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ABSTRACT
Due to the Linked Data initiative, the once unpopulated Se-
mantic Web is now rapidly being populated with millions
of facts stored in RDF. Could any of this data possibly be
interesting to ordinary users? In this study, we run queries
extracted from a query log from a major hypertext search
engine against a Semantic Web search engine to determine
if the Semantic Web has anything of interest to the aver-
age Web user. There is indeed much Semantic Web infor-
mation that could be relevant for many queries for enti-
ties (like people and places) and abstract concepts, although
these possibly relevant results are overwhelmingly clustered
around DBPedia. We present an empirical analysis of the
results, focusing on their major sources, the structure of the
triples, the use of various RDF and OWL constructs, and
the power-law distributions produced by both the URIs that
serve Linked Data and the URIs in the triples themselves.
The issue of 303 redirection and URI identity is given in-
depth treatment.

Categories and Subject Descriptors
H.3.d [Information Technology and Systems]: Meta-
data

General Terms
Experimentation

Keywords
Linked Data statistics, query logs, information retrieval,power
law

1. INTRODUCTION
What are the characteristics of the Linked Data in the

wild? There are two primary questions we are hoping to
answer. First, has Linked Data changed from earlier ‘first
generation’ Semantic Web efforts? Second, is there any-
thing worth finding for ordinary users in Linked Data? Only
a moderately large-scape sampling and analysis of Linked
Data can answer this central question. Our method of in-
vestigation is to inspect what information needs actual users
are expressing via using a hypertext search engine, and then
use a sample of these queries to determine if Linked Data
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can satisfy these information needs. We present an analysis
of a search-engine query log from a major hypertext search
engine, Microsoft’s Live.com, and use this query log to sam-
ple Linked Data. As an added benefit, such an empirical
analysis can prove or disprove some widely held assump-
tions, such as whether or not there is an endemic over-use of
owl:sameAs and whether or the Linked Data best practice
recommendation of 303 redirection is being followed.

2. PREVIOUS WORK
For the first-generation of the Semantic Web, there was

very little data-driven analysis of the ontologies, primarily
because so few were actually in existence. The first large-
scale analysis of the Semantic Web was done via an inspec-
tion of the index of Swoogle by Ding and Finin [16]. Ding
and Finin first estimated the size of the Semantic Web to be
in 2006 4.91 million Semantic Web documents via search-
ing Google for the media type application/rdf+xml [16].
As this might not include data that is hosted using the
wrong media type, they estimated, using Google to include
all FOAF files served as HTML and RSS 1.0 files, the size
of the Semantic Web would optimistically be increased by
two orders of magnitudes. Although the study of Ding and
Finin was of great importance as it was the first empirical
study of the Semantic Web, this work has a number of lim-
itations [16]. It’s primary limitation was it was unknown
if any of the Semantic Web documents indexed contained
information that anyone would want to actually re-use. In-
tuitively, most of the data on this first-generation Semantic
Web was likely to be of limited value. For example, the vast
majority of data on the Semantic Web in 2006 was caused
by Livejournal exporting every user’s profile as FOAF – usu-
ally without the user’s knowledge – without linking to other
URIs, serving with the correct MIME type, and deploying
303 re-direction. The second main source of data in Ding
and Finin’s study, RSS 1.0, is also of limited value. RSS,
originally an XML-based protocol generally used for news-
feeds, was given a RDF-compatible syntax, creating RSS 1.0
[6]. The very application of RDF in RSS 1.0 is questionable,
as the data is primarily information about site updates, and
so RSS 1.0 data is rarely merged, re-used, or even linked to
in a manner that takes advantage of RDF. Due to the id-
iosyncratic nature of the data sources of the first generation
Semantic Web, it is not surprising that the majority of the
data likely contained little information that could satisfy the
information need of the average user of the Web.

Due to the Linked Data initiative, the size of the Seman-
tic Web has recently increased in size by several orders of



magnitudes due to the conversion of a large number of high-
quality databases into RDF [12]. Since the study by Ding
and Finin missed the rise of Linked Data, the time is ripe
for more empirical studies of the Semantic Web. It is un-
clear how the dynamics of the Semantic Web are changing.
While the number of URIs indexed by Linked Data search
engines like Sindice shows that the general trend of the num-
ber of URIs on the Semantic Web visually follows a ‘power-
law,’ the correct mathematical analysis has not been done to
show this to be the case [26]. The only large-scale study of
Linked Data at this time has been by Hausenblas et al., and
it estimated the size of the Linked Data at approximately
2 billion triples [19]. The focus of that study was only on
interlinking between data-sets, and it estimated that there
were approximately 3 million interlinks between the various
data-sets. The most popular interlinking property by far
was dbpedia:hasPhotoCollection, with approximately 2 mil-
lion occurrences, most likely to be due to the term being
used by a Linked Data exporter around the popular photo-
hosting service Flickr [2]. In summary, the Linked Data
phenomenon is huge, much larger than the first-generation
Semantic Web, and its properties have not been fully stud-
ied. In particular, there has been little work on determining
how the issues of the reference of URIs play out in the wild
given by Linked Data.

3. SAMPLING LINKED DATA VIA QUERY
LOGS

The main problem facing any empirical analysis of the Se-
mantic Web is one of sampling. As almost any database can
easily be exported to RDF, any sample of the Semantic Web
can be biased by the automated release of large, if ultimately
useless, data-sets. This was demonstrated in an exemplary
fashion by the release of RSS 1.0 data. RDF vocabulary
terms that have little content, such as rss:item, quickly bias
the statistical analysis. With the advent of Linked Data, this
has to some extent already happened with large numbers of
databases being released as Linked Data ranging from the
BBC’s John Peel recordings to the MusicBrainz audio CD
collection [19]. How much of Linked Data is aimed for gen-
eral use? Obviously, components like DBPedia, the export
of Wikipedia to Linked Data, could be very useful [2]. The
vast majority of data released into the Semantic Web is of
appeal only to a niche audience, such as the large appeal of
Bio2RDF to health care and life-sciences. Just as RSS 1.0
and the Livejournal export of FOAF biased sampling of the
first-generation Semantic Web, the release of a large Linked
Data set such as the Bio2RDF, containing approximately
65 million triples and so rivaling the size of DBPedia, can
bias any sampling of Linked Data [7]. For example, if one
just counted the number of URIs used on the Semantic Web,
one would quickly find that bio2rdf:xProteinLinks would
prove to be, in sheer number, a very popular term despite
its relative lack of use outside the biomedical community. It
is a small step then to imagine ‘semantic spamming’ that re-
leases large amounts of bogus URIs into the Semantic Web.
Furthermore, due to open nature of the Web, it is difficult,
if not impossible, to determine how many actual separate
providers of Semantic Web data there are, so a priori choos-
ing seed samples or to ‘weight’ any sample is difficult. Unlike
the original Web, which grew at least in an organic fashion
for its first few years, the Web of Linked Data grows in very

