
1

Reasoning With Provenance, Trust and all that other
Meta Knowlege in OWL
Simon Schenk∗, Renata Dividino∗ and Steffen Staab∗
∗ ISWeb Research Group University of Koblenz-Landau

Email: sschenk, dividino, staab@uni-koblenz.de

Abstract—For many tasks, such as the integration of know-
ledge bases in the semantic web, one must not only handle the
knowledge itself, but also characterizations of this knowledge,
e.g.: (i) where did a knowledge item come from (i.e. provenance),
(ii) what level of trust can be assigned to a knowledge item, or
(iii) what degree of certainty is associated with it. We refer to all
such kinds of characterizations as meta knowledge. Approaches
for providing meta knowledge for query answers in relational
databases and RDF repositories, based on algebraic operations,
exist. As query answering in description logics in general does not
boil down to algebraic evaluation of tree shaped query models,
these formalizations do not easily carry over. In this paper
we propose a formalization of meta knowledge, which is still
algebraic, but allows for the computation of meta knowledge of
inferred knowledge in description logics, including reasoning with
conflicting and incomplete meta knowledge. We use pinpointing
to come up with meta knowledge formulas for description logics,
which then can be evaluated algebraically. We describe and
evaluate our prototypical implementation.

I. INTRODUCTION

When exploiting explicit/inferred knowledge in the semantic
web, one must not only handle the knowledge itself, but
also characterizations of this knowledge, e.g.: (i) where did
a knowledge item come from (i.e. provenance), (ii) what level
of trust can be assigned to a knowledge item, or (iii) what
degree of certainty is associated with it. We refer to all such
kinds of characterizations as meta knowledge. On the semantic
web, meta knowledge needs to be computed along with each
reasoning task.

Meta knowledge can come in various, complex dimensions.
Many simplifications done today, such as assuming trust to be
measured on a scale from 1 to 10, are not justified. In contrast,
actual information sources, modification dates, etc. should be
tracked to establish trust [1]. We propose a flexible mechanism
for tracking meta knowledge, which meets these requirements.

Various approaches to this problem have been proposed.
They can be grouped in to three clusters: First, we have
extensions of logical formalisms, e.g. description logics, to
deal with a particular kind of meta knowledge. Most prominent
are extensions for reasoning with uncertainty, such as fuzzy
and probabilistic [2] or possibilistic [3] description logics.
Other proposals exist, which are tailored to specific meta
knowledge such as trust [4]. Second, for systems allowing
for algebraic query evaluation (such as relational databases
and SPARQL engines), more flexible mechanisms such as [5]
and [6] have been proposed, which allow for many kinds
of meta knowledge, but are limited to lower expressiveness

of the underlying logical formalism. Third, the expressive
system proposed by [7] has a rather ad-hoc semantics, which
is partially defined in constructors in queries and hence can
differ in each query evaluation.

To come up with a flexible mechanism, which at the same
time supports expressive logics and multiple kinds of meta
knowledge, a suitable formalization of meta knowledge in
a semantically precise manner is needed. Moreover, such a
mechanism must be supported with a suitable operationaliza-
tion. From the existing approaches it is clear, that integrating
an expressive meta knowledge language with an expressive
base knowledge representation language is a non-trivial task,
mainly because of the different foundations, i.e. algebra vs.
logics, of the meta knowledge and base languages.

Expressive descriptions of meta knowledge in less expres-
sive languages (such as SPARQL based on RDF) have been
founded on a tree-based algebraic formalization. Reasoning
frameworks, however, frequently have non-tree-based deriva-
tions used for consistency checking and querying. In order to
be able to reason with meta knowledge, which we formalize
as algebraic structure, on top of expressive base languages, we
propose a reasoning framework for meta knowledge based on
pinpointing. Pinpointing summarizes explanations for axioms
in a single boolean formula, which then can be evaluated
using a meta knowledge algebra. We provide a blackbox al-
gorithm for reasoning with meta knowledge, and describe our
prototypical implementation. The algorithm uses an existing
description logic reasoner for entailment checks. Hence, the
supported expressivity is that of the underlying description
logic.

