
Conjunctive Query Answering in Distributed

Ontology Systems for Ontologies with Large

OWL ABoxes

Xueying Chen1 and Michel Dumontier1,2

1 School of Computer Science,
2 Department of Biology,

Carleton University, 1125 Colonel By Drive, K1S 5B6, Ottawa, Canada
xychen@scs.carleton.ca, michel dumontier@carleton.ca

Abstract. We present a query processing procedure for conjunctive
queries in distributed ontology systems where a large ontology is di-
vided into ontology fragments that are later distributed over a set of au-
tonomous nodes. We focus on ontologies with large ABoxes. The query
processing procedure determines and retrieves the facts that are relevant
to answering a given query from other nodes, then construct a new frag-
ment that includes the set of relevant facts, the local TBox and RBox.
The given query is evaluated against the new fragment and answers are
returned to the user. We prove that our technique returns sound answers
for queries over OWL ontologies.

1 Introduction

In recent years, we have witnessed both the number of ontologies appearing on
the web growing rapidly and the size of ontologies expanding dramatically. While
Ontology integration systems(OIS) [2] provide tools to semantically combine dif-
ferent ontologies, existing reasoners show poor performance in reasoning with
large ontologies. An example of ontology with large ABox is yOWL3 which con-
tains estimated 582, 800 instances. [3] shows Racer4 is unable to execute instance
realization(which classifies a given instance into their most specific concept) in
yOWL using an Intel Pentium 4 computer with 3GB RAM.

In our earlier work [1], we define a Distributed Ontology System (DOS) which
is motivated to solve query processing issues resulting from large ontologies.
This paper, as a continuation of [1], proposes a query processing procedure for
conjunctive queries posed over ontologies with large ABoxes in DOS. The main
idea is that given a query, the master node(the node that receives the given
query) determines the set of facts that are relevant to answering the query by
unfolding the query with its subconcepts and subroles. Then the master node
collects the relevant facts from other nodes and constructs a new ABox which

3 http://ontology.dumontierlab.com/yowl-jbi.owl
4 http://www.racer-systems.com/products/index.phtml

Rinke Hoekstra
Proceedings of OWL: Experiences and Directions 2009 (OWLED 2009),
Rinke Hoekstra and Peter F. Patel-Schneider, editors. http://www.webont.org/owled/2009

Rinke Hoekstra

Rinke Hoekstra

along with the local TBox and RBox form a new ontology fragment. Finally, the
given query is evaluated against the new fragment and the answers are returned
to the user. We prove that the procedure can return sound answers for OWL
ontologies.

This paper is organized as follows. Section 2 briefly introduces DOS. The
querying processing procedure is described in Section 3. Conclusions and future
work are in Section 4.

2 Distributed Ontology Systems

In our previous work [1], we propose Distributed Ontology System(DOS) which
allow both query processing and collaborative ontology development.

In a DOS, there are a set of autonomous node across the network and each
of them is equipped with a DL reasoner. A large ontology is divided into smaller
pieces(called ontology fragments) that are distributed over the nodes. These
fragments are logically interrelated, and the relationship between them should
be recorded so that it can be used to coordinate the nodes to complete tasks
such as query processing, collaborative development of the ontology and so on.

Formally, A distributed ontology system I is a triple < O,F ,D > where

1. O is an ontology, expressed in a language LO over an signature Sig(O)
containing terms of O.

2. F is a set of ontology fragments F1, · · · , Fn into which O is divided. We
denote with Sig(Fi) the signature containing terms of ontology fragment Fi.
Here, Sig(Fi) ⊆ Sig(O), and Sig(O) =

⋃

i=1,···,n

Sig(Fi).

3. D is a dictionary which contains the semantic information of each fragment
and the relationship between fragments.

There exists a special case of ontology fragments: modular fragment where
for a query q, the answers to q can be returned by evaluating q against ontology
fragments instead of the whole ontology. Formally, a modular fragment is defined
as follows.

Let O be an ontology and Sig(O) its signature, F a fragment of O, and q a
query posed over O. We say F is modular with respect to a signature Sig(K) if
it holds that

O |= qO ⇐⇒ F |= qO

for Sig(q) ⊆ Sig(K) where Sig(q) is the signature of q.

3 A Query Processing Procedure for Conjunctive Queries

In this section, we describe a query processing procedure for conjunctive queries
in DOS. We assume the case of non-modular fragments and focus on ontologies
with large ABoxes, therefore we distribute only the ABoxes, i.e., each ontology
fragment in DOS contains a complete TBox and RBox, but an incomplete ABox
of the original ontology.