noticeable ‘fits and starts’ as large data-sets are released, so
each data-set can vastly alter any empirical analysis. The
question is not how to avoid bias in sampling, but to choose
the kind of bias one wants. We are aiming for a bias towards
the ordinary user of the Web.

What information is available on the Semantic Web that
ordinary users are actually interested in, and how do we
sample this data? The obvious candidate for exploring this
would be look at a major search engine query log, as it gives
a sample of the interests of many users in aggregate. Since
Semantic Web search engines are currently used mostly by
Semantic Web developers and not by ordinary users, the
query log of a popular hypertext search engine should be
sampled as opposed to a more specialized search engine.
The entire bet of the Semantic Web is that it will contain
information that many ordinary users will want to re-use
and merge via Semantic-Web enabled applications, and that
this information will primarily be about non-information re-
sources such as entities like people and places and abstract
concepts. Thus, the ideal sampling of the Semantic Web
would be to extract query terms referring to physical entities
and abstract concepts from a hypertext search engine query
log, and then by virtue of a Semantic Web search engine we
can determine precisely how much information Linked Data
contains on these subjects.

3.1 The Live.com Query Log
There has been a much work in query log analysis in or-

der to discover how to best satisfy the information needs of
users on the Web. Since most search query logs of any size
belong to search engines companies, it is often difficult for
researchers outside those companies to analyze these query
logs, and therefore most research in search query logs deal
with small or special-purpose query logs, such as the Web
track in the TREC competition [20]. A few employees of
large search corporations have released detailed studies of
their search engine query logs. In particular Silverstein et
al.’s analysis of a billion queries in the Altavista query log is
considered to be a large ‘gold-standard’ study of query logs
[29]. In order to extract concepts and entities, we analyze
the query log of approximately 15 million distinct queries
from Microsoft Live Search, and all reference to the ‘query
log’ are to this Microsoft query log, which is provided by
Microsoft due to a 2007 ‘Beyond Search’ award. This query
log contains 14,921,285 queries. Of these queries, 7,095,302
(48%) were unique. Corrected for capitalization, 4,465,912
(30%) were unique. Of all queries, only 228,593 (2%) queries
used some form of advanced keywords, while 709,102 (5%)
used boolean operators and 266,308 (2%) used quotation,
leading to a total of 1,204,003 (17%) queries using some ad-
vanced techniques provided by the search engines. The av-
erage number of terms per query was 1.76. Note that these
extremely brief queries are normal for hypertext Web search
engines, with an average query length of 2.35 being reported
by Silverstein et al. for the Altavista query log [29]. Since
we did not want to deal with queries that were only typed
once or a few times, as these may not be representative of
most user’s interests, we did not select for further use any
queries with a frequency less than 10, resulting in onlyfrom
the total query log of 7,095,302, a reduction of 37%.

3.2 Extracting Queries for Entities and Con-
cepts



Automatically classifying informational queries is difficult.
Rule-based approaches that claim to work over entire query
logs like those of Jansen et al. [21] are dubious at best,
since they work by applying very loose specifications such
as “query length greater than 2” and “any query using natu-
ral language terms.” More promising work has applied both
supervised and unsupervised machine-learning to discover
informational queries, but only achieved an accuracy of 50%
[3]. A number of machine-learning algorithms could be em-
ployed to learn named entities, but the sparse amount of lin-
guistic context in query logs makes identifying a named enti-
ties difficult in a unsupervised manner, and there is virtually
no labeled data for supervised learning [33]. Even most rule-
based approaches for named entity recognition rely heavily
upon capitalization and punctuation, such as ‘I.B.M.’ and
‘Gustave Eiffel,’ features that are lacking from query logs
[23].

We call queries that are automatically identified to be about
physical entities in the query log entity queries. For the
discovery of entity queries, people and places are obvious
places to begin. An updated version of the system that
was the highest performer at MUC-7 [23], a straightforward
gazetteer-based and rule-based named entity recognizer, was
employed to discover the names of people and places. The
gazetteer for names was based on a list of names maintained
by the Social Security Administration and the gazetteer for
place names was based on the gazetteer provided by the
Alexandria Digital Library Project. Although it could be
possible to separate out people and places, this was not
done. First, both of these are types of entities. Second,
the names of many location such as ‘Paris’ or places like
‘Georgia’ can also be used as a name. This gazetteer-based
approach was chosen to provide high precision, even at the
cost of a dramatically reduced recall. This is an acceptable
trade-off as we are attempting only to sample the number of
queries that would likely to be have URIs on the Semantic
Web. A high-quality sample of the query log is more impor-
tant than a large one for this purpose. Of a random sample
of 100 entity queries, a judge considered 94% to be correctly
categorized as entities such as people or places.

From the pruned unique queries in the query log, totaling
4,465,912 queries, a total of 509,659 queries (11%) were iden-
tified as either people or places by the named-entity recog-
nizer. The top 10 entity queries are given in Table 1. Some
transactional and navigational queries, despite their rela-
tively lower frequency overall in the query log, are highly
clustered towards the top of the query distribution. These
navigational queries such as ‘chase’ and ‘office max’ have
clearly snuck into the top ten due to their use of common
names in their website names. A legitimate number of real
names, such as ‘jessica alba’ and ‘marcus vick’ were discov-
ered.

