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Abstract

The goal of this paper is to introduce the description logic ALCRP3(D). This
logic is based on the DL ALCRP(D) extended by a ternary role-forming predicate
operator and by inverse roles. In order to be able to define a compositional semantics
for ALCRP3(D), which supports n-ary relations, we introduce a DLR-style syntax. For
simplicity and from the viewpoint of the applicability in practice, only ternary relations
will be discussed. The paper discusses syntactic restrictions on concepts and roles to
ensure decidability of the language.

1 Motivation

Description logics (DLs) provide terminological reasoning about abstract domain objects.
However, reasoning about objects from other domains (concrete domains) is very important
for practical applications as well. One important class of applications is, for example, the
class of Geographic Information Systems (GIS). In this context, for modeling spatiotempo-
ral terminological knowledge, the description logic ALCRP(D) has been developed (see [5]).
Intuitively speaking, with ALCRP(D) spatial relations such as “connected” can be repre-
sented as so-called complex roles based on predicates of a concrete domain. The appropriate
integration of such roles into a description logic leads to more expressive power, as illustrated
with examples using the topological relations from RCC-8 theory [8]. However, ALCRP(D)
supports only binary complex roles and cannot be used for representing ternary qualitative
spatial relations (e.g., for specifying spatial knowledge about orientation). By extending
ALCRP(D) to a logic with ternary complex roles we achieve more expressive power and
practical use in the context of spatial reasoning.

For practical GIS applications, in many cases qualitative spatial knowledge is available, i.e.
reasoning about qualitative spatial relations has to be appropriately integrated with termi-
nological reasoning. In this paper we consider two formalisms which play an important role
in the field: Frank’s cardinal direction calculus [2] and Freksa’s relative orientation calculus
[3]. Both calculi deal with different aspects of spatial reasoning. In [6] it has been shown that
combining both calculi is not a trivial task. Indeed, [6] presents a specific calculus (called
cCOA) for the combination of Frank’s cardinal directions with a weaker variant of Freksa’s
relative orientation calculus. Hence, the result of [6] is that in some situations the canoni-
cal combination operator for concrete domains [5] cannot be applied. The concrete domain
cCOA consists of predicates which describe qualitative spatial relationships between 2D ob-
jects. In particular, it refers to binary predicates using a West-East-South-North reference
system and ternary predicates based on a left-straight-right partition of the plane in order to
represent the position of an object w.r.t. a reference object and a parent object (see Figure
1, left). The atomic predicates for both description formalisms are described as follows.

Definition 1 (Cardinal Directions Algebra, CDA) Let P and R be points on the 2D
plane. We call P the parent object and R the reference object. The following binary pred-
icates describe the position of R relative to P using a West-East-South-North coordinate
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Figure 1: Base relations of CDA and ROA and an example.

system: N |NE|E|SE|S|SW |W |NW |Eq(P,R) meaning R lies to the north, northeast, east,
southeast, southwest, west, northwest of P , or R is equal to P , respectively.

Definition 2 (Relative Orientation Algebra, ROA) Let P , R and O be points on the

2D plane. Let
−→
PR be a directed line segment.

−→
PR connects the parent object P with the

reference object R and divides the plane into three partitions: left, straight and right. Then,
the following predicates are used to describe the position of the third object O relative to the
line segment

−→
PR: lr|rr|bp|br|cp|cr|bw|de|dd(P,R,O) with the intuitive meaning O is to the

left or right of the line
−→
PR, O lies on the

−→
PR behind P or behind R, O coincides with P or R,

O lies on
−→
PR between P and R, degenerate equal (O coincides with P and R), or degenerate

distinct (P coincides with R and O is distinct from P and R). For the full definition of these
relations we refer to [6].

Relations between concrete objects, i.e., spatial objects, are defined by cCOA predicates.
However, the idea is also to relate abstract objects with roles based on predicates from the
concrete domain. Then, it is possible to quantify over roles representing spatial relationships.
Basically, this has been achieved with the logic ALCRP(D). We extend the approach to
ternary roles and corresponding predicates. In the same way as in ALCRP(D), abstract
objects are related to concrete objects via functional roles (features). The relation between
abstract objects based on concrete domain predicates can be declared with the help of role-
forming (binary or ternary) predicate operators. The following example demonstrates that
reasoning w.r.t. adequately designed knowledge bases using ternary spatial predicates allows
for the automatic discovery of, for instance, possible inconsistencies.