As a motivation, we first explain a short use case, before
laying foundations and defining the semantics of meta know-
ledge. Afterwards we briefly discuss the complexity and our
prototypical implementation. We review the related work and
conclude the paper.

II. USE CASE

In a common scenario for collaborative ontology editing
we have public, living ontologies, for which users can propose
changes [8] and which are possibly interlinked through imports
or views. Applications include large medical and biological
ontologies such as SNOMED or the Gene Ontology. The
example in [8] is based on a use case at the UN’s Food and
Agricultural Organization FAO. A change can be the addition,
change, or removal of an axiom. Users have different levels

2

of expertise and hence their knowledge items are assigned
different degrees of trustworthiness. Moreover, there may be
conflicting changes or modifications, which make the ontology
inconsistent. When answering queries and inferring knowledge
in such systems, users need to know for example
• who contributed to axioms used to infer new knowledge,
• when they were last modified, and
• how trustworthy they are.

The derivation of meta knowledge can happen dynamically,
in a completely open system comparable to today’s wikis,
where the change history is available for every user.

III. FOUNDATIONS

As we use pinpointing as a vehicle for computing meta
knowledge, we introduce pinpointing as a foundation for
the rest of the paper and give some information of existing
algorithms for finding pinpoints.

A. Pinpointing

The term pinpointing has been coined for the process of
finding explanations for concluded axioms or for a discovered
inconsistency. An explanation is a minimal set of axioms,
which makes the concluded axiom true (or the theory incon-
sistent, respectively). Such an explanation is called a pinpoint.
While there may be multiple ways to establish the truth or
falsity of an axiom, a pinpoint describes exactly one such way.

Definition 1: Pinpoint.
A pinpoint for a entailed axiom A wrt. an ontology O is a
set of axioms {A1, ..., An} from O, such that {A1, ..., An} |=
A and ∀Ai ∈ {A1, ..., An} : {A1, ...Ai−1, Ai+1, ..., An} 6|=
A. Analogously, a pinpoint for a refuted axiom A wrt. an
ontology O is a set of axioms {A1, ..., An} from O, such
that {A,A1, ..., An} is inconsistent and ∀Ai ∈ {A1, ..., An} :
{A,A1, ...Ai−1, Ai+1, ..., An} is not.

Hence, finding pinpoints for a refuted axiom corresponds
to finding the Minimum Unsatisfiable Subontologies (MUPS)
for this axiom [9].

Pinpointing is the computation of all pinpoints for a given
axiom and ontology. The truth of the axiom can then be
computed using the pinpointing formula [10].

Definition 2: Pinpointing Formula.
Let A be an axiom, O an ontology and P1, ..., Pn with
Pi = {Ai,1, ..., Ai,mi} the pinpoints of A wrt. O. Let lab
be a function assigning a unique label to an axiom. Then∨n

i=1

∧mi

j=i lab(Ai,j) is a pinpointing formula of A wrt. O.
A pinpointing formula of an axiom A describes, which

(combination of) axioms need to be true in order to make
A true or inconsistent respectively.

B. Finding all Pinpoints

Algorithms for finding Pinpoints can be grouped into three
groups:

a) Finding one pinpoint: Algorithms to find one pin-
point can either derive a pinpoint by tracking the reasoning
process of a tableaux reasoner, or use an existing reasoner
as a black box. In the latter case, a pinpoint is searched by
subsequently growing (shrinking) a subontology until it starts
(stops) entailing the axiom under question. Based on the so
derived smaller ontology the process is refined, until a pinpoint
has been found. The advantage of blackbox algorithms is that
they can support any description logic, for which a reasoner is
available [9]. Extending a tableaux reasoner on the other hand
is complicated, but yields better performance, as a pinpoint
can be generated in parallel to a usual subsumption check
with low overhead [10].

b) Finding all Pinpoints using a Tableaux Reasoner:
Baader and Peñaloza have shown that forest tableaux with
equality blocking (and hence, reasoners for the web ontology
language OWL) can be extended to find pinpointing formulas
[10]. In this approach a tableaux reasoner is extended to find
not only one, but all pinpoints. Special care needs to be taken
in order to ensure termination of the tableaux algorithm. As
an advantage, the overhead for pinpointing is lower compared
to a blackbox algorithm. Moreover, this approach can derive
a compact representation of the pinpointing formula, which
might have worst-case exponential size in conjunctive normal
form. To the best of our knowledge none of the standard
reasoners for complex description logics has been extended
in this direction yet.