A method for discovering abstract concepts in the query
log is more challenging. These queries are called concept

queries, queries that are automatically identified to be about
abstract concepts in query log. Previous attempts at dis-
covering abstract concepts have employed machine-learning
over truly massive query logs and document collections from
Google [27]. Since this massive amount of data was not
available, we employed WordNet instead. WordNet consists
of approximately 207,000 words with unique synsets. Our
algorithm for discovering abstract concepts in query logs us-
ing WordNet was straightforward: we only chose queries of

7311 david blaine
4039 kelly blue book
3053 chase
2997 jessica alba
2100 nick
1415 office max
1280 michael hayden
1139 harley davidson
1098 marcus vick
1092 keith urban

Table 1: Top 10 Entity Queries in Query Log

length one where the query had a hyponym and hypernym,
due to the difficulty of WordNet dealing with some multi-
word queries. This assured that the query was for a class
that was suitably abstract (having a hyponym) but not so
abstract as to be virtually meaningless (had a hypernym).
This resulted in a more restricted 16,698 concept queries
(.4% of total query log). The top 10 concepts queries are
given in Table 2. Again, a number of clearly transactional
queries have managed to find themselves into the concept
queries, such as ‘chase’ and ‘drudge,’ as well as a number
of queries where the sense of a word has been taken over
by a proper name, such as ‘sprint’ and ‘aim.’ Again, this
is due to the preponderance of navigational names towards
the top of the query distribution. Of a random sample of
100 concept queries, a judge considered 98% to be correct.
The top ten concept queries are presented in Table 2. While
some of the queries could be considered somewhat naviga-
tional (such as those for maps and dictionaries), they could
all be considered informational queries about some abstract
concept.

11383 weather
10321 dictionary
3675 people
3217 music
2192 autism
1468 map
1198 travel
1191 pregnancy
1104 news
1052 charter

Table 2: Top 10 Concept Queries in Query Log

3.3 Power-Law Detection
The frequency of queries, when rank-ordered, follows what

is known as a ‘power-law’ distribution, with a relatively
small number of very popular queries and a long-tail of
queries only occurring once or twice, where most of the mass
of the distribution is in the long tail and the ‘top’ of the dis-
tribution exponentially decreases. Since this distribution is
common in search on the Web, we will define it precisely: A
power-law is a relationship between two scalar quantities
x and y of the form:

y = cx
α + b (1)



where α and c are constants characterizing the given power-
law, and b being some constant or variable dependent on x

that becomes constant asymptotically. Typically it is ap-
plied to rank-ordered frequency diagrams, where the fre-
quency of some measurement is given on the horizontal axis
while the rank order of the measurements in terms of their
frequency is given on the vertical axis. The α exponent is
the scaling exponent that determines the slope of the top
of the distribution and provides the remarkable property of
scale-invariance, such that if a true power-law is observed,
as more samples are added to the distribution, the α re-
mains constant, i.e. the distribution is ‘scale-free’ [32]. It
is crucial to note that a power-law distribution violates as-
sumptions of the normal Gaussian distribution, such that
routine statistics such as averages and standard deviations
can be and usually are misleading. In fact, one of the surest
sign of a non-normal distribution like a power-law distribu-
tion is a very large standard deviation. Is such a distribution
evident from Linked Data? One important question is how
to detect power-law distributions in actual data. Equation
1 can also be written as:

log y = α log x + log c (2)

When written in this form, a fundamental property of
power-laws becomes apparent: When plotted in log-log space,
power-laws are ‘straight’ lines. Thus,the most widely used
method to check whether a distribution follows a power-law
is to apply a logarithmic transformation, and then perform
linear regression, estimating the slope of the function in log-
arithmic space to be α, as done by Ding and Finin [16].
However, standard least-square regression has been shown
to produce systematic bias, in particular due to fluctuations
of the long tail [14]. To determine a power-law accurately
requires minimizing the bias in the value of the scaling ex-
ponent and the beginning of the long tail via maximum like-
lihood estimation. See Newman [25] and Clauset et al. [14]
for the technical details.

Determining whether a particular distribution is a ‘good
fit’ for a power-law is difficult, as most ‘goodness-of-fit’ tests
employ normal Gaussian assumptions violated by poten-
tial power-law distributions. Luckily, the non-parametric
Kolmogorov-Smirnov test can be employed for any distribu-
tion and so is thus ideal for use measuring ‘goodness-of-fit’
of a given finite distribution to a power-law function. While
the details are given at length in Clauset et al. [14], intu-
itively the Kolmogorov-Smirnov test can be thought of as
follows: Given a reference distribution P , such as an ideal
power-law distribution generating function, and a sample
distribution Q of size n suspected of being a power-law,
where one is testing the null hypothesis that Q is drawn
from P , then the Kolmogorov-Smirnov test compares the
cumulative frequency of both P and Q to discover the great-
est discrepancy (the D-statistic) between the two distribu-
tions. This D-statistic is then tested against the critical
value p of the D-statistic at n, which varies per function.
The null hypothesis is rejected if the D statistic is less than
the critical p-value for n, p being the probability that the
distribution was drawn from a power-law generating func-
tion given the estimated parameters. In order to determine
how well the power-law method fits, whenever a power-law
is reported, the D-statistic is also reported, and we will de-
termine whether or not the fit was significant according to

the conservative p < .1. The Kolmogorov-Smirnov test is
valid even for power-law distributions since Q’s cumulative
density function is asymptotically normally distributed and
this can be compared to the cumulative density function of
P .

The query frequencies for entity and concept queries are
plotted in logarithmic space in Figure 1. Both entity and
concept queries appear to be linear in log-space, and so can
be considered candidates for power-laws. Using the method
described above, the α of the queries for entities was cal-
culated to be 2.31, with long tail behavior starting around
a frequency of 17 and a Kolmogorov-Smirnov D-statistic
of .0241, indicating a significant good fit. The α of the
queries for concept queries was calculated to be 2.12, with
long tail behavior starting around a frequency of 36 with a
Kolmogorov-Smirnov D-statistic of .0170, also indicating a
significant good fit for the power law. Given their two re-
markably similar α statistics and high goodness of fits, one
can safely conclude that these query logs do indeed follow
power-law distributions. This indicates our sample of enti-
ties and concepts are representative of the larger query log,
which are well-known to follow power-law distributions [4].
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Figure 1: The rank-ordered frequency distribution of

extracted entity and concept queries, with the entity

queries given by green and the concept queries by blue.