As an example we propose to describe spatial knowledge about locations of Hansa cities as
shown in Figure 1, to the right. Qualitative spatial knowledge is assumed to be available from
a certain data source (e.g., acquired by a Web robot). Although Figure 1 might suggest the
availability of quantitative knowledge (i.e., coordinates), in particular in the Web context
it is appropriate to consider a scenario where, for instance, quantitative knowledge is not
available or may be expensive to acquire. In order to represent terminological knowledge from
the domain, we assume two concepts Free Hansa City and Rightmost Free Hansa City.
Using the predicates of cCOA these concepts can be related in an adequate way. For instance,
we declare the concept Rightmost Free Hansa City as a subconcept of Free Hansa City
with the additional restriction there is no other Free Hansa City located to the northwest,
west or southwest. In the example presented in Figure 1, Hamburg is a free Hansa city,
Luebeck is the rightmost free Hansa city, and Berlin is known as to be southeast of Luebeck.
Furthermore, Wismar is known to be to the left of a line from Luebeck to Berlin, and also
to the right of a line from Hamburg to Luebeck. Now, by also postulating that Wismar is a
Free Hansa City the knowledge base becomes inconsistent. In fact, due to the assumptions
described above, Hamburg is to the left of Luebeck and, therefore, Wismar is located in the
marked area as shown in Figure 1. But then, Wismar must be a free Hansa city which is to



           

the right of Luebeck. This indicates that Luebeck cannot be the rightmost free Hansa city,
or, contrary to the last postulation about Wismar, Wismar cannot be a free Hansa city.

The inconsistency cannot be recognized without properly reflecting the semantics of binary
and ternary spatial relationships in the context of a description logic. Before details of the
example are formalized, the paper introduces the syntax and semantics of the description
logic ALCRP3(D). Then, syntactic restrictions are discussed that guarantee the decidability
of the language.

2 The Description Logic ALCRP3(D)

The main part of the syntax and semantics of the description logic ALCRP3(D) is taken
from [5] and is “rewritten” using a DLR-like syntax, which provides for the means to denote
relations of any arity. The syntax and semantics of the logic DLR is given in [1]. Although
one might think that the DLR syntax is quite complex for humans to read, it provides for a
compositional semantics in the context of n-ary relations. The DL ALCRP3(D) incorporates
a concrete domain which is defined as follows.

Definition 3 (Concrete domain) A concrete domain D consists of a pair (∆D,ΦD), where
∆D is a set called the domain, and ΦD is a set of predicate names. Each predicate name P is
associated with an arity n and an n-ary predicate PD ⊆ (∆D)n. Given such predicate name
P ∈ ΦD, P denotes the negation of P , which is associated with the arity n and the n-ary

predicate P
D

= (∆D)n \ PD.

Definition 4 (Admissibility of the concrete domain) A concrete domain D is admis-
sible if (i)the set of its predicate names is closed under negation and contains a name >D for
∆D (the negation of the predicate >D is denoted as ⊥D); and (ii) the satisfiability problem
for finite conjunctions of predicates is decidable.

Definition 5 (ALCRP3(D) role terms) Let R and F be disjoint sets of role and feature
names, respectively.

1. Any element of R∪ F is an atomic role term (of arity 2).

2. A composition of features (written f1 . . . fk, where fi ∈ F) is called a feature chain
(of arity 2). A simple feature is considered as a feature chain of length 1.

3. If C is a concept term (see below), i is an integer denoting the i-th component of the
n-ary relation (n ≥ 1), then the following expression is a primitive role term (of arity
n): $i/n : C.

4. If P ∈ ΦD is the name of a predicate with arity n+ m, and u1, . . . , un, v1, . . . , vm are
feature chains, then the expression
∃(u1, . . . , un)(v1, . . . , vm).P is a complex role term of arity 2 (also called a role-
forming binary predicate operator).

5. If P ∈ ΦD is the name of a predicate with arity n+m+ k, and u1, . . . , un, v1, . . . , vm,
w1, . . . , wk are feature chains, then the expression
∃(u1, . . . , un)(v1, . . . , vm)(w1, . . . , wk).P is a complex role term of arity 3 (role-forming
ternary predicate operator).

