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Abstract. Formal verification of digital systems is achieved, today, us-
ing one of two main approaches: states exploration (mainly model check-
ing and equivalence checking) or deductive reasoning (theorem proving).
Indeed, the combination of the two approaches, states exploration and
deductive reasoning promises to overcome the limitation and to enhance
the capabilities of each. A comparison between both categories is dis-
cussed in details. In this paper, we are interested in presenting as an
example a platform for Multiway Decision Graphs (MDGs) in LCF-style
theorem prover. Based on this platform, many conversions such as the
reachability analysis and reduction techniques can be implemented that
uses the MDG theory within the HOL theorem prover. The paper also
questions the best formalization principle of decision graphs to build
such a platform in theorem proving since a set of basic operations are
used to efficiently manipulate the decision graphs which constitute the
kernel of the model checking algorithms, by describing two alternatives
to formalize these decision graphs. Then we contrast between them ac-
cording to their efficiency, complexity and feasibility. Finally, we hope
this paper to serve as an adequate introduction to the concepts involved
in formalization and a survey of relevant work.

1 Introduction

With the increasing complexity of the design of digital systems and the size of
the circuits in VLSI technology, the role of design verification has gained a lot
of importance. Serious design errors and bugs take a lot of time and effort to be
detected and corrected especially when they are discovered late in the verification
process. This will increase the total cost of the chip. In order to overcome these
limitations, formal verification techniques arose as a complement to simulation
for detecting errors as early as possible, thus ensuring the correctness of the
design.

Formal verification of digital systems is achieved, today, using one of two main
approaches: states exploration [29] (mainly model checking and equivalence
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checking) or deductive reasoning (theorem proving). It is accepted that both
approaches have complementary strengths and weaknesses.

Model checking algorithms can automatically decide if a temporal property
holds for a finite-state system. Furthermore, they can produce a counterexample
when the property does not hold, which can be very important for correcting the
corresponding error in the implementation under verification or in the specifi-
cation itself. However, model checking suffers from the state explosion problem:
the number of the explored states grows exponentially in the size of the system
description.

In deductive reasoning, the correctness of a design is formulated as a theo-
rem in a mathematical logic and the proof is checked using a general-purpose
theorem-prover. Based on first-order and high-order logic, these theorem provers
are known for their abilities to express relationships over unbounded data struc-
tures. Therefore, theorem proving tools are not sensitive to the state explosion
problem when used to reason formally about such data and relationships. Unfor-
tunately, if the property fails to hold, deductive methods do not give a counterex-
ample. Furthermore, this frequent situation requires skilled manual guidance for
verification and human insight for debugging. Yet theorem provers, today, pro-
vide feedback, but only expert user can track the proof trace and determine
whether the fault lies within the system, the property being verified, or within
the failed proof tactic.

Indeed, the combination of the two approaches, states exploration and deduc-
tive reasoning promises to overcome the limitations and to enhance the capabil-
ities of each. This combination can be performed either by adding a layer of de-
duction theorems and rules on top of the model checking tool (hybrid approach)
or by embedding model checking algorithms inside theorem provers (deep embed-
ding approach). Our work is motivated by using the deep embedding approach
to blend the best of model checker and theorem prover.

The paper is organized as follows: In Section 2, we briefly introduce the formal
verification techniques. The combination of model checkers and theorem provers
is described in Section 3. We then survey the literature and present the related
work in Section 4. Section 5 overviews the formalization of MDG-HOL platform
and the proof of the correctness methodology. Finally, Section 6 concludes the
paper and gives some future research directions.

2 Formal Verification Techniques

Formal verification problem consists of mathematically establishing that an im-
plementation behaves according to a given set of requirements or specification.
To classify the various approaches, we first look at the three main aspects of the
verification process: the system under investigation (implementation), the set of
requirements to obey (specification) and the formal verification tool to verify the
process (relationship between implementation and specification).