3.4 Querying Linked Data with FALCON-S
Both the concept queries and the entity queries are used

to query the Semantic Web. Since our goal was to discover
how much of interest for ordinary users was present on the
Semantic Web, one problem with using the entire query log
was that it would contain a vast amount of unique queries
that would likely to be never be repeated. So, we excluded
a portion of the long tail from the study by removing all
queries of less than a frequency of 10. The parameter 10 was
chosen as it was the number that could reduce both entity
and concept queries to the same order of magnitude. Due to
the power-law behavior of both entity and concept queries,
this truncation consists of ‘removing’ a large amount of the
long tail, while maintaining the entire ‘top’ of the power-
law distribution, as well as some significant component of
the long tail. This procedure is justified insofar as the ‘long-
tail’ likely consists of queries that are never or very rarely
repeated, while the remaining queries represents queries that



are likely to be repeated. This pruning of low-frequency
queries from our sampling does exclude many ‘difficult’ or
‘specialist’ queries, but we are aiming for queries that are
general-purpose and popular. We call these queries with
more than 10 URIs returned from the Semantic Web the
crawled queries to distinguish them from the greater query
log. Likewise, crawled entity queries are entity queries
with more than 10 URIs returned from the Semantic Web,
and similarly for crawled concept queries.

This truncation reduced the amount of queries signifi-
cantly, from 587,283 to 7,848 queries, removing 99% of the
queries. It reduced the number of entity queries from 570,585
to 5,308 (a 91% reduction) and from the amount of concept
queries from 16,698 to 2,540 (an 85% reduction). This gap
in the result of pruning off the ‘long tail’ is interesting, as it
shows that while there is a lower amount of concept queries
than entity queries overall, concept queries are repeated by a
order of magnitude or so more often than entity queries. The
only caveat is that our identification of concept queries via
WordNet is likely more stringent than our identification of
entity queries, and thus leads to less concept queries overall.
Furthermore, the vast majority of entity queries, as opposed
to concept queries, appear to be queries that are only once
or a very few times. This would make a certain amount
of sense, as many queries for people and places are not for
famous people and places, but for infrequently-mentioned
people and places, such as wayne way san mateo and sara

matthews. Some concepts that were as diverse as gastropod
and accolade. Still, the crawled queries are still biased sig-
nificantly in favor of entity queries, being composed of 68%
being entity queries and only 32% concept queries.

The FALCON-S Object Semantic Web search engine [13]
was used to query the Semantic Web for selected entity and
concept queries between August 3rd and 4th 2008. We rec-
ognize that this a major weakness of the study, as its index
may not be a representative sample of the entire Linked
Data Web, but it is a significant sample regardless. At the
time, FALCON-S seemed to have the best rankings, and a
comparable index to other engines. The results of running
the crawled queries against a Semantic Web search engine
were surprisingly fruitful, although varying immensely. For
entity queries, there was an average of 1,339 URIs (S.D.
8,000) returned per query. On the other hand, for concept
queries, there were an average of 26,294 URIs (S.D. 14,1580)
returned per query, with no queries returning zero docu-
ments. Given the high standard deviation of these results,
it is likely that there is either a power-law in the resulting
URIs for the queries, or some other non-normal distribu-
tion. As shown in Figure 2, when plotted in logarithmic
space, both entity queries and concept queries show a distri-
bution that is heavily skewed towards a very large number of
high-frequency results, with a steep drop-off to almost zero
results instead of the characteristic long tail of a power law.
Far from having no information that might be relevant to
ordinary user queries, the Semantic Web search engines re-
turned either too many URIs possibly relevant to the query
or none at all.

Another question is whether or not there is any correlation
between the amount of URIs returned from the Semantic
Web and the popularity of the query. As shown by Figure 3,
there is no correlation between the amount of URIs returned
from the Semantic Web and the popularity of the query. For
entity queries, the Spearman’s rank correlation statistic was
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Figure 2: The rank-ordered frequency distribution of

the number of URIs returned from entity and concept

queries, with the entity queries given by green and the

concept queries by blue.

the insignificant .0077 (p > .05), while for concept queries,
the correlation was the still insignificant at .0125 (p > .05).
Just because a query is popular or unpopular does not mean
the Semantic Web will be more or less likely to satisfy the
information need of the query. This makes sense, as the vast
majority of queries are heavily dependent on current events
and fashion, and the Linked Data data sources are not up-
dated often enough to deal with this kind of information, so
there is an inevitable temporal lag between the time infor-
mation appears in the world outside the Semantic Web and
its digitization on the Semantic Web. Yet as shown by Fig-
ure 2, the amount of possibly useful information for the vast
majority of queries is still surprisingly large, although how
many of the returned URIs are actually relevant to human
users is not yet known.
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4. EMPIRICAL ANALYSIS OF THE SEMAN-
TIC WEB

Surprisingly, there is a deluge of possible Semantic Web
URIs for any given query. Due to the high number of re-
sults for each query, we restricted our analysis to the top
10 Semantic Web URI results for each query as given by
FALCON-S’s ranking algorithm, and distinguish this subset
from all the URIs returned by the Semantic Web, by calling
these this subset the crawled URIs. Concept URIs are
crawled URIs from the crawled concept queries while entity

URIs are crawled URIs from the crawled entity queries. Al-
though crawled URIs are a small subset of the total URIs re-
trieved, given that user behavior in general inspects the first
ten URIs returned by this search [18], it makes more sense to
sample these ten URIs per query than to sample every URI
retrieved. The crawled URIs totaled 70,128 URIs, composed
of 25,400 (36%) concept URIs and 44,728 (63.78%) entity
URIs. These URIs were crawled using HTTP GET with a
preference for application-type of application+rdf/xml in
order to prefer RDF files served by content negotiation, and
any 303 redirection was followed.