Let RN be a role name and let R be a role term. Then RN
.
= R is a terminological axiom.

This type of terminological axiom is also called a role definition.



        

Definition 6 (ALCRP3(D) concept terms)

1. If C is a set of concept names which is disjoint from R and F , then any element of C is
an atomic concept term;

2. If C and D are concept terms, R is a role term of arity m, P ∈ ΦD is a predicate
name with arity n, f is a feature and u1, . . . , un are feature chains, then the following
expressions are also concept terms:

¬C (negation) C uD (conjunction) C tD (disjunction)

∃u1, . . . , un.P (predicate exists restriction)

∃[$i]R (m-ary role exists restriction, 1 ≤ i ≤ m)

3. We define ⊥ and > as abbreviations for C t ¬C and C u ¬C respectively.

Concepts and roles may be put in parentheses.

Let CN be a concept name and C a concept term. Then CN
.
= C and CN v C are

terminological axioms as well. The terminological axiom CN
.
= C is also called a concept

definition and the axiom CN v C is called a primitive concept definition.

Definition 7 (Terminological axioms, TBox) A finite set of terminological axioms (role
and concept definitions) T is called a terminology, or TBox, if the left hand sides of all
terminological axioms in T are unique and all definitions are acyclic.

The semantics of ALCRP3(D) is based on set theory and is defined as follows.

Definition 8 (ALCRP3(D) interpretation) Let D = (∆D,ΦD) be a concrete domain. An
interpretation I = (∆I ,∆D, ·I) consists of a set ∆I (the abstract domain), a set ∆D (the
domain of the concrete domain D) and an interpretation function ·I . The sets ∆D and ∆I
must be disjoint. The interpretation function ·I must satisfy the following restrictions:
- each concept name C from C is mapped to a subset CI of ∆I ;
- each role name R from R of arity n is mapped to a subset RI of (∆I)n;
- each feature name f from F is mapped to a partial function fI from ∆I to ∆D ∪ ∆I ,

where fI(a) = x will be written as (a, x) ∈ fI ; and
- each predicate name P from ΦD with arity n is mapped to a subset P I of (∆D)n.

If u = f1 . . . fn is a feature chain, then uI denotes the composition fI1 ◦ . . . ◦ fIn of the partial
functions fI1 , . . . , f

I
n .

Let C,D be concept terms, R be a role term, f be a feature name, u1, . . . , un, v1, . . . , vm,
w1, . . . , wk be feature chains and P be a predicate name. The interpretation function is
extended to arbitrary concept and role terms as follows:

>In ⊆ (∆I)n (¬C)I := ∆I \ CI (C uD)I := CI ∩DI (C tD)I := CI ∪DI

(∃u1, . . . , un.P )I := {a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :
(a, x1) ∈ uI1 ∧ . . . ∧ (a, xn) ∈ uIn ∧ (x1, . . . , xn) ∈ PD}

(∃(u1, . . . , un)(v1, . . . , vm).P )I := {(a, b) ∈ ∆I ×∆I | ∃x1, . . . , xn, y1, . . . , ym ∈ ∆D :
(a, x1) ∈ uI1 ∧ . . . ∧ (a, xn) ∈ uIn∧
(b, y1) ∈ vI1 ∧ . . . ∧ (b, ym) ∈ vIm∧
(x1, . . . , xn, y1, . . . , ym) ∈ PD}

(∃(u1, . . . , un)(v1, . . . , vm)(w1, . . . , wk).P )I := {(a, b, c) ∈ ∆I ×∆I ×∆I |
∃x1, . . . , xn, y1, . . . , ym, z1, . . . , zk ∈ ∆D :
(a, x1) ∈ uI1 ∧ . . . ∧ (a, xn) ∈ uIn∧
(b, y1) ∈ vI1 ∧ . . . ∧ (b, ym) ∈ vIm∧
(c, z1) ∈ wI1 ∧ . . . ∧ (c, zk) ∈ wIk∧
(x1, . . . , xn, y1, . . . , ym, z1, . . . , zk) ∈ PD}



        

(∃[$i]R)I := {d ∈ ∆I | ∃(d1, . . . , dn) ∈ RI : di = d}

($i/n : C)I := {(d1, . . . , dn) ∈ >In | di ∈ CI}

An interpretation I is a model of a TBox T if it satisfies CNI = CI (CNI ⊆ CI) for all
(primitive) concept definitions CN

.
= C (CN v C) and RNI = RI for all role definitions

RN
.
= R in T .

