XML has a design based on the concept of a document, so information
about a resource is more easily and portably expressed as self-contained XML
`documents'; representations of resources in REST systems often follow this pat-
tern (with links to other XML `documents' describing other resources). RDF, on
the other hand, allows � encourages � assertions about a resource to be made
anywhere on the semantic web; it is therefore much less likely that dereferencing
a resource will return the complete set of assertions about that resource.

5 Interfaces to Sensor Data

`Mashups' have demonstrated the practicality and popularity of APIs3 (many
RESTful) that enable the rapid development of web applications combining data
from several sources. This data rarely shares a common data model and is nor-
mally combined `manually' by the mashup developer; we propose the use of
Linked Data to support more powerful and �exible web applications that can
semantically utilise sensor data.

Exposing sensor data according to linked data principles and practice is a
�rst and necessary step to enabling linked data applications. In this paper we
introduce a dual purpose API design that combines the provision of linked sensor
data with a read-only4 RESTful interface to existing standardised data encod-
ings. Using this API a client application can move seamlessly between RDF
and GML representations, taking advantage of the semantic linking provided
in linked data, while being able to retrieve established encodings for Web GIS
applications when required. Conversely an application can use a GML identi�er
as a jumping o� point into the linked data web.

GML[6] is a particularly interesting XML representation since it has several
RDF-like features: an object-property-value model similar to the RDF model,

3 http://www.programmableweb.com/
4 The current design and implementation provides a read-only API; some would assert
this does not constitute a complete RESTful service, however we contend that the
design centred around resources and representations strongly conforms to the REST
architectural style.
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and extensive (if perhaps under-utilised) support for remote properties using
xlink:href. This probably shouldn't come as a surprise: early versions of GML
included an RDFS pro�le [7].

We take a data-(consumer-)centric approach to the sensor data and adopt
the Observations and Measurements (O&M) model [8] through both its GML
Application Schema and, by including some key concepts (Observation, Observa-
tionCollection, Feature) and properties (samplingTime, resultTime, featureOfIn-
terest, result, observedProperty, member), in a small ontology. While ontological
evaluation has identi�ed weaknesses in the O&M model[9], our primary focus �
as noted in section 2 � is on the mechanisms for linking data and representations.
A very simple ontology (�gure 2) closely matching the O&M speci�cation is suf-
�cient for these preliminary prototypes pending adoption of more sophisticated
ontologies for observations, devices, and domain data.

Figure 2. Key concepts and properties in the simple observation ontology

We also note that the O&M GML representation of resources (and SensorML
for appropriate resources) is compatible with the O&M GML and SensorML re-
turned by the Sensor Observation Service (SOS)[10] (particularly the GetObser-
vation and DescribeSensor functions). SOS has been shown to o�er advantages
over WFS when publishing time series data[11]. The design described herein can
also be considered a partial implementation of a RESTful SOS; we hope that
this will allow adaption of SOS clients to work with our API.

6 Channel Coastal Observatory implementation

The Channel Coastal Observatory (CCO) is the data management centre for the
Regional Coastal Monitoring Programmes of England. Over a period of more
than 5 years, the GeoData Institute has designed, built from the top down, and
operated the data management infrastructure to run this programme. This in-
cludes software to manage and transmit real-time data from the largest network
of coastal sensors in the UK; a data management infrastructure to manage data
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and metadata for over 65,000 environmental surveys of di�erent types amount-
ing to terabytes of storage; and a website to deliver real time and surveyed data
to a public audience though highly complex dynamic map and data visualisation
interfaces, serving over a million hits per month.

As part of the SemSorGrid4Env project a high-level API for web applica-
tions is being developed. This semantically exposes the CCO sensor network
data, combining the principles and practice of REST APIs and linked data, en-
abling rapidly development of applications that will link sensor observations with
diverse domain data (to support use cases such as �ood planning and emergency
response).