Of all crawled queries, a total of 6,673 (85%) had at least
10 crawled URIs. All concept queries had at least 10 crawled
URIs and only 4,133 of the entity queries (12% of all entity
queries) did not have 10 queries. Inspecting just the set
of queries that did not have 10 crawled URIs, the average
number of URIs when 10 URIs were not returned were 2.89
(S.D. 2.88). So, the trend observed earlier was repeated in
this smaller data-set, namely that while most of the time too
many URIs are retrieved from the Semantic Web, sometimes
there are no URIs are retrieved from the Semantic Web for
certain entity queries. Looking at the data more closely, 357
(30%) of the crawled URIs with less than 10 results returned
no URIs, while 138 (12%) returned a single URI and 113 re-
turned two URIs (10%). These queries with zero results
seem to be mostly for not well-known places such as playa

linda (a hotel in Majorica) or fairly unknown people such
as william ravies or misspellings or popular truncations of
names for people such as steven colbertbush. This obser-
vation helps explains the sudden drop in Semantic Web URIs
returned for queries in Figure 3. There was little overlap be-
tween the the crawled URIs retrieved by different queries,
with an overlap in entity queries of 546 URIs (.01%) and an
overlap in concept queries of 1031 URIs (.04%). In other
words, the various queries weren’t just retrieving the same
small group of URIs over and over again.

4.1 URI-based Statistics
In this section, we inspect the various kinds of statistics we

can detect on the ‘macro-level’ of the crawled URIs without
actually accessing any Semantic Web documents from the
URIs.

The HTTP status returned by attempting to access the
various crawled URIs are given in Table 3. In particular,
the most revealing statistic is the majority of the Seman-
tic Web sampled by the crawled URIs is served using the
303 convention, not the hash convention. In fact, a total of
51,762 (73%) of crawled URIs use the 303 convention, while
only 1,662 (2%) of the crawled URIs use the hash conven-
tion. Of these URIs returning the hash convention, manual
inspection showed many to be FOAF files. This shows the
vast majority of Linked Data is following the 303 conven-
tion and so obeying the W3C and the guide to publishing

Linked Data [11]. This statistic as regards usage of the 303

convention is misleading in the broad sense, as most of the
URIs are from a single source, DBPedia, as shown later in
Table 4.

The majority of URIs, 51,873 (74%), served a Semantic
Web document via 303 redirection, and so returned the 200

status code when the Semantic Web document was accessed
after the redirection. 200 status codes without 303 redi-
rection still form a substantial fraction of Semantic Web
URIs. There are several reasons this; all hash convention
URIs would by default still technically commit a redirect
to be served by a 200 status code. However, this is only a
minority (27%) of those URIs returning a 200 status code.
The rest are likely caused by people serving RDF that does
not have the access to the Web server configuration needed
to serve RDF using the 303 redirection, while many others
may have started serving RDF before the W3C TAG deci-
sion [28] was made or are not aware of Linked Data best
practices. For example, some earlier RDF-enabled reposito-
ries like W3C WordNet did redirection by 300 redirection. A
small percentage may be ordinary web-pages, perhaps con-
taining some meta-data as enabled by GRDDL, that just
happened to be indexed by the Semantic Web search en-
gine [15]. Furthermore, of these crawled URIs, 9,156 (13%)
URIs had no Semantic Web document that was accessible
via HTTP, shown by the use of a 4xx or a 5xx-level status
code.

51,873 73.97% 303
6,061 8.65% 200
4,517 6.44% 404
4,257 6.07% 500
3,147 4.49% 300
246 0.35% 406
20 0.03% 403
4 0.00% 302
3 0.00% 502

Table 3: Top 10 HTTP Status Codes for crawled

URIs

The top 10 hosts of Semantic Web data in the crawled
URIs is given by Table 4. DBPedia, the export of Wikipedia
to RDF, dominates the results with 83% of all URIs com-
ing from either Wikipedia or DBPedia [2]. The W3C it-
self is the third largest exporter of RDF with a share of
5%. Upon closer inspection, most of the URIs crawled from
the W3C derive from the W3C-hosted export of the linguis-
tic database Wordnet. The domain of the Freie Universität
Berlin has a significant 2% of all RDF data, which is due pri-
marily for its Flickr photo export to RDF. An RDF-version
of Cyc and the biomedical data hosting site Bio2RDF also
host small but significant amounts of Semantic Web data
[22]. The Russian-blog hosting site Liveinternet.ru carries
on the tradition of FOAF exporting of Livejournal. True-
sense is another export of WordNet to RDF, although not
as frequently used as W3C Wordnet. Towards the end of
the ranking there is the RDF version of Univeristät Trier’s
widely used DBLP academic citation database and
Ontoworld.org, a RDF-enabled wiki for the Semantic Web
research community [31].

The average number of URIs hosted by a domain name
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Figure 4: The rank-ordered distribution of the domain

names hosting Semantic Web data from the crawled

URIs ordered by number of URIs hosted.

was 1,268 (S.D. 16,060), with the average number of entity
URIs hosted by any domain being 1,236 (S.D. 15,458) and
the average number of concept URIs hosted by a domain
being 1,0327 (S.D. 6,650). The very high standard devia-
tions are usually a sign of power-law distribution, as shown
in in Figure 4. Attempting to fit a power-law distribution,
the α of the rank-ordered domain list frequency distribu-
tion is 1.53, with long tail behavior starting around 175 and
a Kolmogorov-Smirnov D-statistic of .1414, indicating in-
significant fit for the power-law distribution. In other words,
while a few sources like DBPedia dominates the crawled
URIs, with an rapidly decreasing number of smaller sites
such as Cyc and the W3C, the long-tail individuals URIs
hosting their FOAF files on their personal websites is still
rather insignificant compared to the ‘top’ major sites host-
ing Linked Data. This is because the Linked Data is being
artificially generated in large ‘chunks’ by projects like W3C
Wordnet and DBpedia, and so do not organically form the
power-law distribution characteristic of naturally-evolving
complex systems.

