
Optimization Strategies for Instance Retrieval

Volker Haarslev

University of Hamburg
Computer Science Department
Vogt-Kölln-Str. 30
22527 Hamburg, Germany
haarslev@informatik.uni-hamburg.de

Ralf Möller

Univ. of Appl. Sciences in Wedel
Computer Science Department
Feldstr. 143
22880 Wedel, Germany
mo@fh-wedel.de

Abstract

In this paper new techniques for optimizing instance retrieval in DL systems
are described. The algorithms are evaluated with application examples from a
natural language processing application.

1 Motivation

Many applications of description logic (DL) systems use the instance retrieval inference
problem [5] in order to properly formalize subtasks. For instance, in [1, 2] a case-study
with the application of DL inference services in a natural language (NL) interpretation
system is presented. In particular, the inference retrieval service of the Racer system
[4] is investigated for various application-specific subtasks (e.g., resolution of referring
expressions, content determination, and content realization). In this application many
ABoxes are generated on the fly (see [1, 2] for details) and for each ABox a specific
instance retrieval query is computed. In order to achieve good performance in the
NL application, the performance of the instance retrieval procedure provided by the
DL system is crucial. Furthermore, since ABoxes change quite frequently, standard
techniques for optimizing instance retrieval using indexing techniques (see below for
an explanation) can hardly be employed in order to improve performance because of
the overhead of computing index structures in beforehand.

In this paper new techniques for optimizing instance retrieval in DL systems are
described. The algorithms are evaluated with application examples from the natu-
ral language processing application described above (Racer 1-6-2, 1GHz Pentium).
The TBox consists of 165 possibly cyclic “definitions” and “primitive definitions” for
concepts as well as domain and range restrictions for 18 roles. In the ABox around
250 individuals are mentioned in concept and role assertions. The DL used in the
knowledge base is ALC with inverse roles. However, the techniques investigated in
this paper are also particularly suited for SHIQ knowledge bases. It is shown that
the optimization techniques described in this paper can also be used in combination
with indexing techniques. We assume the reader has basic familiarity with description
logics (see, e.g., [4] for an introduction to standard inference problems supported by
DL systems).

2 Technical Details

Before we start the discussion of technical details of algorithms involving ABoxes, a
comment on TBoxes is appropriate. In Racer every ABox is associated with a TBox.
In the discussion below, in all algorithms involving ABoxes the TBox is clear from
the context and, in order to keep the presentation brief, we do not mention the TBox
explicitly. In addition, we assume that all individuals in an ABox are “connected”
via role assertions. If this is not the case, an obvious optimization technique uses
partitions of ABox assertions in order to allow for a more efficient ABox satisfiability
test. Again, details are omitted for the sake of brevity. Furthermore, we assume that
the input ABox A in the algorithms below is consistent, and we omit this initial test.

2.1 Optimized Linear Instance Retrieval

Basically, the instance retrieval problem for a query concept Cq and an ABox A can
be implemented as a sequence of instance tests for all individuals that are mentioned
in an ABox. Hence, instance retrieval(Cq, A) can be implemented with a call to
linear instance retrieval(Cq, contract(i, A), individuals(A)) where individuals(A) re-
turns the set of individuals mentioned in the ABox A and the function contract com-
putes a transformation of an ABox w.r.t. an individual. The idea is to transform
tree-like role assertions “starting” from the individual i into equisatisfiable concept
assertions with existential restrictions (see [3] for details). The reason is that in
Racer, caching (see also [3]) is more effective for concepts rather than for ABox role
assertions.

We assume that ASAT is the standard ABox satisfiability test implemented as an
optimized tableau calculus. The function linear instance retrieval is implemented
as follows.

Algorithm 1 linear instance retrieval(C, A, candidates):
result := {}
for all ind ∈ candidates do

if instance?(ind, C, A) then
result := result ∪ {ind}

end if
end for
return result

The function call instance?(i, C, A) could be implemented as ¬ASAT (A∪ {i : ¬C}).
However, although this implementation of instance? is sound and complete, it is quite
inefficient. A faster variant uses sound but incomplete initial tests for detecting “ob-
vious” non-instances: the individual model merging test (see [6]) and a subsumption
test involving the negation of the query concept (see Algorithm 2).

Algorithm 2 obvious non instance?(i, C, A):
return individual model merging possible?(i, A, negated concept(C))

∨ subsumes?(negated concept(C), individual concept(i))

The main idea of the individual model merging is to extract a (pseudo) model for
an individual i from a completion of the ABox A. If individual model of i and the

(pseudo) model of ¬C do not “interact”, i can easily be shown not to be an instance
of C. If one of the “guards” returns true, the result of instance? is false. Oth-
erwise, an “expensive” instance test using the tableau algorithm is performed. The
function negated concept returns the negation of its input concept whereas the func-
tion individual concept returns the conjunction of the concepts in all ABox concept
assertions for an individual i1. With these auxiliaries, the function instance? can be
optimized for the average case but is still sound and complete.