Knowledge about specific individuals is represented by assertional axioms.

Definition 9 (Assertional axioms, ABox) Let OA and OD be two disjoint sets of object
names. Elements of OA are called abstract objects and elements of OD are called concrete
objects. Let C be a concept term, R be a role term of arity n (atomic or complex), f be a
feature name, P be a predicate name with arity n, a, b, d1, . . . , dn be elements of OA and
x, x1, x2, . . . , xn be elements of OD. An interpretation I for the concept language can be
extended to the assertional language by additionally mapping every abstract object from OA
to a single element of ∆I and every concrete object from OD to a single element from ∆D.
The unique name assumption is not imposed, that is aI = bI may hold even if a 6= b. An
interpretation I satisfies an assertional axiom:

a : C iff aI ∈ CI (concept assertion)

(d1, . . . , dn) : R iff (dI1 , . . . , d
I
n) ∈ RI (n-ary role assertion, n ≤ 3)

(a, b) : f iff fI(aI) = bI (feature assertion)

(a, x) : f iff fI(aI) = xI (concrete domain feature assertion)

(x1, . . . , xn) : P iff (xI1 , . . . , x
I
n) ∈ PD (predicate assertion)

A finite set of assertional axioms is called an ABox. An interpretation is a model of an
ABox A w.r.t. a TBox T iff it is a model of T and, furthermore, satisfies all assertional
axioms in A.

Definition 10 (Knowledge base) A knowledge base is a tuple (T , A), where T is a TBox
and A is a ABox.

An interpretation I is a model of a knowledge base (T , A) iff I is a model of T and A.

Definition 11 (ABox consistency problem) An ABox is consistent w.r.t. a TBox T
iff it has a model w.r.t. T . If an ABox is not consistent, it is called inconsistent. The ABox
consistency problem is to decide whether a given ABox A is consistent w.r.t. a TBox T .

For ALCRP3(D) we have chosen a DLR-style syntax because n-ary roles are supported. In
particular, the syntax provides the expressivity of inverse roles. Since ALCRP3(D) is based
on ALCRP(D), which is defined with an ALC-style syntax, we provide appropriate mappings
for some ALCI terms.

∀R.C ≡ ¬∃[$1](R u $2/2 : ¬C) ∀R−.C ≡ ¬∃[$2](R u $1/2 : ¬C)

∃R.C ≡ ∃[$1](R u $2/2 : C) ∃R−.C ≡ ∃[$2](R u $1/2 : C)

Here is an example of a valid ALCRP(D) concept and its equivalent representation in the
ALCRP3(D) notation:

∃(∃(f)(g).P ).C ≡ ∃[$1](∃(f)(g).P u $2/2 : C)

Further examples are presented in the next section.



                

3 An Example with ALCRP3(DcCOA)

In the introduction we have discussed an application example concerning spatial relations. In
particular, the cCOA calculus was introduced in order to formalize reasoning about cardinal
directions and relative orientations using concrete domains. The concrete domain DcCOA is
defined as follows.

Definition 12 (Concrete domain DcCOA) The concrete domain DcCOA is a tuple
(∆DcCOA ,ΦDcCOA), where ∆DcCOA is the set of 2D points and the set ΦDcCOA consists of
following predicates:

• A unary predicate is-point with is-pointDcCOA = ∆DcCOA and its negation is-no-point
with is-no-pointDcCOA = ∅, a binary predicate inconsistent-CDA-relation-p with
inconsistent-CDA-relation-pDcCOA = ∅, and a ternary predicate inconsistent-ROA-
relation-p with inconsistent-ROA-relation-pDcCOA = ∅

• The 9 basic binary predicates N-p,NE-p,E-p, SE-p, S-p, SW-p,W-p,NW-p,Eq-p,
which correspond to the CDA relations and defined as follows. Let P and R be 2D
points. Then (P,R) ∈ N-pDcCOA iff N(P,R), . . . , (P,R) ∈ Eq-pDcCOA iff Eq(P,R).

