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Abstract

This paper presents a knowledge-based system for land use interpre-
tation and prediction. We describe our needs for representing knowledge
and data, and for reasoning. We explain our choices : case-based reason-
ing within the framework of the description logic system RACER. Then,
we present the knowledge base and the data we are working with. Data
about spatial entities are represented as graphs and represented in the DL
system accordingly. An example of graph manipulation is used to illus-
trate our purpose. Then, we propose a first synthesis of our research work
and present an extension of the DL system necessary for going further.

1 Motivation

We are developing a knowledge-based system aimed at helping agronomists to
analyze the management of farm territory, and to propose models about the
evolution of farm territories and farmer practices. From the agronomist point of
view, there are relationships between the farm management and the farm spatial
organization. One of our goals is to build a system, named ROSA for Reasoning
on Organization of Space in Agriculture, based on this hypothesis.

Section 2 describes the architecture we plan to use for the system ROSA and
explains why we have chosen the description logic system RACER [7]. Section 3
presents the real-world data on which we are working, while section 4 describes
how knowledge and data about farms are used for reasoning. In conclusion we
point out the extensions on which we are working for fulfilling our needs.



2 A Case-Based Explanation System

Our research work mainly relies on case-based reasoning [11] and qualitative spa-
tial reasoning [15] and especially reasoning with description logics (DL) [6, 14].
Case-based reasoning (CBR) is based on the use of past experiences called cases
that are pairs (problem, solution) [12]. Our objective is to provide an explana-
tion about the farm functioning while knowing its spatial organization. Thus,
we consider that a problem is a farm management, a solution is an explanation
on farm management. The explanation is based on the knowledge about the
spatial organization of the farm.

A CBR system aims at solving a target problem denoted by tgt by means of a
case base which is a finite set of cases. A case from the case base is called source
case and denoted by srce-case = (srce, Sol(srce)). A source problem srce
is a problem such that (srce, Sol(srce)) belongs to the case base, i.e. it is a
problem for which a solution Sol (srce) is known. CBR is based on three main
operations: retrieval, adaptation and storage. The goal of retrieval is to find a
case srce-case in the case base similar to the target problem tgt. Adaptation
uses this retrieved case srce-case in order to build a solution Sol(tgt) to tgt.
If the new case is of interest, it is stored in the case base.

After an early work on the use of object-based representation system and
description logics system [13], we have decided to choose a DL system and
especially the RACER system [7]. The expressivity of RACER, its well-defined
semantics, the capability of dealing with concepts as well as with individuals
and the efficiency of the reasoner are the main reasons of our choice. DLs have
been used previously in CBR [5, 8, 9]. All these works argue on the capabilities
of DLs with respect to the need of CBR systems. With their formal semantics
and their ability to classify concepts and to recognize instances, DLs are well
suited for managing knowledge and cases bases.

The knowledge base of our system is composed of domain knowledge and
cases. Domain knowledge is used for enhancing the CBR operations. In partic-
ular, in our CBR system, we want to reason on domain knowledge and cases for
classifying spatial structures and spatial relations [10]. Like in [5] or [8], domain
knowledge is modeled in the TBox, while cases are described as individuals in
the ABox. In RACER, we can take advantage of consistency checking (for the
TBox) and classification (for querying the ABox).

The architecture of our system is shown in figure 1. It is based on an interface
layer and a reasoning layer. The interface is designed to manage bases, for
introducing new spatial description of farms and for displaying results. The
reasoning layer is based on RACER to retrieve cases and adapt explanations.
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Figure 1: Architecture of our system ROSA.

3 Data and Domain Knowledge

In our system, the knowledge base contains the description of concepts about
agronomy, land use and spatial relations. Concepts are organized in a hierarchy
that is partially shown in figure 2.

Graphs are the base of our model for representing cases of farm spatial or-
ganization and farm functioning knowledge. Moreover, they are well-suited for
representing complex real-world objects and for information sharing with do-
main experts and farmers. Our model is also inspired from the conceptual graph
theory [3].

Graphs are composed of vertices and edges. Our graphs are built with two
kinds of vertices : entities and links. An entity is an agronomic spatial object
that relies on a concept. It can be qualified by different attributes. A link is a
reification of a spatial relation. Like entities, links can be qualified by different
attributes. Edges that connect entities to links are labeled by the qualification
of entities in links. One graph represents the spatial organization about one
farm. The farm functioning is described by explanations associated with parts
of the graph. Hence, the explanation about a farm can be seen as a ”sum” of
all explanations associated to the graph.

The figure 3 shows two examples of parts of graphs from two instances of
real-world graphs describing spatial organizations. These two graphs will be
used in this article to explain our work.