54,698 78.00% dbpedia.org
3,584 5.11% wikipedia.org
3,448 4.92% w3.org
1,704 2.43% fuberlin.de
811 1.16% cyc.com
701 1.00% bio2rdf.org
599 0.85% liveinternet.ru
417 0.59% truesense.net
322 0.46% dblp.unitrier.de
314 0.47% ontoworld.org

Table 4: Top 10 Domain Names for URIs for

Crawled URIs

4.2 Triple-based Statistics
In this section, we move our analysis down from the level

of URIs to the level of the triples accessible from the URIs.
Since a number of crawled URIs were inaccessible, this re-
duced the total number of accessible crawled URIs to
60,972, a reduction of (13%) from the crawled URIs. The

accessible crawled URIs contained 24,074 accessible crawled
concept URIs (95% of all crawled concept URIs) and 36,898
(82% of all crawled entity URIs) accessible crawled entity
URIs. Thus, the accessible crawled URIs maintained a bias
towards entity URIs (61% of all accessible crawled URIs)
as compared to concept URIs (39% of all accessible crawled
URIs). Each of the crawled accessible URIs was accessed,
and this resulted in a total of 59,228 Web representations
with only 48 URIs not allowing access to a Semantic Web
document. These non-Semantic Web documents were usu-
ally ordinary web-pages from which RDF triples could not
be extracted via GRDDL [15] or RDFa [1]. These crawled
Semantic Web Documents we will call the crawled Seman-

tic Web documents, and the total sum of triples in these
documents are called the crawled triples.

There were a total of 411,574 RDF triples in the crawled
triples, with 242,829 (59%) triples for concepts and 168,745
(41%) triples for entity URIs. Concepts, despite being fewer
in number, seem to require more triples to describe than
entities. The internal structure of these triples is of surpris-
ing interest. Of these triples, there were a total of 1,051
triples containing blank nodes, a measly .25% of all triples
in the corpus, of which 772 (73%) were subjects and only
279 (27%) were in the object position. This means that
the use of blank nodes, whose purpose is as syntactic place-
holders in URIs for objects like lists and in representing n-
ary arguments in RDF, is almost non-existent in our sample.
Removing blank nodes, the composition was split between
URI nodes (66%) and a surprisingly large minority of RDF
literals nodes (34%). These literals contain some form of in-
formation in either ‘unstructured’ natural language or some
form of structured information in a formal language, such
as integer values.

Of the literals, a total of 403,119 were RDF string lit-
erals, while only 2% were of some other data type, with
top 10 frequent data-types given in Table 5. The most fre-
quent data-types are from XML Schema [10], while others
are customized for DBPedia. It appears that the vast ma-
jority of RDF in the Semantic Web of interest to average
users are simple URI-based triples with rich information in
natural language. This also goes against the intuition that
the vast majority of Semantic Web data that is of interest
to ordinary users would be highly structured data of ex-
ported databases [8]. Instead, what is of interest in Linked
Data is stored mainly in natural language, with RDF adding
only a minimal structure to essentially fragments of natu-
ral language. While it could be argued that this particular
finding is merely an artifact of DBpedia, however, it should
be acknowledged that DBpedia is, given that our querying
includes other data-sets, this finding may well be generaliz-
able. We are not studying the Semantic Web as some of its
designers would like to have it, but as it actually exists, and
part of its existence is that DBpedia forms a huge central
cluster that for ordinary users is the most interesting and
useful part of Linked Data.

One interesting question is the predominance of the vari-
ous kinds of Semantic Web knowledge representations terms
on the Semantic Web, since this would show what kinds
of inference could actually be deployed on the Semantic
Web. First, of the total 1,093,212 URIs in triples harvested
from the crawled accessible URIs, only 243,776 (22%) were
from one of the primary W3C Semantic Web knowledge
representation languages, either RDF, RDF(S), or OWL.



403,119 97.95% RDF plain literal
3,103 0.75% w3c:/XMLSchema#integer
2,789 0.68% w3c:/XMLSchema#string
1,185 0.29% w3c:/XMLSchema#double
522 0.13% w3c:/XMLSchema#date
248 0.06% w3c:/XMLSchema#float
136 0.03% w3c:/XMLSchema#gYear
65 0.02% w3c:/XMLSchema#gYearMonth
59 0.01% dbpedia:Rank
46 0.01% dbpedia:Dollar
14 0.00% w3c:/XMLSchema#int
9 0.00% dbpedia:Percent

Table 5: Common Data Types in Crawled Triples

Of these, the RDF vocabulary itself was the most popu-
lar, with 109,300 URIs (45%), followed fairly closely by the
RDF(S) vocabulary with 100,340 URIs (41%), and OWL
being dwarfed by RDF and RDF(S) with only 34,136 URIs
(14%). This does not mean that OWL is irrelevant to the
other corpus, as ontologies constructed with OWL could be
deployed to model the concepts and entities employed in
‘instance’ data. Yet while OWL has been an academic suc-
cess story, insofar as practical deployment, RDF terms and
RDF(S)-based inference seems to be the foundation of the
Semantic Web in practice.

What precise URI-based terms are used in these knowl-
edge representation languages? The top constructs in ei-
ther RDF, RDF(S), or OWL in crawled triples are given in
Table 6. To summarize, RDF(S) class and sub-class rea-
soning is very popular, with this construction consisting of
nearly half (48%) of knowledge representation use of the Se-
mantic Web. The second most popular use of knowledge
representation (22%) is for natural language annotation, de-
scribing a particular Semantic Web resource using natural
language and connecting this natural language description to
the URI via the use of rdfs:comment or rdfs:label. There
are surprisingly few (4%) actual ontologies in the crawled
Semantic Web resources. Furthermore, non-traditional fea-
tures of RDF(S), such as the use of rdfs:property, are fre-
quent occurrences. Even reification of RDF triples, officially
discouraged by the Semantic Web community, accounts for
only 95 triples, and there is also fairly heavy use of discour-
aged RDF constructs to represent different kinds of lists,
such as rdf:Alt (349 occurrences) and rdf:Bag (344 oc-
currences). Lastly, while many Semantic Web researchers
originally hoped that the use of inverse functional proper-
ties would allow the merger of Semantic Web data, there
were zero explicitly declared usages of
owl:inverseFunctionalProperty. Overall, the usage of OWL,
RDF(S), and RDF terms in the corpus also follows to some
degree a power-law like distribution, where α equal to 1.5,
with long tail behavior starting around 90, although the
Kolmogorov-Smirnov D-statistic of .1911 reveals this to in-
significant. This is because while a few terms vastly dom-
inate, the vast majority of other terms are not used at all.
This has reprecussions for both Semantic Web implementers
and vocabulary specification within the W3C, since obvi-
ously some level of concentration of effort upon the most
frequently-deployed terms would be reasonable.