For each set {p1, . . . pn} of basic predicates from CDA, where n ≥ 2, a disjunctive bi-
nary predicate named p1- . . . -pn-p is defined as follows. (P,R) ∈ p1- . . . -pn-p

DcCOA

iff {p1, . . . , pn}(P,R). To guarantee uniqueness of the predicate name for each dis-
junctive relation we suppose a predefined order on the basic relation names (e.g.,
N,NE,E, SE, S, SW,W,NW,Eq).

• The 9 basic ternary predicates lr-p, rr-p, bp-p, br-p, cp-p, cr-p, bw-p, de-p, dd-p, which
correspond to the ROA relations and defined as follows. Let P , R and O be 2D points.
Then (P,R,O) ∈ lr-pDcCOA iff lr(P,R,O), . . . , (P,R,O) ∈ dd-pDcCOA iff dd(P,R,O).

We introduce for each set {p1, . . . pn} of basic predicates from ROA a disjunctive
ternary predicate named p1- . . . -pn-p. We say that (P,R,O) ∈ p1- . . . -pn-p

DcCOA

iff {p1, . . . , pn}(P,R,O). Again, we assume a predefined order of ROA basic relation
names (e.g., lr, rr, bp, br, cp, cr, bw, de, dd).

Now we reconsider the example from Section 1 and write it down as a set of terminological
and assertional axioms.

Let the TBox contain the atomic concepts Free Hansa City andRightmost Free Hansa City.
Each abstract domain object is assumed to be associated with its concrete representation in
the plane via a feature has position.

RR
.
= ∃(has position)(has position)(has position) rr-p u $1/3 : > u $2/3 : > u $3/3 : >

LR
.
= ∃(has position)(has position)(has position) lr-p u $1/3 : > u $2/3 : > u $3/3 : >

SW-We-NW
.
= ∃(has position)(has position)SW-We-NW-p u $1/2 : > u $2/2 : >

SE
.
= ∃(has position)(has position)SE-p u $1/2 : > u $2/2 : >

Rightmost Free Hansa City v
Free Hansa City u ¬∃[$2](SW-We-NW u $1/2 : Free Hansa City u $2/2 : >)

We represent the relations of the abstract individuals Hamburg, Luebeck, Berlin, Wismar
to their concrete representations in the 2D plane as a set of assertional axioms.

(Hamburg, pos Hamburg) : has position (Luebeck, pos Luebeck) : has position
(Berlin, pos Berlin) : has position (Wismar, pos Wismar) : has position

The following part of the ABox describes the spatial configuration depicted by Figure 1.

(pos Hamburg, pos Luebeck, pos Wismar) : RR (pos Berlin, pos Luebeck) : SE
(pos Luebeck, pos Berlin, pos Wismar) : LR Hamburg : Free Hansa City
Luebeck : Rightmost Free Hansa City



           

Now, if the follow axiom is added, the ABox becomes inconsistent: Wismar:Free Hansa City.
The reason is that now Wismar is a free Hansa city which is located to the right of the right-
most free Hansa city, namely Luebeck.

The inconsistency can be detected only if the semantics of both ternary and binary spatial
relations is properly considered. Furthermore, the inconsistency result is only achieved if
the cCOA calculus described in [6] is applied, i.e. considering the CDA and ROA calculi in
isolation is not appropriate.

As shown in [4] the consistency problem for ALCRP(D) ABoxes is undecidable. Since
ALCRP3(D) is a superlogic of ALCRP(D), the ALCRP3(D) ABox consistency problem is
undecidable as well. Therefore, in the next section we introduce restrictedness criteria for
the syntactic combination of ALCRP3(D) concept and role terms.

4 Structural Restriction of ALCRP3(D)

In the same spirit as for ALCRP(D), we introduce restrictedness criteria to ensure the finite
model property of the logic [5]. Because in ALCRP3(D) inverse roles are implicitly provided
(s.a.), we need, however, stronger restrictions compared to ALCRP(D) in order to avoid
termination problems. In order to cope with inverse roles we define restrictions which are
similar to those defined for ALCRP(D)

−
(see [7]). Informally speaking, one may say that

nesting of ∃[$i]R and ¬∃[$i]R subterms, where R is a complex (and restricted) role term,
is not allowed. For the formal description of the restrictedness criteria, some additional
definitions are required.