The implementation refers to the description of the design that is to be
verified. It can be described at different levels of abstraction which results in dif-
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ferent verification methods. Another important issue with the implementation
is the class of the system or circuit to be verified, i.e., whether it is combina-
tional/sequential, synchronous/asynchronous, pipelined or parameterized hard-
ware. These variations may require different approaches. The specification refers
to the property with respect to which the correctness is to be determined. In
practice, one needs to model both the implementation and the specification in
the tool, and then uses one of the formal verification algorithms of the tool
to check the correctness of the system or in some cases give a trace of error
(counter-example).

Formal techniques have long been developed within the computing research
community as they provide sound mathematical foundation for the specification,
implementation and verification of computer system. Thus, formal verification is
proposed as a method to help certify hardware and software, and consequently,
to increase confidence in new designs. A correctness proof cannot guarantee that
the real device will never malfunction; the design of the device may be proved
correct, but the hardware actually built can still behave in a way unintended
by the designer. Wrong specification can play a major rule in this, because it
has been verified that the system will function as specified, but it has not been
verified that it will work correctly. Defects in physical fabrication can cause this
problem too. In formal verification a model of the design is verified, not the real
physical implementation. Therefore, a fault in the modeling process can give
false negatives (errors in the design which do not exist). Although sometimes,
the fault covers some real errors.

Formal verification approaches can be generally divided into two main cate-
gories: theorem proving methods and state exploration methods such as model
checkers as described in the following subsections.

2.1 Theorem Proving

Theorem proving is an approach where the specification and the implementation
are usually expressed in first-order or higher-order logic. Their relationship is
formed as a theorem to be proved within the logic system. This logic is a set of
axioms and a set of inference rules. Steps in the proof appeal to the axioms and
rules, and possibly derived definitions and intermediate lemmas. The axioms are
usually ”elementary” in the sense that they capture the basic properties of the
logic’s operators [17].

Theorem proving utilizes the proof inference technique. The problem itself
is transformed into a sequent, a working representation for the theorem proving
problem. Then a sequent holds if the formula f holds in any model:

² f

Theorem proving methods have been in use in hardware and software verifi-
cation for a number of years in various research projects. Some of the well-known
theorem provers are HOL (Higher-Order Logic), ISABELLE, PVS (Prototype
Verification System), Coq and ACL2 [21, 41, 14, 24, 27]. These systems are dis-
tinguished by, among other aspects, the underlying mathematical logic, the way
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automatic decision procedures are integrated into the system, and the user inter-
face. Even though they are powerful, they require expertise in using a theorem
prover. User is expected to know the whole design leading to a white box verifi-
cation approach. It is not fully automated and requires a large amount of time
to verify the system. Another shortcoming is the inability to produce counter-
examples in the event of a failed proof, because the user does not know whether
the required property is not derivable or whether the person conducting the
derivation is not ingenious enough. The advantage of the deductive verification
approach is that it can handle very complex systems because the logics of the-
orem provers are more expressive. In the next subsection, we will overview the
HOL theorem proving system, which we intend to use in this work.

The HOL Theorem Prover: The HOL system is an LCF [18] (Logic of Com-
putable Functions) style proof system. Originally intended for hardware verifi-
cation, HOL uses higher-order logic to model and verify variety of applications
in different areas; serving as a general purpose proof system. We cite for exam-
ple: reasoning about security, verification of fault-tolerant computers, compiler
verification, program refinement calculus, software verification, modeling, and
automation theory.

HOL provides a wide range of proof commands, rewriting tools and decision
procedures. The system is user-programmable which allows proof tools to be
developed for specific applications; without compromising reliability [21].

The basic interface to the system is a Standard Meta Language (SML) inter-
preter. SML is both the implementation language of the system and the Meta
Language in which proofs are written. Proofs are input to the system as calls
to SML functions. The HOL system supports two main different proof methods:
forward and backward proofs in a natural-deduction style calculus.