Initial development of the API has focused on publishing data from a network
of marine and coastal sensors monitoring:

� wave height

� sea surface temperature

� wave period

� wave spread

� wave direction

� tide height

In this section we explore the current design of the prototype API by way of
example.

6.1 Dereferencing and Content Negotiation

The (non-information) resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

is the set of all observations of Hs (signi�cant wave height) from the Boscombe
sensor on August 1st 20095.

When a client attempts to dereference this resource (e.g. through an HTTP
GET), the web server responds with code 303 See Other and the information
resource (�gure 3):

http://data.channelcoast.org/observations/boscombe/Hs/20090801

Content negotiation is then used to retrieve a suitable representation:

� application/rdf+xml returns an RDF representation.

� application/xml returns a GML representation.

� text/html returns an HTML rendering for viewing in a traditional web
browser.

5 As noted in earlier sections, the URI for the resource should be treated as an opaque
string; while the implied structure within the URI is helpful when designing and
maintaining the web service (and perhaps for developers when writing clients), client
applications must navigate to and between resources using links between those re-
sources.
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Figure 3. Dereferencing URIs on the CCO server

In each case the web server responds with code 200 OK and sets the Content-Location
header to the resource of the negotiated representation, e.g.

http://rdf.channelcoast.org/observations/boscombe/Hs/20090801

http://om.channelcoast.org/observations/boscombe/Hs/20090801

http://pages.channelcoast.org/observations/boscombe/Hs/20090801

followed by the appropriate representation in the HTTP body.

The intermediate stage of redirecting to a common information resource URI
indicates to the client that the following content negotiation is for di�erent rep-
resentations of the same information. For example, this means that if the client
has reached the resource through RDF representations, but needs to plot the
data using an OGC compliant tool (e.g. within a mapping layer) it can request
the GML representation knowing it is plotting the same information.

Other representations might, by necessity of the encoding, be of closely re-
lated but di�erent information. An earlier incarnation of the CCO server im-
plementation returned a GML representation using the WFS schema to create
a MapServer compliant layer, and while we wish to preserve this functionality,
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the `�attened' nature of the data in the WFS layer means this representation
contains di�erent information to those based on O&M (described below).

In this situation we use the content type application/vnd.ogc.wfs to en-
able a client to retrieve a backwards-compatible representation; when the client
requests the non-information resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

with content type application/vnd.ogc.wfs, the server performs a 303 redirect
directly to the WFS GML (setting the Content-Location header accordingly):

http://wfs.channelcoast.org/observations/boscombe/Hs/20090801

In redirecting directly to the WFS information resource through content
negotiation (rather than through the common information resource and then

performing content negotiation), the web server has indicated that this is a
di�erent (but related) information resource, not a di�erent representation of the
same information resource.

6.2 Identi�cation of resources and representations

Given the consumer-centric[8] nature of the applications the CCO web service
is expected to support, and a data set consisting principally of measurements,
we have adopted the Observations and Measurements model when returning
structured data to the client.

Figure 4 shows a number of relationships between key URIs, again focusing on
the interface for retrieving signi�cant wave height. Resources for other observed
properties follow a similar structure, and examples of how these relationships
are encoded in speci�c representations follows in section 6.3.

Since we wish to return XML (GML) representations as well as RDF, the
identi�cation and structuring of resources bears many similarities to the docu-
ment (XML) oriented design of REST APIs (section 5): identi�cation and struc-
turing of resources can be very dependent on the data (the resources) being
exposed. For example, our primary observation resources are of the form:

http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500

where the individual observation is dereferenced by retrieving the resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

This strikes a balance between the size of the retrieved resource representation
and the number of links the client must retrieve for this particular data set.
In this case the observations of Hs at Boscombe at taken half-hourly, so the
resource that must be retrieved to dereference any one observation will contain
48 observations (all the observations for the day).
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Figure 4. Selected resources and links from the http://id.channelcoast.org/

namespace (not comprehensive).