We say that a conjunctive query is of the following form:

A(x̄) ← B1(ȳ1), · · · , Bn(ȳn)

where A(x̄) and Bi(ȳi)(i = 1, · · · , n) are terms in a DL language, A and Bi are
DL predicates, x̄ and ȳi are lists of variables and constants that match the arity,
i.e., number of attributes of x, yi respectively.

The idea of our approach is to extract a relevant ABox for a given query.
Consider a query q posed over an ontology O, the master node(the node that
receives the q) runs the querying processing procedure. The procedure first con-
structs a new query q′ by appending subconcepts(subroles) to the non-atomic
concepts(roles) in q with disjunction. q and q′ are logically equivalent with re-
spect to O′s TBox and RBox. In addition to q′, the procedure also generates
a set of instance or role retrieval queries Q that is used to retrieve the facts
which are relevant to answering q(or q′). Then the master node forwards Q to
other nodes. All the nodes, including the master node, runs the queries in Q
and returns the answers to the master node. Upon receiving the relevant facts,
the master node constructs a new ontology fragment(the set of relevant facts
+TBox+RBox). Finally, the master node evaluates q′ against the new fragment
and returns the answers to the user.

We divide the query processing procedure into three steps:

1. Normalize TBox and RBox.
Let C, D be concepts and R, P roles.
(a) Replace equivalence with subsumption, that is, replace each axiom of

the form C ≡ D(r ≡ p) with C & D(r & p) and D & C(p & r).
(b) Transform each general inclusion axiom into its normal form, that is,

replace each axiom of the form C & D(r & p) with ' & ¬C (D(' &
¬r (p).

(c) Transform the right hand side of each general inclusion axiom into dis-
junctive normal form.

2. Unfold q using axioms in the normalized TBox and RBox to get q′ and a set
of queries Q that retrieves relevant facts .
q′ is constructed by doing the following recursively. For each non-atomic
concept C or role r in q, search the normalized TBox(RBox). If C or r
appears as a conjunctive clause on the right hand side of the inclusion axioms,
take the rest of the formula on the right hand side, negate it(we get the
subconcept/subrole of C/r), then append it to C or r with disjunction.
Note that q′ and q are logically equivalent. The recursion ends when all
the concepts or roles in the appended clause are atomic. Q contains all the
concepts and roles in q′ and is used to retrieve facts.

3. Forward Q to other nodes. Each node runs the queries in Q and sends the
results to the master node. The master node collects all the instances and
combine them with its TBox and RBox to form a new ontology fragment F ′.
Finally, the master node evaluates q′ against F ′ and returns the answers to
the user.

Proposition 1. (Soundness) Let O be an OWL ontology in DOS, q a con-
junctive query posed over O, q′ a conjunctive query after applying rules in the
procedure to q, F ′ an ontology fragment constructed according the rules in the
procedure. Then:

F ′ |= ā is an answer to q′ =⇒ O |= ā is an answer to q

Proof.

F ′ |= ā is an answer to q′

⇒ O |= ā is an answer to q′(by monotonicity of DL reasoning and F ′ ⊆ O)

⇒ O |= ā is an answer to q(q and q′ are logically equivalent)

Corollary 1. F ′ is a modular fragment with respect to Sig(q) where Sig(q) is
the signature of q.

Proof. Since q and q′ are logically equivalent, evaluate them against F ′ would
return the same set of answers. From proposition 1, we get that evaluating q
against F ′ returns the same answer set as evaluating q against O.

We now discuss the computational complexity of the procedure step by step.
Step 1 is a syntactic transformation of axioms in TBox and RBox, which can
be done in polynomial time in the size of TBox and RBox. Step 2 is recursive
with the purpose to unfold concepts and roles where the size of results can
reach exponential in the size of the inputs, that is, step 2 in the worst case is in
EXPTIME. Step 3 is basically standard OWL-DL reasoning, which is intractable
in the worse case. Therefore, the lower bound of complexity of the procedure is
EXPTIME.

4 Conclusions and Future Work

In this paper, we propose a query processing procedure for conjunctive queries
over ontologies with large ABoxes in DOS. Our approach aims at reducing the
size of large ABoxes by filtering out those facts that are not relevant to answering
queries. We prove that our approach returns sound answers for OWL ontologies.
Our future work is to identify the expressivity of OWL for which our technique
returns complete query answers.

References

1. X. Chen and M. Dumontier. A framework for distributed ontology systems. In proc.
of the Second Canadian SemanticWebWorking Symposium(CSWWS09), page 137-
148.

2. N. F. Noy. Semantic integration: a survey Of ontology-based approaches. SIGMOD
Record, Special Issue on Semantic Integration, 33, 4. Published in 2004.

3. N. Villanueva-Rosales and M. Dumontier. YOWL: an Ontology-Driven Knowledge
Base for Yeast Biologists. Journal of Biomedical Informatics. Available online May
11, 2008.