Theorems in HOL are represented by values of the ML abstract type thm.
There is no way to construct a theorem except by carrying out a proof based
on the primitive inference rules and axioms. HOL has many built-in inference
rules and ultimately all theorems are proved in terms of the axioms and basic
inferences of the calculus. By applying a set of primitive inference rules, a theo-
rem can be created. Once a theorem is proved, it can be used in further proofs
without recomputation of its own proof.

HOL also has a rudimentary library facility which enables theories to be
shared. This provides a file structure and documentation format for self con-
tained HOL developments. Many basic reasoners are given as libraries such as
mesonLib, bossLib, and simpLib. These libraries integrate rewriting, conver-
sion and decision procedures to free the user from performing low-level proof.

2.2 State Exploration Methods

State exploration methods use states space traversal algorithms on finite-state
models to check if the implementation satisfies its specification. They are focused
mostly on automatic decision procedures for solving the verification problem.
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Model checking is a state exploration based verification technique developed
in the 1980s by Clarke and Emerson [12] and independently by Quielle and
Sifakis [43]. In model checking, a state of the system under consideration is a
snapshot of the system at certain time, given by the set of the variables values of
that system at that time. The system is then modeled as a set of states together
with a set of transitions between states that describe how the system moves from
one state to another in response to internal or external stimulus. Model checking
tools are then used to verify that desired properties (expressed in some temporal
logic) hold in the system.

State exploration approach has two important advantages. First, once the
correct design of the system and the required properties has been fed in, the
verification process is fully automatic. Second, in the event of a property not
holding, the verification process is able to produce a counter-example (i.e. an
instance of the behavior of the system that violates the property) which is ex-
tremely useful in helping the human designers pinpoint and fix the flaw. On
the other hand, model checkers are unable to handle very large designs due to
the state space explosion problem [12]. Another drawback is the problematic
description of specifications as properties, this description sometimes may not
give full system coverage.

Model checkers such as SPIN [23], COSPAN [31], SMV [33], and MDG [53]
take as input, essentially, a finite-state system and temporal property in some
variety or subset of CTL*, and automatically check that the system satisfies
the property. Moreover, the model is often restricted to a finite-state transition
system, for which finite-state model checking is known to be decidable. The
design or model M is formalized in terms of a state machine (Transition System),
or a Kripke structure and the property φ is formalized as a logical formula that
the machine should satisfy. The verification problem is stated as checking the
formula φ in the model M :

M ² φ

If the model M is represented explicitly as a transition relation, then the
size of the model is limited to the number of states that can be stored in the
computer memory, which are a few million states with the current technology.
To increase the size of the model, more efficient state representations can be
used to manipulate these formulae using BDDs or SAT solving techniques.

Binary Decision Diagrams (BDDs) [10] are data structures used as a com-
pact representation for the Boolean function which improves the capacity of the
model checker. Different representations of ROBDDs (Reduced Order Binary
Decision Diagrams) [11] are used to manipulate the state transition relations
as diagrams and this allows model checkers to verify larger systems. Still, most
model checkers face the state space explosion problems [12] even using Sym-
bolic Model Checking. To be able to apply model checking to larger designs,
state reduction techniques are used that exploit some features of the model, the
properties, or the problem domain to reduce the state space to a tractable size.
Examples include partitioned transition relation, dynamic variable reordering,
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cone of influence reduction, abstraction, problem-specific techniques, e.g. when
the original design is rewritten in a simpler way, omitting the irrelevant details,
but preserving the important behavior for the property being verified.