Definition 13 (Negation Normal Form, NNF) A concept term is in negation normal
form iff the negation sign occurs only in front of concept names or in front of ∃[$i]R operators.

Definition 14 (Transformation to NNF) Let the naming declarations be the same as in
the definition 8. For a feature chain ui = f1 . . . fi of the length i(1 ≤ i ≤ n) let λ(ui) and
∀ui.> be abbreviations for the following expressions, respectively:

λ(ui) = ∃f1.>D t ∃f1f2.>D t . . . t ∃f1 . . . fi−1.>D
∀ui.> = ¬∃[$1](f1 u $2/2 : ∃[$1](f2 u $2/2 : ∃[$1](. . . (fi−1 u $2/2 : ∃fi.>D) . . .)))

Every ALCRP3(D) concept term can be transformed to NNF by iteratively applying the
following transformation rules to subterms until no rules are applicable.

¬¬C → C ¬(C uD)→ ¬C t ¬D ¬(C tD)→ ¬C u ¬D
¬(∃u1, . . . , un.P )→ ∃u1, . . . , un.P t λ(u1) t . . . t λ(un) t ∀u1.> t . . . t ∀un.>

Definition 15 (Restricted role term) Let C, D and E be concept terms, and R be a
role name from R. Let P be a predicate from the set of predicate names ΦD and u1, . . . , un,
v1, . . . , vm, w1, . . . , wk be feature chains. Then, the following terms are called restricted role
terms:

R u $1/2 : C u $2/2 : D R u $1/3 : C u $2/3 : D u $3/3 : E

∃(u1, . . . , un)(v1, . . . , vm).P u $1/2 : C u $2/2 : D

∃(u1, . . . , un)(v1, . . . , vm)(w1, . . . , wk).P u $1/3 : C u $2/3 : D u $3/3 : E

Definition 16 (Unfolding w.r.t. TBox) A concept C is called to be unfolded w.r.t. a
TBox T if all concept names and complex role names which occur on the right hand side of the
definition of C are iteratively replaced by their definitions from T until no more substitutions
are possible.



         

Definition 17 (Restricted concept term) A conceptX is called restricted w.r.t. a TBox
T iff after unfolding and transforming into NNF the following conditions are fulfilled:

1. All role terms in X are restricted.

2. Let Y be any subconcept of X of the form ¬∃[$i]R. If Z is a subterm of R: Z = $j/n : C
(j 6= i), then ¬∃[$j]R′ terms (j 6= i) are not allowed in C. For example, if we have the
subconcept Y = ¬∃[$1](S u $1/3 : C u $2/3 : D u $3/3 : E), then D and E must not
contain any terms of the form ¬∃[$2]R′ or ¬∃[$3]R′.

3. In a similar way we define the restriction for ∃[$i]R subterms of X. Let Z be a subterm
of R: Z = $j/n : C (j 6= i). Then C must not contain any terms like ∃[$j]R′ (j 6= i).

4. Let Y be any subconcept of X of the form ∃[$i]R or ¬∃[$i]R. If Z is a subterm of R:
Z = $j/n : C, then C contains no predicate exists restrictions.

Definition 18 (Restricted terminology and restricted Abox) A terminology is called
restricted iff all concept terms and role terms on the right-hand side of terminological axioms
in T are restricted w.r.t. T . Similarly, an ABox A is restricted w.r.t. T iff T is restricted
and all concept and role terms used in A are restricted w.r.t. T .

5 Conclusion

In this paper we have presented a ternary extension of the DL ALCRP(D) motivated by
a number of concrete domains, especially spatial domains. We demonstrated the need for
ternary complex roles, for instance, in order to represent spatial knowledge about orientation.
In addition, application examples demonstrated possible inconsistencies which would not
occur if roles were not defined using (ternary) concrete domain predicates. In our current
work we make investigations about a sound and complete algorithm to decide the consistency
problem of restricted ALCRP3(D) ABoxes.
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[5] V. Haarslev, C. Lutz, and R. Möller. A description logic with concrete domains and a role-forming
predicate operator. Journal of Logic and Computation, 9:351–384, 1999.
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