c) Finding all Pinpoints using Blackbox Algorithms: The
most performant black-box algorithms for finding all justifica-
tions first extract a relevant module from the overall ontology,
ensuring that this module yields the same inferences with
respect to the axiom on interest. Then, starting from a single
pinpoint, which is computed using an algorithm discussed in
paragraph III-B0a, Reiter’s Hitting Set Tree algorithm [11]
is used to compute all pinpoints by iteratively removing one
axiom from the pinpoint at hand and growing it to a full
pinpoint again [12], [13]. Using this kind of algorithm, a lot
of subsumption checks in the underlying description logic are
needed.

For both, tableaux based and black box algorithms, the
worst case complexity of finding all pinpoints is rather high,
as there can be exponentially many pinpoints for any given
ontology. However, recent work has shown that in the average
case, the number is significantly lower [10].

IV. SYNTAX OF META KNOWLEDGE

Meta knowledge can be expressed as annotations on axioms.
Annotations are of main importance for the management of
ontologies as annotations may be used to support analysis
during collaborative engineering.

We associate ontology axioms with meta knowledge through
axiom annotations. Basically, an axiom annotation assigns
an annotation object to an axiom e.g. ”(brokenLimb sub-
Class Limb) was created by Crow on 15.01.2008”. A meta
knowledge annotation consists of an annotation URI and a
meta knowledge object specifying the value of the annotation.
In our case, the meta knowledge object is a constant-value

3

TABLE I
EXAMPLE OF META KNOWLEDGE ASSOCIATED WITH AXIOMS.

ID Relevant Facts Meta Knowledge

#1 [limb1 Limb] statedBy Crow;
modified 14-01-2008

#2 [limb2 Limb] statedBy Crow;
modified 14-01-2008

#3 [limb1 isBroken true] statedBy House;
modified 15-01-2008;

#4 [limb2 isWrenched true] statedBy House;
modified 15-01-2008

representing who asserted/modified the axiom, when the axiom
was last modified, or the uncertainty degree of the axiom,
or a combination thereof. The grammar for meta knowledge
annotations as an extension of OWL 2 annotations1 is as
follows:

OWLAxiomAnnotation := ’OWLAxiomAnnotation’
’(’OWLAxiom OWLAnnotation+’)’

OWLAnnotation := OWLConstantAnnotation
OWLConstantAnnotation := MetaKnowledgeAnnotation
MetaKnowledgeAnnotation := ’MetaKnowledgeAnnotation’

’(’AnnotationURI MetaKnowledge+’)’
MetaKnowledge := CertaintyAnnotation | DateAnnotation |
SourceAnnotation | AgentAnnotation
CertaintyAnnotation := ’CertaintyAnnotation’

’(’AnnotationValue’)’
SourceAnnotation := ’SourceAnnotation’ ’(’AnnotationValue’)’
DateAnnotation := ’DateAnnotation’ ’(’AnnotationValue’)’
AgentAnnotation := ’AgentAnnotation’ ’(’AnnotationValue’)’

In our scenario we assume that we are looking for meta
knowledge information about all limbs which are either broken
or wrenched. Our ontology contains the axioms and meta
knowledge annotations summarized in Table I.

An example of how meta knowledge is represented and
associated with OWL axioms is presented below.

OWLAxiomAnnotation(ClassAssertion(limb1 Limb)
MetaKnowledgeAnnotation(

annot1 AgentAnnotation(Crow)))
OWLAxiomAnnotation(
PropertyAssertion(limb1 isBroken true)
MetaKnowledgeAnnotation(

annot2 AgentAnnotation(House)))

Annotations, however, have no semantic meaning in OWL 2.
All annotations are ignored by the reasoner, and they may not
themselves be structured by further axioms. For this reason,
as next step, we first define the semantics of meta knowledge,
later we describe how meta knowledge can be combined with
reasoning.