An alternative for decision graphs is to represent the transition relation in
CNF and use Satisfiability Checking (SAT) [15, 49] with several properties that
make them attractive compared to BDDs. SAT solvers can decide satisfiability of
very large Boolean formulae in reasonable time, but they are not canonical and
require additional efforts to check for equivalence of formulas. As a result, vari-
ous researchers have developed routines for performing Bounded Model Checking
(BMC) [9, 16, 3] using SAT. The common theme is to convert the problem of
interest into a SAT problem, by devising the appropriate propositional Boolean
formula, and to utilize other non-canonical representations of state sets. How-
ever, they all exploit the known ability of SAT solvers to find a single satisfying
solution when it exists. Moreover, SAT solver technology has improved signif-
icantly in recent years with a number of sophisticated packages now available.
Well known state-of-the-art SAT solvers include CHAFF [38], GRASP [32] and
SATO [54]. Since state sets can be represented as Boolean formulae, and since
most model checking techniques manipulate state sets, SAT solvers have enor-
mously boosted their speed and applicability.

3 Combining Model Checking based Decision Diagrams
and Theorem Proving

Model checking is automatic while theorem proving is not. On the other hand,
theorem proving can handle complex systems while model checking can not.
Today, there exist a number of integration tools of theorem proving and model
checking. The motivation is to achieve the benefits of both tools and to make the
verification simpler and more effective. In this section, we explore two approaches
of linking proof systems to external automated verification tools. The approaches
can be divided in two kinds:

1. Hybrid approach: adding a layer of deduction theorems and rules on top of
Decision Diagrams tool, i.e. combining theorem provers with other powerful
model checking tool.

2. Deep embedding approach: adding Decision Diagrams algorithms to theorem
provers.

We first review the most related work to every approach and then, we contrast
between them according to their efficiency, complexity and feasibility.

3.1 Hybrid Approach

The hybrid approach implements a tool linking model checking and theorem
proving. During the verification procedure, the user deals mainly with the the-
orem proving tool. Verification using hybrid approach proceeds as shown in
Figure 1. The user starts by providing the theorem proving with the design
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(specification or implementation), the property and the goal to be proven. If the
goal fits the required pattern, the theorem proving tool generates the required
model checking files (sub-goals). The latter are sent to the model checking tool
for verification. If the property holds, a theorem is created (Make-Theorem).
Otherwise, the proof is performed interactively.

Model Checker

Theorem Prover

Interface

Sub-goals

Property

True

Make-Theorem

Counter example

Fig. 1. Theorem Proving and Model Checking Interface

The linkage between both tools is carried out using scripting languages (trans-
lators) to be able to automatically verify small subgoals generated by the theorem
prover from a large system. The disadvantage of this approach lies in achieving
an efficient and correct translation from theorem prover logic to a model checker
and from model checker to theorem prover (import the result or give a counter-
example). Successful combinations of this kind have been achieved in [25, 2, 46,
26, 47, 28, 37].

3.2 Deep Embedding Approach

In this approach, the emphasis is to establish a secure platform for new verifi-
cation algorithms. The performance penalty will be compensated by the secure
infrastructure. The approach implements a model checking inside a theorem
proving tool. As shown in Figure 2, the design and the property are fed to the
model checking to check if the property holds and create a theorem. Otherwise,
the proof cannot be performed.

The result of the model checker is correct by construction, since both of the
theory and the implementation are proved correct in the theorem prover. Thus
a high assurance of soundness is guaranteed because more work is backed up by
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Model Checking 
Operations  

Theory of Model 
CheckingGoal True/False

The Theorem Proving
Tool

Fig. 2. Embedding Model Checking inside Theorem Proving Tool

mechanized fully-expansive proof. The price for the extra proof and flexibility is
in increased development effort. This approach differs from the hybrid approach
in the way the verification is performed. In fact, we do not use an external
checking tool, instead we deeply embed the model checker algorithms inside
the theorem prover. Thus the criteria of correctness by construction, efficiency,
flexibility and expressiveness can be met. Successful works have been achieved
in [19, 20, 22, 8, 36].