6.3 Examples of resource representations

The following XML fragments demonstrate the content of the O&M GML and
RDF representations of:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

The O&M GML encoding is returned for application/xml:

<?xml version="1.0" encoding="UTF-8"?>
<om:ObservationCollection gml:id="this"

xmlns:om="http://www.opengis.net/om/1.0"
xmlns:gml="http://www.opengis.net/gml"

[...] >
<gml:description>Wave height observations at Boscombe on 2009-08-01

</gml:description>
<om:member>
<om:Observation gml:id="140500">

<om:resultTime>
<gml:TimeInstant gml:id="T140500">

<gml:timePosition>2009-08-01T14:05:00</gml:timePosition>
</gml:TimeInstant>

</om:samplingTime>
<om:samplingTime>

[...]
</om:samplingTime>

<om:procedure xlink:href=
"http://id.channelcoast.org/sensors/boscombe"/>

<om:observedProperty xlink:href=
"http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height"/>

<om:featureOfInterest xlink:href=
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"http://www.eionet.europa.eu/gemet/concept?cp=7495"/>
<om:result xsi:type="gml:MeasureType" uom="urn:ogc:def:uom:OGC:m">

0.28
</om:result>

</om:Observation>
</om:member>
<om:member>

<om:Observation gml:id="143500">
[...]

</om:Observation>
</om:member>

</om:ObservationCollection

The RDF representation is returned for application/rdf+xml:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:om2="http://rdf.channelcoast.org/ontology/om_tmp.owl#"

[...]
>
<rdf:Description rdf:about=

"http://rdf.channelcoast.org/observations/boscombe/Hs/20090801">
<rdfs:label>

An RDF representation of wave height observations at Boscombe on 2009-08-01
</rdfs:label>

</rdf:Description>
<om2:ObservationCollection

rdf:about="http://id.channelcoast.org/observations/boscombe/Hs/20090801">
<om2:member>

<om2:Observation rdf:about=
"http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500">

<om2:resultTime>
<om2:TimeInstant rdf:about=

"http://id.channelcoast.org/observations/boscombe/Hs/20090801#T140500">
[...]

</om2:TimeInstant>
</om2:resultTime>

[...]
<om2:procedure rdf:resource="http://id.channelcoast.org/sensors/boscombe"/>
<om2:observedProperty rdf:resource=

"http://marinemetadata.org/2005/08/ndbc_waves#Wind_Wave_Height"/>
<om2:featureOfInterest rdf:resource=

"http://www.eionet.europa.eu/gemet/concept?cp=7495"/>
<om2:result [...]

[...]
</om2:Observation>

</om2:member>
</om2:ObservationCollection

</rdf:RDF>

While both excerpts have been reduced for brevity, the key point to note is
that the URIs for resources are consistent between representations: when a client,
having received a representation, dereferences one of the resources within, that
URI will in turn be dereferenced according to the needs of the client application.
The client can continue navigating through the same dimension of information
space in RDF or GML, or transpose from one to the other.
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Consistent use of URIs is maintained in other observation collections. For
example:

http://id.channelcoast.org/observations/Hs/20090801

contains parallel fragments in GML:

<om:ObservationCollection gml:id="this" [...]>
[...]
<om:member>

<om:Observation xlink:href=
"http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"/>

[...]

and in RDF:

<o2:ObservationCollection rdf:about=
"http://id.channelcoast.org/observations/Hs/20090801">

[...]
<om2:member rdf:resource=

"http://id.channelcoast.org/observations/boscombe/Hs/20090801#140500"/>
[...]

7 Discussion

7.1 Limitations of combining GML and Linked Data

While there are clear bene�ts to alternately returning GML and Linked Data
representations of a resource, each of these representations has particular con-
straints � be that conceptual model, design principle, or XML serialisation � and
though they are in general complementary, a few speci�c interactions create as
yet unresolved limitations of our approach.