V. SEMANTICS OF META KNOWLEDGE

Meta knowledge can have multiple dimensions, e.g. uncer-
tainty, a least recently modified date or a trust metric. For this
paper, we assume that these (and possible further) dimensions
are independent of each other.

1OWL 2 Web Ontology Language: Spec. and Func.-Style Syntax:
http://www.w3.org/TR/2008/WD-owl2-syntax-20081202

Definition 3: Knowledge dimension. A knowledge dimen-
sion D is an algebraic structure (BD,∨D,∧D), such that
(BD,∨D) and (BD,∧D) are complete semilattices.
BD represents the values the meta knowledge can take,

e.g. all valid dates for the least recently modified date or a
set of knowledge sources for provenance. As (BD,∨D) and
(BD,∧D) are complete semilattices, they are, in fact, also lat-
tices. Hence, there are minimal elements in the corresponding
orders.

As an example, let I be the meta knowledge interpretation2

that is a partial function mapping axioms into the allowed
value range of a meta knowledge dimension, and A and B
be axioms of an ontology such that A 6= B. Provenance, i.e.
the set of knowledge sources a piece of knowledge is derived
from, can be modeled as:
• I(A ∨B) = I(A) ∪ I(B)
• I(A ∧B) = I(A) ∪ I(B)
The least recently modified date could be modeled as:
• I(A ∨B) = min(I(A), I(B))
• I(A ∧B) = max(I(A), I(B))
Axioms can be assigned meta knowledge from any of the

meta knowledge dimensions. Within a single assignment, the
meta knowledge must be uniquely defined.

Definition 4: Meta Knowledge Assignment.
A meta knowledge assignment M is a set {(D1, d1 ∈
D1), ..., (Dn, dn ∈ Dn)} of pairs of meta knowledge dimen-
sions and corresponding truth values, such that Di = Dj ⇒
di = dj .

In our running example, the meta knowledge assignment
for PropertyAssertion(limb1 isBroken true) is {(agent, Crow),
(date, 15.01.2008)}

Without loss of generality we assume a fixed number of
meta knowledge dimensions. As a default value for Dn in a
meta knowledge assignment we choose ⊥D.

To allow for reasoning with meta knowledge, we need to
formalize, how meta knowledge assignments are combined.
How provenance [14] is a strategy, which describes how an
axiom A can be inferred from a set of axioms {A1, ..., An},
i.e. it is a boolean formula connecting the Ai. We call a
logical formula expressing how provenance a meta knowledge
formula. For example the following query finds all limbs, that
are either broken or wrenched:
x : Limb ∧ (〈x, true〉 : isBroken ∨ 〈x, true〉 : isWrenched).
The results of this query and the corresponding meta know-

ledge formulas are:
limb1 #1 ∧#3 and limb2 #2 ∧#4

The operators for meta knowledge dimensions extend to
meta knowledge assignments, allowing us to compute meta
knowledge for entailed knowledge by evaluating the corre-
sponding meta knowledge formula.

Definition 5: Operations on Meta Knowledge Assignments.
Let A,B be axioms and meta(A) = {(D1, x1), ..., (Dn, xn)}
and meta(B) = {(E1, y1), ..., (Em, ym)} be meta knowledge

2The administrator defines the intended semantics of these properties in
order to facilitate query processing with complex expressions and pattern
combinations.

4

assignments. Let dim(A) be the set of meta knowledge dimen-
sions of A. Then meta(A)∨meta(B) = {(D,x∨Dy)|(D,x) ∈
meta(A) and (D, y) ∈ meta(B)}. ∧ is defined analogously.

Having defined the operations on meta knowledge assign-
ments, we can define formulas using these operations.

Definition 6: Meta Knowledge Formula.
Let A be an axiom of an ontology O, lab a function assigning

a unique label to each Ai from O and lab(O) the set of all
labels of axioms in O. A meta knowledge formula φ for a
axiom A wrt. an ontology O is boolean formula over the set
of labels {lab(A1), ..., lab(An)} of axioms {A1, ..., An} from
O, such that for each valuation V ⊂ lab(O), which makes φ
true, the following holds: lab−(V) |= A.