One of the most popular OWL constructs is indeed the

controversial owl:sameAs term, which is used to declare some
sort of global equivalence between two URIs. While a tiny
portion (.47%) of overall Semantic Web modelling term us-
age, it is far from insignificant, with 1,157 occurrences. The
use of owl:sameAs in the wild is far different than the role it
plays in popular debate within the Semantic Web commu-
nity would suppose. Logicians hold that owl:sameAs is only
for what is properly considered individuals in description
logic, so that classes and properties should use the more re-
stricted and semantically correct owl:equivalentClass and
owl:equivalentProperty. Yet this best practice in logic
hasn’t the Linked Data community, as owl:equivalentClass
has only 2 occurrences and there are none of
owl:equivalentClass. Instead, the Linked Data movement
uses owl:sameAs to simply “state that another data source
also provides information about a specific non-information
resource,” so leading owl:sameAs to tend to mean ‘more-or-
less the same thing as’ [11]. This practice leads to the fear
that the use of owl:sameAs would propagate too far, such
that many URIs for the perhaps differing referents would be
declared identical [17].

Both critiques of owl:sameAs appear to be wrong. Given
the amount of Semantic Web URIs returned by the queries,
while there is considerable use of owl:sameAs, it appears
that the manual discovery and publication of co-referential
URIs using owl:sameAs falls far behind the actual growth of
Linked Data. One could say that owl:sameAs is not being
used enough. The real problem is not that distinct things
are being given the same URI, but the reverse; namely that
it appears endemic that the same thing has multiple URIs.
So Berners-Lee’s hypothesis appears to be wrong: A single
thing is likely identified by more than a single URI on the
Semantic Web.

73,451 30.31% rdfs:Class
47,044 19.30% rdfs:comment
44,113 18.10% rdfs:subClassOf
8,630 3.54% owl:Ontology
7,256 2.97% rdfs:label
6,618 2.14% rdf:Subject
5,107 2.09% owl:ObjectProperty
3,642 1.49% rdfs:subPropertyOf
1,157 0.47% owl:sameAs
535 0.29% rdfs:range

Table 6: RDF and OWL Constructs in Crawled

Triples

The top 10 Semantic Web vocabularies used in the crawled
triples, including those outside of the W3C-approved Seman-
tic Web knowledge representation languages, are shown in
Table 7. The results should not be that surprising, in par-
ticular the vast dominance of DBPedia. Perhaps surprising
is the surprising amount of usage of Cyc terms, as well as
terms from SKOS, the Simple Knowledge Organization Sys-
tem of the W3C, whose primary source of deployment is the
W3C’s export of WordNet to RDF [24]. FOAF is also signif-
icant, although not nearly as dominant as was found earlier
by Ding and Finin [16]. Also popular is YAGO (Yet Another
Global Ontology), a merger of WordNet and Wikipedia cat-
egory hierarchies employed by DBPedia [30].



366,849 33.55% DBpedia URIs
109,300 9.99% RDF URIs
100,340 9.17% RDF(S) URIs
94,520 8.65% Cyc URIs
34,136 3.12% OWL URIs
6,563 0.60% SKOS URIs
4,728 0.43% dblp.l3s.de
3,263 0.29% FOAF URIS
2,170 0.20% YAGO URIs
1,836 0.16% WordNet URI

Table 7: Top Vocabulary URIs in Crawled Triples

5. CONCLUSION
The empirical analysis of Linked Data presented in this

study is by no means complete, for it is only a moderately
small sample by one Semantic Web search engine (and so
hurt or benefit by the idiosyncratic behavior of the search-
ing of FALCON-S), although it is an important one as this
sample is driven by Web search queries by actual users. The
results of this empirical analysis show a transformation from
the first-generation Semantic Web to the next generation
Web of Linked Data. The Semantic Web as it existed in
the first-generation was a motley collection of RDF triples,
heavily dominated by a few exports of social networking
data into FOAF and a long-tail of complex academically-
produced ontologies. Linked Data - at least the section of it
that is of interest to users querying the Web for information
- is dominated heavily by DBPedia and consists primarily
of collections of triples that provide a minimal structure to
natural language [16].

On the level of triples, there are some surprising conclu-
sions. The triples on the Semantic Web contain a vast range
of data, and the exact kinds of URIs used in the triples are
somewhat unpredictable. However, the kinds of vocabular-
ies actually deployed are almost entirely from a few large
vocabularies, such as DBPedia, DBLP, WordNet, YAGO,
and FOAF. This again points to a victory of Berner-Lee’s
idea that a few large vocabularies with well-defined terms
could dominate the Semantic Web [9]. The kinds of triples
that structured this data do not contain many OWL terms
optimized for inference, but consist almost entirely relatively
straight-forward RDF(S) expressions for sub-class relation-
ships and for annotations in natural language. Overall,
Linked Data is primarily being used to provide structured
relationships between fragments of natural language, and
not for inference.