With regard to aggregation and nesting of observation collections, the O&M
GML Application Schema is relatively constrained: more specialised observation
collections have typed constituents that are too speci�c to be transcluded in
more general, otherwise specialised, or multiply nested, collections. While this is
not an issue in existing O&M applications (e.g. using an SOS), the Linked Data
principles lead us to both uniquely identify individual observations (i.e. avoiding
duplication of a single observation at several URIs and creating duplication in
the graph) and the identi�cation and publication of aggregate resources that by
their nature include observations that have already been `used'/published as, or
as a part of, another resource (i.e. we must use linking rather than duplication).

For example, it would be desirable to have the URI:
http://id.channelcoast.org/observations/boscombe/Hs

represent all the observations of Hs at Boscombe, and this to be an aggrega-
tion in the form of an ObservationCollection, where each member is in turn an
ObservationCollection such as:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

(there would be as many references to other ObservationCollections as there are
days on which observations have been made).

While this is relatively simple to implement in RDF - ObservationCollection
as a subClass of Observation, and member a TransitiveProperty with rdfs:range
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Observation - this is not possible using the O&M GML Schema [12]. This leaves
two possibilities for the O&M GML representation:

1. Do not return a GML representation and return a 406 Not Acceptable

code.
2. 303 redirect straight to an information resource content negotiated for application/xml,

without a common information resource shared with the RDF representa-
tion. The body returned contains a `�attened' ObservationCollection with
xlinks directly to the Observations required; this is the similar to the ap-
proach taken for WFS compatibility (section 6.1).

While the current CCO design takes the latter approach, without nested ag-
gregations the number of Observations returned is potentially very high, and
as such a compromise is made to rede�ne the resource as e.g. Observations of
Hs at Boscombe over the last week (rather than all time). A hybrid approach
might combine the original resource de�nition with a 406 for GML with a second
resource limited to collections that are reasonable to return in GML (e.g. the
observations from the last week).

Further limitations of the O&M GML Schema, as documented in [12], restrict
the expressive completeness of our representations. For example, the resource:

http://id.channelcoast.org/observations/boscombe/Hs/20090801

is a time series observation. However, if the O&M GML returned encoded this
explicitly, the results would be within a CV_DiscreteTimeInstantCoverage.
This typing would, in turn, limit linking to constituent observations. As with the
previous example, these limitations can be overcome in the RDF representation.

8 Conclusions and future work

The web of Linked Data holds great potential for the creation of semantic ap-
plications that can combine self-describing structured data from many sources
including sensor networks. These applications build upon the success of an earlier
generation of `rapidly developed' applications that used RESTful APIs, although
the data really was `mashed up' without any underlying common data model or
principled integration.

Before linked data applications can use sensor observations, they must be
published in a form compatible with the Linked Data principles. In this paper
we have introduced one such API for the Channel Coastal Observatory, and
shown how the consistent use of URIs across representations can also enable
clients using XML representations such as GML, and hybrid clients that can
switch between the two. In the next stages of the SemSorGrid4Env project we
will be making use of the API to develop such applications in support of our
�ood and �re management use cases. Revision and iterative improvement of the
API will doubtless follow based on this experience!

A notable omission from the current design is a form of query interface.
As discussed in the previous section the number of members in a time series
observation is potentially very large. While, from the position of publisher, one
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can carefully allocate resources that return a `reasonable' number of observations
(as we did), this is unlikely to satisfy the needs of all users and developers.
Given the potentially in�nite combination of temporal ranges, while URIs could
be speculatively allocated to represent these, the question then becomes how
this great number of range resources are published and linked to (without the
URI being overloaded as a query syntax and hard-coded into the system). While
a SPARQL endpoint is not a requirement for publishing Linked Data (indeed
several notable examples publish their linked data for a third party to provide
a SPARQL endpoint for) some form of query interface will be considered for a
future version of the CCO interface.
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