The meta knowledge of an axiom A within a meta know-
ledge dimension is obtained by evaluating the corresponding
meta knowledge formula after replacing axiom labels with
the corresponding meta knowledge in the dimension under
consideration.

Definition 7: Meta Knowledge of an Axiom.
Let meta be a function mapping from an axiom to a meta

knowledge assignment in dimension D. The meta knowledge
of an axiom A wrt. O in D is obtained by evaluating the
formula obtained from A’s meta knowledge formula wrt. O
by replacing each lab(Ai) with the corresponding meta(Ai).

In our running example, if we model the agent dimension
as where provenance, the meta knowledge of the query result
for limb1 is: (agent, {Crow}) ∧ (agent, {House}) = (agent,
{Crow} ∪ {House}) = (agent, {Crow, House}).

In contrast to [5] we omit the ¬ operator in our formal-
ization, as description logics are monotonic and ¬ in [5]
allows for default negation. While axioms in the underlying
description logic may contain negation, this negation is not
visible on the level of meta knowledge.

VI. EXTENDED SEMANTICS FOR CONFLICTING META
KNOWLEDGE

In the following we extend our model to support conflicting
meta knowledge, which can arise from conflicting changes or
meta knowledge assignments by multiple users in an axiom.

Definition 8: Extended knowledge dimension. A ex-
tended knowledge dimension D is an algebraic struc-
ture (BD,∨D,∧D,⊕D), such that (BD,∨D), (BD,∧D)
and (BD,⊕D) are complete semilattices. The minimum of
(BD,⊕D) is called ⊥D.

As an example, let I be the meta knowledge interpretation
that is a partial function mapping axioms into the allowed
value range of a meta knowledge dimension A be an axiom
of an ontology, and I1 and I2 interpretations of multiple
meta knowledge assertions to A. Provenance, i.e. the set of
knowledge sources a piece of knowledge is derived from, can
be modeled as:
• I(A⊕A) = I1(A) ∪ I2(A)
The least recently modified date could be modeled as
• I(A⊕A) = max(I1(A), I2(A))
Consider the following example presented in Table II and

assume that two users assert the same axiom at different times
into the example ontology:

TABLE II
EXTENSION OF OUR SCENARIO WHERE WE ASSUME TWO USERS ASSERT

THE SAME AXIOM AT DIFFERENT TIMES

ID Relevant Facts Meta Knowledge

#1 [limb1 Limb] statedBy Crow;
modified 14-01-2008

#2 [limb2 Limb] statedBy Crow;
modified 14-01-2008

#3 [limb1 isBroken true] statedBy House;
modified 15-01-2008;

#4 [limb2 isWrenched true] statedBy House;
modified 15-01-2008

.

.

.
#10 [BrokemLimb subClassOf (isBroken true)] statedBy Crow;

modified 14-01-2008
statedBy House;
modified 15-01-2008

In our running example, the meta knowledge assignment
for axiom #10 is {(agent, Crow), (date, 14.01.2008), (agent,
House), (date, 15.01.2008)}

In our running example, if we model the least recently
modified date dimension, the meta knowledge of the axiom
#10 is: (date, {14.01.2008}) ⊕ (date, {15.01.2008}) = (date,
max({14.01.2008}, {15.01.2008})) = (date, {15.01.2008}).

Consider the extended semantics of meta knowledge, we
need to describe a different way of finding a meta knowledge
formula. We redefine the meta function of Definition 7,
such that it computes

⊕
of all meta knowledge assignments

available for a statement.
Definition 9: Meta Knowledge of an Axiom. Extended Def-

inition.
Let allmeta: axioms → 2MKAssignments be a function mapping

from an axiom to all meta knowledge assignments to that
axiom in a meta knowledge dimension D. Then meta(A) is
defined as

⊕
allmeta(A).

This definition of meta not only allows to aggregate meta
knowledge from multiple sources, but also to gracefully handle
unknown meta knowledge, i.e. situations where a knowledges
source does not provide a truth value for some meta knowledge
dimension.