One could argue that that these results are more charac-
teristic of FALCON-S and DBpedia than the second-generation
Linked Data as a whole. However, we would respond that
it is natural in decentralized information systems for power
law distributions, where one source of data massively out-
weighs others in weight to evolve, and the ‘giant component’
of Linked Data is DBpedia [5]. In fact, if such a ‘giant com-
ponent’ and long tail were not observed, it would be cause
for suspicion. In conclusion, there is potentially lots of rich
information that ordinary Web search users in Linked Data
form, and so one outcome of this analysis should be a greater
interest in Linked Data from even mainstream information
retrieval systems. However, for future work we wish to re-
peat this study over different Semantic Web search engines

beside FALCON-S, which we recognize is a major limiting
factor. Second, there is likely too many URIs in Linked Data
for a given query, although to truly substantiate this claim
ideally the URIs returned by the search engines should each
be individually inspected, although this is difficult in prac-
tice. Yet even at this point it seems is likely that there are
many co-referential URIs for the ‘same thing’ that are not
explicitly modelled with owl:sameAs, and unless action is
taken this growth of URIs will contine of the future. Unless
there is URI re-usage many of the data-sources for Linked
Data are more like semantic islands rather than parts of
interconnected semantic continents.

6. ACKNOWLEDGEMENTS
Harry Halpin was supported in part by a Microsoft “Be-

yond Search” grant.

7. REFERENCES
[1] B. Adida, M. Birbeck, S. McCarron, and

S. Pemberton. RDFa in XHTML: Syntax and
Processing. W3C Recommendation, W3C, 2008.
http://www.w3.org/TR/rdfa-syntax/.

[2] S. Auer, C. Bizer, J. Lehmann, G. Kobilarov,
R. Cyganiak, and Z. Ives. DBpedia: A nucleus for a
web of open data. In Proceedings of the International
and Asian Semantic Web Conference
(ISWC/ASWC2007), pages 718–728, Busan, Korea,
2007.

[3] R. Baeza-Yates, L. Calderon-Benavides, and
C. Gonzalez. Understanding user goals in web search.
In Proceedings of String Processing and Information
Retrieval (SPIRE), pages 98–109, 2006.

[4] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley-Longman, New
York City, New York, USA, 1999.

[5] A.-L. Barabasi, R. Albert, H. Jeong, and G. Bianconi.
Power-law distribution of the World Wide Web.
Science, 287:2115, 2000.

[6] G. Beged-Dov, D. Brickley, R. Dornfest, I. Davis,
L. Dodds, J. Eisenzopf, D. Galbraith, R. Guha,
K. MacLeod, E. Miller, A. Swartz, and E. van der
Vlist. RDF Site Summary (RSS) 1.0. Technical report,
http://web.resource.org/rss/1.0/spec, 2001.

[7] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault, and
J. Morissette. Bio2rdf: Towards a mashup to build
bioinformatics knowledge systems. Journal of
Biomedical Informatics, 41(5):706–716, 2008.

[8] T. Berners-Lee. What the Semantic Web can
represent, 1998. Informal Draft.
http://www.w3.org/DesignIssues/rdfnot.html (Last
accessed on Sept. 12th 2008).

[9] T. Berners-Lee and L. Kagal. The fractal nature of the
Semantic Web. AI Magazine, 29(3), 2004.

[10] P. Biron and A. Malhotra. XML Schema Part 2:
Datatypes. Recommendation, W3C, 2004.
http://www.w3.org/TR/xmlschema-2/.

[11] C. Bizer, R. Cygniak, and T. Heath. How to publish
Linked Data on the Web, 2007.
http://www4.wiwiss.fu-
berlin.de/bizer/pub/LinkedDataTutorial/ (Last
accessed on May 28th 2008).



[12] C. Bizer and A. Seaborne. D2RQ: Treating non-RDF
databases as virtual RDF graphs. In Proceedings of
International Semantic Web Conference, 2004.

[13] G. Cheng, W. Ge, and Y. Qu. FALCONS: Searching
and browsing entities on the semantic web. In
Proceedings of the the World Wide Web Conference,
2008.

[14] A. Clauset, C. Shalizi, and M. Newman. Power-law
distributions in empirical data, 2007.
http://arxiv.org/abs/0706.1062v1 (Last accessed
October 13th 2008).

[15] D. Connolly. Gleaning Resource Descriptions from
Dialects of Languages (GRDDL). Technical report,
W3C, 2007. Recommendation.

[16] L. Ding and T. Finin. Characterizing the Semantic
Web on the Web. In Proceedings of the International
Semantic Web Conference (ISWC), pages 242–257,
2006.

[17] A. Ginsberg. The big schema of things. In Proceedings
of Identity, Reference,
and the Web Workshop at the WWW Conference, 2006.
http://www.ibiblio.org/hhalpin/irw2006/aginsberg2006.pdf.

[18] L. Granka, T. Joachims, and G. Gay. Eye-tracking
analysis of user behavior in www search. In SIGIR
’04: Proceedings of the 27th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 478–479, New York,
NY, USA, 2004. ACM.

[19] M. Hausenblas, W. Halb, Y. Raimond, and T. Heath.
What is the size of the Semantic Web? In Proceedings
of Conference on Semantic Systems (iSemantics),
Graz, Austria, 2008.
http://tomheath.com/papers/hausenblas-
isemantics2008-size-of-semantic-web.pdf.

[20] D. Hawking, E. Voorhees, N. Craswell, and P. Bailey.
Overview of the trec-8 web track. In Proceedings of the
Text REtrieval Conference (TREC), pages 131–150.
ACM, 2000.

[21] B. J. Jansen, D. L. Booth, and A. Spink. Determining
the informational, navigational, and transactional
intent of web queries. Information Process and
Management, 44(3):1251–1266, 2008.

[22] D. Lenat. Cyc: Towards programs with common sense.
Communications of the ACM, 8(33):30–49, 1990.

[23] A. Mikheev, C. Grover, and M. Moens. Description of
the LTG system used for MUC. In Seventh Message
Understanding Conference: Proceedings of a
Conference, 1998.

[24] A. Miles and S. Bechhofer. SKOS Simple Knowledge
Organization System reference. Working draft, W3C,
2008. http://www.w3.org/TR/skos-reference/.

[25] M. Newman. Power laws, pareto distributions and
zipf’s law. Contemporary Physics, 46:323–351, 2005.

[26] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: a
document-oriented lookup index for open linked data.
International Journal of Metadata, Semantics, and
Ontologies 2008, 3(1):37–52, 2008.
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