Algorithm 3 instance?(i, C, A):
if obvious non instance?(i, C, A) then

return false
else

return ¬ASAT (A ∪ {i : ¬C})
end if

Although this variant of instance? is significantly faster (mainly due to the in-
dividual model merging guard), in the application discussed above, query answering
times in the range of 20 seconds were unacceptable. Although for many queries the
result consists of a set of only very few individuals (compared to 250 individuals men-
tioned in the ABox) around a hundred individuals still cause the “expensive” ASAT
test to be invoked, regardless of the “guard” in Algorithm 3. Thus, although each
ASAT test is quite fast (200 milliseconds), its number should be further reduced in
order to provide adequate performance.

2.2 An Improvement: Binary Instance Retrieval

How can ABox satisfiability tests be avoided at all? The observation is that only very
few additions {i : ¬C} to A lead to an inconsistency in the function instance? (i.e., in
very few situations i is indeed an instance of C). Therefore, in many realistic scenarios
the following procedure seems to be advantageous.

Algorithm 4 binary instance retrieval(C, A, candidates):
if candidates = ∅ then

return ∅
else

(partition1, partition2) := partition(candidates)
return partition instance retrieval(C, A, partition1, partition2):

end if

We assume now that instance retrieval(Cq, A) is implemented using the call
binary instance retrieval(Cq, contract(i, A), individuals(A)). The function partition
is defined in Algorithm 5, it devides a set into two partitions. Given the partitions,
binary instance retrieval calls the function partition instance retrieval. The idea
of partition instance retrieval (see Algorithm 7) is to first check whether none of the
individuals in a partition is an instance of the query concept C. This is done with the
function non instances? (see Algorithm 6).

1Racer supports the unique name assumption. Role assertions for a role R with i on the lefthand
side are represented by at-least terms and, depending on the number of different role assertions for i,
corresponding conjuncts (≥ n R) are generated by individual concept.

Algorithm 5 partition(s): /* s[i] refers to the ith element of the set s */
if |s| ≤ 1 then

return (s, ∅)
else

return ({s[1], . . . , s[�n/2�])}, {s[�n/2� + 1], . . . , s[n]})
end if

Algorithm 6 non instances?(cands, C, A):
return ASAT (A ∪ {i : ¬C | i ∈ cands ∧ ¬obvious non instance?(i, C, A)})

The evaluation we conducted with the natural language application indicates that
for instance retrieval queries which return only very few individuals a performance
gain of up to a factor of 5-10 can be achieved with binary search (compared to lin-
ear instance retrieval). The reason is that the non instances? test is successful in
many cases. Hence, with one “expensive” ABox test a large set of candidates can be
eliminated. The underlying assumption is that, in general, the computational costs of
checking whether an ABox (A ∪ {i : ¬C, j : ¬C, . . .}) is consistent is largely dominated
by A alone. Hence, it is assumed that the size of the set of constraints added to A
has only a limited influence on the runtime. For knowledge bases with, for instance,
cyclic GCIs, this may not be the case, however.

Algorithm 7 partition instance retrieval(C, A, partition1, partition2):
if |partition1| = 1 then
{i} = partition1
if instance?(i, C, A) then

return {i} ∪ binary instance retrieval(C, A, partition2)
else

return binary instance retrieval(C, A, partition2)
end if

else if non instances?(partition1, C, A) then
return binary instance retrieval(C, A, partition2)

else if non instances?(partition2, C, A) then
return binary instance retrieval(C, A, partition1)

else
return binary instance retrieval(C, A, partition1)

∪ binary instance retrieval(C, A, partition2)
end if

2.3 Another Improvement: Dependency-Based Instance Retrieval

Although binary instance retrieval is found to be faster in the average case, one can
do better. If the function non instances? returns false then one can analyze the
dependencies of the tableaux structures (“constraints”) involved in the clash. If the
clash is due to the constraints of only one individual, then, as a by-product of the
test, this individual is known to be an instance of the query concept. The individual
can be eliminated from the set of candidates to be investigated, and it is definitely
part of the solution set. Eliminating candidate individuals detected by dependency
analysis prevents the reasoner from detecting the same clash over and over again until

a partition of cardinality 1 is tested. In the example application, runtimes are reduced
by another factor of 3 (compared to binary instance retrieval). If the solution set is
large compared to the set of individuals in an ABox, there is some overhead compared
to linear instance retrieval because only one individual is removed from the set of
candidates at a time. In this case a combination of binary instance retrieval and
dependency-based instance retrieval is required. In our investigations, dependency-
based instance retrieval was always faster than binary instance retrieval. However,
details are subject to further research.