For example, we want to model the agent dimension as
where provenance, the meta knowledge of the query result for:
ClassAssertion(BrokenLimb limb1). The axiom is satisfiable,
so the corresponding pinpointing formula is #1 ∧ #3 ∧ #10

= (agent, {Crow}) ∧ (agent, House}) ∧ ((agent, {Crow}) ⊕
(agent, {House})) = (agent, {Crow, House}).

VII. COMPUTING META KNOWLEDGE USING PINPOINTS

In order to allow for an algebraic evaluation of meta know-
ledge dimensions, we need a single boolean formula. In meta
knowledge mechanisms like [5], it is derived from queries
in relational algebra. When reasoning with description logics,
however, such a rather simple algebraic foundation of the
basic language does not exist. Instead, multiple axioms may be
needed to establish the truth or falsity of inferred knowledge.
For this purpose, we have defined the meta knowledge formula
in definitions 6 and 9.

5

As we can see above, definitions 2, 6 and 9 are quite similar.
In fact, a pinpointing formula provides exactly what we need
for a meta knowledge formula: All combinations of axioms,
which can be used to establish the truth or falsity of inferred
knowledge.

For this reason, when reasoning in a logic, where a pin-
pointing algorithm is known, we can compute a pinpointing
formula and then derive meta knowledge as usual.

VIII. COMPLEXITY

The complexity of this rather naive approach for computing
meta knowledge is equivalent to the computation of pinpoint-
ings. Due to the algebraic specification of meta knowledge
the complexity of the meta knowledge formula is polynomial.
If the meta knowledge formula is in conjunctive normal
form, however, we might encounter an exponential blowup.
Approaches for computing pinpointings like [10] which, rather
than representing pinpoints formula in a conjunctive normal
form, derive a compact representation of the pinpoints formula
benefit the computation of meta knowledge since they avoid
exponential blowup.

IX. EXPERIMENTS

In this section, we present the evaluation results of our
algorithm. The experiments were performed on a Windows
XP SP3 System and 512MB maximal heap space was set.
Sun’s Java 1.5.0 Update 6 was used for Java-based tools.

Reasoning with Meta knowledge The framework for
reasoning with meta knowledge is is available as a Java
prototype and is available as an open source implemen-
tation at <http://isweb.uni-koblenz.de/Research/MetaKnowledge>
together with example of ontologies extended with meta
knowledge. The aggregation of meta knowledge is computed
based on the model presented in Section VI and Section VII.

Reasoning with Pinpointing The framework for reasoning
with pinpointing is implemented with the OWL API and
the OWL-DL reasoner, Pellet3. Pellet provides the axiom
pinpointing service for debugging ontologies that, for any
arbitrary entailment derived by a reasoner from an OWL-
DL knowledge base, returns the minimal set (explanations)
of source axioms that cause an inconsistency and the relation
between unsatisfiable concepts. The algorithm is black box
based. In the following experiments we compare the process-
ing time of our approach with reasoning with pinpointing
approach.

Data Our sample data consists of 7 typical existing OWL
ontologies used for debugging. This dataset has already been
used for tests the computing time of laconic justifications
in [15]. Table III shows the number of entailments that hold in
them and provide the range of expresivity. Each ontology was
classified in order to determine the unsatisfiable classes. This
classes were selected as input (query) to compute the meta
knowledge degree and pinpoints. For each query the time to
compute all pinpoints and the meta knowledge degree was
recorded.

3Pellet Reasoner: http://clarkparsia.com/pellet/

TABLE III
ONTOLOGIES USES IN EXPERIMENT. TABLE TAKEN FROM [15]

ID Ontology Expressivity Axioms No. Entailments
1 Economy ALCH(S) 1625 51
2 People+Pets ALCHOIN 108 33
3 MiniTambis ALCN 173 66
4 Transport ALCH 1157 62
5 University SOIN 52 10
6 Chemical ALCHF 114 44
7 EarthRealm ALCHO 931 543

Evaluation Results Table IV displays the times for rea-
soning with meta knowledge and reasoning with pinpointing.
For each ontology, we have computed all pinpoints for all
unsatisfiable classes and reported the overall computing time.
The experiments was done 10 times and the average time was
considered. We can observe that the time for computing the
meta knowledge degree takes longer than the computation of
pinpointing (in average 4,9 ms longer). This is to be expected
since the computation of meta knowledge degree is done once
all justifications are already computed as we have shown in
Section VIII. In all in all, the processing times presented in
Table IV are still acceptable for interactive applications, and
thus this approach can be used for solutions in real time.