For example, the explanation associated with the first graph GrA of the fig-
ure 3 is :

"the farmer has let a strip of grass (the meadow) to protect cereals
from humidity, shadow and wild animals induced by the wood.”
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Figure 2: Hierarchy of concepts divided in two sub-hierarchies issued from the
agronomy domain and the spatial knowledge.
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Figure 3: graphs representing some spatial organization of two farms A and B.

With the second graph GrB the explanation associated is:

"The wood is a constraint because there are humidity and shadow
that are not good for cereals growth.”

Finally a case is a graph that describes part of the spatial organization of a
farm associated with an explanation about its functioning.

4 Reasoning about spatial organization

Actually, explanations associated with a graph is given in natural language sen-
tences by agronomists. Thus, when a new explanation has to be attached to a
graph, it has to be coherent with explanations attached with graphs of the same
kind. The validation of explanation is done by comparing different farms for
extracting their differences and similarities concerning spatial organization.

To explain a new case, i.e. a given new farm described by its spatial orga-
nization in a graph, the CBR system tries to associate explanations to parts of
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Figure 4: New graph GrA’ obtained by modification of the first one in figure 3.

the graph. This is done with the help of a number of cases describing particular
farms whose functioning is well understood.

The previous operations are based on the capabilities of comparing graphs.
Two graphs, to be compared, have to be transformed in another one, ie. a
kind of "least common subsumer” of the two graphs [4, 1]. Three operations are
allowed for transforming graphs : deletion, addition and substitution of vertices.
Deletion or addition are based on specific rules of transformation based on do-
main knowledge. These rules are mostly given by the knowledge on relations
according to the kind of vertices linked together. The substitution of a vertex is
based on the classification mechanism : an instance can be substituted by the
concept it belongs to; a concept can be substituted by its direct subsumer (in
our case, at present, the concept of an instance and the subsumer of a concept
are unique).

The "path” storing the transformation operations from one graph to another
is a similarity path, used in case-base reasoning [12]. The similarity is computed
with the help of an edition distance [2], giving the sum of costs of each trans-
formations applied. Edition distance and similarity path are well adapted to
our needs since they can be used in the adaptation process. [5] proposes this
approach, but we need to extend it to deal with graphs.

For example, we describe the comparison of the two graphs of the figure 3.
These graphs are described in the ABox. First, each vertex is classified according
to the concepts hierarchy. Then, these graphs are transformed by generalization
of their vertices. In the graph GrA, the vertex meadowl can be substituted by the
concept Meadow and then by Agricultural-Land. In the same way, the concept
of the vertex cereall is Cereal and can be changed by Cropland. The relation
isolate&connectedl can be substituted by Isolate&connected and then by
the Between&Connected relation. Finally, the instance wood1 is subsituted by
the concept Wood and the graph GrA is generalized into the graph GrA’, as shown
figure 4.

In this particular case, we also know that cereall and meadowl belong to
the same farm, and that they are connected. Then, cereall (generalized into
Cropland) and meadowl (generalized into Agricultural-Land) are merge into
a single vertex of type Agricultural-Land. Finally, beacause of the spatial
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Figure 5: New graph GrG of the graph GrA’ obtain by topological inference.
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Figure 6: The similarity-path between graphs GrA and GrB.

position of meadowl and woodl, it can be deduced that the EC relation hold
between these two instances. Thus, the graph GrA’ can be transformed again
with three other modifications (two substitutions and a deletion) to obtain the
more general graph GrG shown in figure 5.

The second graph GrB of the figure 3 can be transformed into a more general
one by substituting cereal2 with the more general concept Agricultural-Land,
by substituting wood2 with the concept Wood and by changing the relation
go-Alongl to EC. The result is the same graph GrG described in figure 5.

In this example, the sequence of operations used to transform the graphs
GrA and GrB into a more general graph GrG defines a similarity-path with seven
transformations (figure 6). For each transformation, a cost based on the edition
distance between the two graphs can be defined. The longer is the distance
between the two graphs, more work has to be done for adapting explanations.
Finally, the agronomists validate the fact that an adapted explanation makes
sense or not.

5 Conclusion

We have given in this paper a first presentation of a system aimed at giving
explanations on farm functioning for helping agronomists in the interpretation
of land use. The system is based both on classification and case-based reasoning.
There are a knowledge base and a case base. We have chosen the RACER DL
for representing knowledge and reasoning. RACER DL is well suited for the con-
struction of complex queries to retrieve instances. Reasoning mechanisms based
on classification and consistency checking are powerful tools for the maintenance
of the knowledge base. However more work remains to be done, especially with
the graph transformations to ensure the existence to a least common subsumer



of two graphs.

Our aim is to develop functionalities for the manipulation of graphs in

RACER. For the moment we can deal with relations, i.e. a small graph with
three or four vertices. But we need to compare larger graphs and define a clas-
sification mechanism for graphs. Such a functionality could be reused in many
applications concerning spatial reasoning and other real-world tasks.
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