The ”deep embedding” approach [44] introduce the model checker syntax
as a new higher order logic type and then define the operations and algorithms
based on this syntax within the theorem prover. This contrasts within a ”shallow
embedding” where the syntax is not formally represented in the logic, only in
the meta-language. In general, a deep embedding allows one to reason about the
language itself rather than just the semantics of programs in the language.

4 Related Work

We consider two categories of related work: embedding of model checking algo-
rithms in theorem provers and correctness proof of these algorithms.

4.1 Embedding of Model Checking Algorithms in Theorem Provers

Model checkers [34] are usually built on top of BDDs [10], or some other set of ef-
ficiently implemented algorithms for representing and manipulating Boolean for-
mulae. The closest work, in approach to our own is that of Joyce and Seger [48],
Gordon [20, 19] and later Amjad [8].

The Voss system [48], an implementation of Symbolic Trajectory Evaluation
(STE), was implemented in a lazy Functional Language (FL). In [25] Voss was
interfaced to HOL and the verification using a combination of deduction and
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STE was demonstrated. The HOL-Voss system integrates HOL88 deduction with
BDD computations. A system based on this idea, called Voss-ThmTac, was later
developed by Aagaard: combination of the ThmTac theorem prover with the Voss
system. Then the development of HOL-Voss evolved into a new system called
Forte [1]. Recently, Forte [35] is mostly used in Intel as an industrial integrated
formal verification tool.

Gordon [20] integrated the BDD based verification system BuDDy (BDD
package implemented in C) into HOL. The aim of using BuDDy is to get near
the performance of C-based model checker, whilst remaining fully expansive,
though with a radically extended set of inference rules.

In [22], Harrison implemented BDDs inside the HOL system without making
use of external oracle. The BDD algorithms were used by a tautology-checker.
However, the performance was about thousand times slower than with a BDD
engine implemented in C. Harrison argued that by re-implementing some of
HOL’s primitive rules, the performance could be improved by around ten times.

Amjad [8] demonstrated how BDD based symbolic model checking algo-
rithms for the propositional µ-calculus (Lµ) can be embedded in HOL theorem
prover. This approach allows results returned from the model checker to be
treated as theorems in HOL. By representing primitive BDD operations as in-
ference rules added to the core of the theorem prover, the execution of a model
checker for a given property is modeled as a formal derivation tree rooted at
the required property. These inference rules are hooked to a high performance
BDD engine [20] which is external to the theorem prover. Thus, the HOL logic
is extended with these extra primitives. Empirical evidence suggests that the
efficiency loss in this approach is within reasonable bounds. The approach still
leaves results reliant on the soundness of the underlying BDD tools. A high
assurance of soundness is obtained at the expenses of some efficiency.

Our work, deals with embedding MDGs rather than BDDs. In fact, while
BDDs are widely used in state-exploration methods, they can only represent
Boolean formulae. By contrast, MDGs represent a subset of first-order terms
allowing the abstract representation of data and hence raising the level of ab-
straction. Another major difference is that it implements the related inference
rules for BDD operators in the core of HOL as untrusted code, whereas we
implement the MDG operations as a trusted code inside HOL itself.

Several works in [28], [42] and [37] provide strategies to link the HOL the-
orem prover and the MDG tool. The verification is performed within HOL and
MDG separately, where the MDG tool is considered as an oracle. That makes
the global proof informal, and this method does not extend readily to the fully
expansive approach (theorem prover). Thus, it achieves the integration goal at
the expense of higher assurance of correctness.

Mhamdi and Tahar [36] follow a similar approach to the BuDDy work [20].
The work builds on the MDG-HOL [28] project, but uses a tightly integrated
system with the MDG primitives written in ML rather than two tools commu-
nicating as in MDG-HOL system.
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Haiyan et al. [52] verified formally the linkage between a simplified version of
MDG tool and HOL theorem prover. The verification is based on importing MDG
results to HOL theorems. Then, they combine translator correctness theorems
with the linkage theorems in order to allow low level MDG verification results to
be imported into HOL in terms of the semantics of MDG-HDL. The work didn’t
give a formal proof of the soundness of the MDG structure and operators.