2.4 Index-based Instance Retrieval

The techniques introduced in the previous section can also be exploited if index-
ing techniques are used for instance retrieval (see, e.g., [7, p. 108f.]). Basically, the
idea is to reduce the set of candidates that have to be tested by computing the di-
rect types of every individual. The direct types of an individual i are defined to
be the most specific concept names (mentioned in a TBox) of which i is an in-
stance. An index is constructed by deriving a function associated inds defined for
each concept name C mentioned in the TBox such that i ∈ associated inds(C) iff
C ∈ direct types(i, A). Computing the direct types for each individual and the corre-
sponding index associated inds is also called ABox realization.

In the following we assume that CN is the set of all concept names mentioned in
the TBox (including the name “top”). Furthermore, it is assumed that the function
parents(C) returns the most specific subsumers of C whereas descendants(C) returns
all subsumees of C including C. Subsumers and subsumees of a concept C are concept
names from CN . The function synonyms(C) returns all concept names from CN
which are equivalent to C. Index-based instance retrieval is implemented as follows.

Algorithm 8 index based instance retrieval(C, A):
if ∃N ∈ CN : N ∈ synonyms(C) then

return
⋃

D∈descendants(C) associated inds(D)
else

known results :=
⋃

D∈descendants(C) associated inds(D)
candidates :=

⋃
P∈parents(C) associated inds(P)

return known results ∪ instance retrieval(C, A, candidates)
end if

It is obvious that instance retrieval can be implemented by any of the techniques in-
troduced above. However, computing the index structures (i.e., the function associated
inds) is rather time-consuming. The standard way to compute the index is to compute
the direct types for each individual mentioned in the ABox separately (one-individual-
at-a-time approach). In order to compute the direct types of individuals w.r.t. a TBox
and an ABox, the TBox must be classified, i.e., for each concept name mentioned in
the TBox (and the ABox) the most-specific subsumers (function parents) and least-
specific susumees (function children) are precomputed. Thus, parents and children
are not really queries but just functions accessing results stored in data structures.
Another view is that the children (or parents) relation defines a lattice whose nodes
are concept names. The root node is called top, the bottom node is called bottom.
This lattice is also referred to as ”taxonomy”. The function direct types(i, A) is im-

plemented as a call to traverse1(i, top, A), which is given as Algorithm 9, i.e., the
idea is to compute the direct types of an individual i by traversing the taxonomy of
concept names CN starting from the top node. If i can be proven to be an instance
of a node CN w.r.t. the ABox, the traversal continues at the children of CN until
the node bottom is reached. An individual i is “sieved” into the taxonomy using a
traversal process.

The traversal process is computationally expensive, and although an enormous
speedup can be achieved using, for instance, the function obvious non instance? for
implementing the instance test instance? in the same spirit as explained above, in gen-
eral, many “expensive” ABox consistency checks must be performed. Using the one-
individual-at-a-time approach for realization-based instance retrieval requires about
350 seconds for the investigated example application.

Algorithm 9 traverse1(i, C, A):
if instance?(i, C, A) then

Cs :=
⋃

D∈children(C) traverse1(i, D, A)
if Cs = ∅ then

return {C}
else

return Cs
end if

else
return ∅

end if

Algorithm 10 compute index one individual at a time(A):
Initialization: ∀C ∈ CN : associated inds(C) := ∅

for all ind ∈ individuals(A) do
for all C ∈ traverse1(ind, top, A) do

associated inds(C) := associated inds(C) ∪ {ind}
end for

end for

Since for many applications a runtime of up to 6 minutes for computing the index
is not tolerable, new techniques had to be developed. The main problem is that for
computing the index structure associated inds the direct types are computed for every
individual in isolation. Rather than asking for the direct types of every individual in a
separate query, we investigated the idea of using sets of individuals which are “sieved”
into the taxonomy, The idea is to use the procedure non instances? to check whether
all indiviudals from a set of candidates are all obviously no instances of a given concept
C (w.r.t. an ABox). If non instances? returns true, many single ABox tests can be
avoided. We call the approach the sets-of-individuals-at-a-time approach.