TABLE IV
TIMES (IN MS) TO COMPUTE PINPOINTING VS. META KNOWLEDGE

DEGREE

ID Ontology Pinpointing Meta Knowledge
1 Economy 347,63 348,24
2 People+Pets 328 329,12
3 MiniTambis 152,78 158,69
4 Transport 864,75 874,83
5 University 95,48 98,96
6 Chemical 3770,33 3781,17
7 EarthRealm 3030,06 3032,50

We expect optimizations to reduce the processing time to
less than a second in the average case also for the more
complex ontologies. As we are only interested in computing
the meta knowledge, we can direct the pinpointing algorithm
to only compute those pinpoints resulting in the highest meta
knowledge values. The optimization will be reported in future
work.

X. RELATED WORK

Related work can be grouped into the following categories:
(i) Extensions of description logics with a particular meta
knowledge dimension, especially uncertainty. (ii) General meta
knowledge for query answering with algebraic query lan-
guages. (iii) Extensions of description logics with general
meta knowledge and (iv) meta knowledge for other logical
formalisms.

ad (i) Several multi-valued extensions of description logic
have been proposed: [2] propose fuzzy and probabilistic ex-
tensions of the DLs underlying the web ontology language
OWL. [3] describe an extension towards a possibilistic logic.
Another extension towards multi valued logic is presented
by [4]. They target at trust and paraconsistency instead of
uncertainty. OWL 2 is extended to reasoning over logical

6

bilattices. Bilattices which reflect the desired trust orders are
then used for reasoning. [16] provide an extension to reasoning
in OWL with paraconsistency.

All of these approaches have in common, that they modify
the character of models in the underlying description logic, e.g.
to fuzzy or possibilistic models. In our approach in contrast,
we reason on a meta level: While the underlying model
remains unchanged, we compute consequences of annotations
on axioms. This meta level reasoning is not possible in the
approaches proposed above. Unlike general meta knowledge,
these approaches are more tailored to a specific need and hence
reasoning is cheaper for some. Particularly for fuzzy, possi-
bilistic and paraconsistent description logics, the complexity of
the underlying logic carries over, while in our case additional
complexity is introduced through pinpointing.

ad (ii) Meta knowledge to algebraic languages has been
proposed by various authors, for example for the Seman-
tic Web Query Language SPARQL [5] and for relational
databases [6]. In [17] the authors have propose a framework
for meta knowledge management with support for querying
and updating RDF/S graphs that takes into account both RDF
named graphs and RDFS inference. While the actual meta
knowledge formalisms are comparable to ours, the underlying
languages are of lower expressivity, typically Datalog. Meta
knowledge formulas in these language can directly be derived
from the tree shaped representation of a query, which is not
possible in description logics.

ad (iii) [7] propose a meta knowledge extension of OWL,
which is also based on annotation properties. Even though
meta knowlege can be expressed in ways comparable to ours,
it has a rather ad-hoc semantics, which may differ from
query to query. In our approach, meta knowledge and classical
reasoning take place in parallel. Hence, we can answer queries
such as ”Give me all results with a confidence degree of ≥ x”.
In contrast, reasoning on the ontology and meta level in [7]
is separated. As a result, queries such as the following can be
answered: ”Give me all results, which are based on axioms
with a confidence degree of ≥ x”. Although this difference
might seem quite subtle, depending on the meta knowledge
dimension, e.g. probabilistic confidence, these queries may
have very different results.

ad (iv) [18] propose an extension of Datalog with weights,
which are based on c-semirings and can be redefined to reflect
various notions of trust and uncertainty. Our meta knowledge
dimensions are similar to c-semirings, but additionally allow
to handle conflicting meta knowledge using a third operator.
As c-semirings have been investigated in great detail and
have some desirable properties4, a modification of our work
towards similar algebraic structures might introduce additional
interesting properties of meta knowledge.