In the natural language application we investigated, answering a specific query
with realization-based instance retrieval and the set-of-individuals-at-a-time approach
requires ca. 30 seconds with dependency-based instance retrieval (and 80 seconds with
binary instance retrieval). Thus, for this specific application the performance gain is
a factor of three. But still it holds that, if ABoxes are not static, i.e., if ABoxes are
computed on the fly, and if only very few queries are posed w.r.t. the ABoxes, then

Algorithm 11 traverse2(inds, C, A, has member):
if inds �= ∅ then

for all D ∈ children(C) do
if has member(D) = unknown then

instances of D := instance retrieval(D, inds, A)
has member(D) := instances of D
traverse2(instances of D, D, A, has member)

end if
end for

end if

the direct implementation of instance retrieval as search without exploiting indexes
is much faster (and possible even without TBox classification). A detailed analysis
about the structure of knowledge bases for which the techniques are most effective of
for which they even fail will be given in a subsequent technical report.

Algorithm 12 compute index sets of individuals at a time(A):
for all C ∈ CN do

has member(C) := unknown
associated inds(C) := ∅

end for
traverse2(individuals(A), top, A, has member) has member(top) := individuals(A)
for all C ∈ CN do

if has member(C) �= unknown then
for all ind ∈ has member(C) do

if ¬∃D ∈ children(C) : ind ∈ has member(D) then
associated inds(C) := associated inds(C) ∪ {ind}

end if
end for

end if
end for

2.5 Exploiting Query Subsumption

If a query concept is a concept name, which is the case in many queries of our example
application, query answering time is reduced to zero if index-based instance retrieval
is used. In addition, if a concept term rather than a concept name is used as a query,
the index still reduces the set of candidates. Now, as we have discussed above, in
many applications computing an index is not feasible. In order to reduce the set
of candidates for instance retrieval tests also in this situation, Racer supports query
subsumption. Each query is inserted as a node into the taxonomy (w.r.t. to the
correct parents and children relation to existing nodes). With each query node, the
instance retrieval result is associated. If a new query is to be answered, the result of
previously answered queries can be exploited in a similar way as shown in the algoritm
index based instance retrieval. Hence, the number of candidates can be considerably
reduced in many cases if a subsumption relationship to a previously answered query
is detected. Due to space constraints we cannot explain details in this paper.

3 Conclusion

One important technique for speeding up common instance retrieval tests that return
only a small set of individuals is to use a binary partitioning algorithm to eliminate half
of the candidates using a single ABox satisfiability test. Furthermore, and in many
cases even more effective, another technique based on an analysis of clash dependencies
is investigated. We found that in the natural language application, a speedup factor of
10 to 30 can be achieved compared to linear instance retrieval. Hence, if the result sets
of instance retrieval queries are only small compared to the set of initial candidates, a
speedup of one order of magnitude can be achieved in the average case. In addition,
the Racer system supports query subsumption in order to reuse previous retrieval
results for reducing the set of candidates for a new query. At last it is indicated
that binary or dependency-based instance retrieval can also be employed when index
structures are available. The article also discusses new techniques for computing index
structures by also exploiting fast instance retrieval functionality.

With Racer, an optimized DL system is available that supports optimizations for
quickly answering instance retrieval queries w.r.t. ABoxes that often change as well as
fast index-based instance retrieval for more “static” ABoxes where the initial overhead
does not impose a problem. Initial applications demonstrate that ABox reasoning can
indeed be used to solve important problems using the declarative means of description
logics.

References

[1] Malte Gabsdil, Alexander Koller, and Kristina Striegnitz. Building a text adventure on de-
scription logic. In International Workshop on Applications of Description Logics, Vienna,
September 18. CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-44/,
2001.

[2] Malte Gabsdil, Alexander Koller, and Kristina Striegnitz. Playing with description logic.
In Proceedings Second Workshop on Methods for Modalities M4M-02. http://turing.
wins.uva.nl/~m4m/M4M2/program.html, November 2001.

[3] Volker Haarslev and Ralf Möller. Consistency testing: The RACE experience. In Proceed-
ings International Conference Tableaux’2000, volume 1847 of Lecture Notes in Artificial
Intelligence, pages 57–61. Springer-Verlag, 2000.

[4] Volker Haarslev and Ralf Möller. Description of the RACER system and its applications. In
Proc. of the 2001 Description Logic Workshop (DL 2001), pages 132–141. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-49/, 2001.

[5] Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int. Joint
Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial
Intelligence, pages 701–705. Springer-Verlag, 2001.

[6] Volker Haarslev, Ralf Möller, and Anni-Yasmin Turhan. Exploiting pseudo models for tbox
and abox reasoning in expressive description logics. In Proc. of the Int. Joint Conf. on Au-
tomated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 2001.

[7] Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1990.