XI. CONCLUSION

We have introduced a formalization of meta knowledge that
allows to handle conflicting and incomplete meta knowledge
on the Semantic Web. Meta knowledge per se cannot easily

4Such as the fact that the cartesian product of two c-semirings again is a
c-semiring.

be built into a logical formalism such as description logics.
Hence, we have provided an operationalization based on
pinpointing, in order to derive a meta knowledge formula,
which can easily be evaluated. Extensions of the approach
beyond description logics are possible, based on pinpointing.
Currently, we are working on the optimization of the algo-
rithms for computing meta knowledge. The optimization are
possible based on the observation, that we no longer need
to compute all pinpointing formulas in oder to determine the
meta knowledge but only computing a relevant subset of all
pinpoints.

XII. ACKNOWLEDGEMENTS

This research was supported by the European Commission
under contract IST-FP6-026978, X-Media and contract IST-
2006-027595, Lifecycle Support for Networked Ontologies -
NeOn. The expressed content is the view of the authors but
not necessarily the view of the X-Media and NeOn projects.

REFERENCES

[1] Harry Halpin: Provenance: The Missing Component of the Seman-
tic Web, CEUR Workshop Proceedings, online CEUR-WS.org/Vol-
447/paper1.pdf

[2] Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in
description logics for the Semantic Web. Journal of Web Semantics 6(4)
(2008) 291–308

[3] Qi, G., Pan, J.Z., Ji, Q.: Extending Description Logics with Uncertainty
Reasoning in Possibilistic Logic. In: ECSQARU ’07, Springer (2007)
828–839

[4] Schenk, S.: On the Semantics of Trust and Caching in the Semantic
Web. In: ISWC2008. Volume 5313 of LNCS., Springer (2008) 533–549

[5] Schueler, B., Sizov, S., Tran, D.T.: Querying for Meta Knowledge . In:
WWW2008, ACM (2008) 625–634

[6] Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A Characteri-
zation of Data Provenance. In: ICDT. Volume 1973 of LNCS. (2001)
316–330

[7] Tran, D.T., Haase, P., Motik, B., Cuenca-Grau, B., Horrocks, I.: Met-
alevel Information in Ontology-Based Applications. In: AAAI’08.
(2008) 1237–1242

[8] Palma, R., Haase, P., Corcho, Ó., Gómez-Pérez, A., Ji, Q.: An Editorial
Workflow Approach For Collaborative Ontology Development. In:
ASWC2008. Volume 5367 of LNCS. (2008) 227–241

[9] Kalyanpur, A., Parsia, B., Cuenca-Grau, B., Sirin, E.: Axiom pinpoin-
ting: Finding (precise) justifications for arbitrary entailments in OWL-
DL. Technical report (2006)

[10] Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. In:
TABLEAUX ’07: Proceedings of the 16th international conference on
Automated Reasoning with Analytic Tableaux and Related Methods,
Berlin, Heidelberg, Springer-Verlag (2007) 11–27

[11] Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1)
(1987) 57–95

[12] Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifica-
tions of owl dl entailments. In: ISWC/ASWC. (2007) 267–280

[13] Ji, Q., Qi, G., , Haase, P.: A relevance-based algorithm for finding jus-
tifications of DL entailments. Technical report, University of Karlsruhe
(2008)

[14] Green, T.J., Karvounarakis, G., Tannen, V.: Provenance Semirings. In:
PODS. (2007) 31–40

[15] Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in
owl. In: ISWC ’08: Proceedings of the 7th International Conference on
The Semantic Web, Berlin, Heidelberg, Springer-Verlag (2008) 323–338

[16] Ma, Y., Hitzler, P., Lin, Z.: Algorithms for Paraconsistent Reasoning
with OWL. In: ESWC2007, Springer (2008) 399–413

[17] Pediaditis, P., Flouris, G., Fundulaki, I., Christophides, V.: On explicit
provenance management in rdf/s graphs. In: TAPP’09: First workshop
on on Theory and practice of provenance, Berkeley, CA, USA, USENIX
Association (2009) 1–10

[18] Bistarelli, S., Martinelli, F., Santini, F.: A Semantic Foundation for
Trust Management Languages with Weights: An Application to the RT
Family. In: ATC ’08, Springer (2008) 481–495