4.2 Correctness Proof of Model Checking Algorithms

Verification of BDD algorithms has been a subject of active research using dif-
ferent proof assistants such that HOL, PVS, Coq, and ACL2 [21, 14, 24, 27].
A common goal of these papers is to extend the prover with a certified BDD
package to enhance the BDD performance, while still inside a formal proof sys-
tem. Moreover, there is a general consensus in the formal verification community
that correctness proofs should be checked, partly or wholly, by computers. Some
efforts have been made to verify model checkers and theorem provers.

In [45], the authors successfully carried out the verification task of the
RAVEN model checker. RAVEN is a real-time model checker which uses time-
extended finite state machines (interval structure) to represent the system and
a timed version of CTL (CCTL) to describe its properties. The specification
and the correctness proof were carried out using an interactive specification and
verification system KIV.

In [39], the author showed a mechanism of how certifying model checker can
be constructed. The idea is that, a model checker can produce a deductive proof
on either success or failure. The proof acts as a certificate of the result, since
it can be checked independently. A certifying model checker thus provides a
bridge from the model-theoretic to the proof-theoretic approach to verification.
The author developed a deductive proof system for verifying branching time
properties expressed in the µ-calculus, and showed it to be sound and relatively
complete. Then, a proof generation in this system from a model checking run is
presented. This is done by storing and analyzing sets of states that are generated
by the fixpoint computations performed during model checking.

Krstic and Matthews [30] provided a technique for proving correctness of
high performance BDD packages. In their work, they adopted an abstraction
method called monadic interpretation for verifying an abstraction of the BDD
programs with the primitives specified axiomatically. The method is suitable
for higher order logic theorem provers such as Isabelle/HOL. The monadic in-
terpreter translates source programs of input type A and output type B into
function of type A ⇒ MB in the target functional language, where the type
constructors M is a suitable monad that encapsulate the notion of computa-
tion used by the source language to describe BDD programs. At this level, they
modeled the BDD programs as a function in higher order logic in the style of
monadic interpreters. Then the correctness proof was carried out on the BDD
abstract model.

Wright [51] described an embedding of higher order proof theory within the
logic of the HOL theorem proving system. Types, terms and inferences were
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represented as new types in the logic of the HOL system, and notions of proof
and provability were defined. Using this formalization, it was possible to reason
about the correctness of derived inference rules and about the relations between
different notions of proofs: a Boolean term is provable if and only if there exists a
proof for it. The formalization is also intended him to make it possible to reason
about programs that handle proofs as their data (e.g., proof checker).

The authors in [50] implemented and proved the correctness of BDD algo-
rithms using Coq. One of their goals was to extract a certified algorithm ma-
nipulating BDDs in Caml (the implementation language of Coq). BDDs were
represented as DAGs and maps were used to model a state of the memory in
which all the BDDs are stored. The authors used reflection to prove a given
property P applied to some term t where the program is described and proved
in Coq. This means that writing a program π that takes t as an input and returns
true exactly when P (t) holds. Then, to show π is correct with respect to P they
needed to be sure that whenever π(t) returns true P (t) holds and this is done
inside the Coq proof assistant itself (i.e. the proof of P has been replaced by the
computation of π and reflect this by allowing the system to accept meta-level
computation as actual proof).

Another concept to prove the program correctness using Hoare logic as de-
scribed by Ortner and Schirmer [40]. The principle of this logic is to annotate
the program with pre- and post-conditions and to to observe the changes made
by each statement of the program. Ortner and Schirmer modeled the graph
structure of the BDD as a kind of heap and presented the verification of BDD
normalization. They follow the original algorithm presented by Bryant in [10]:
transforming an ordered BDD into a reduced, ordered and shared BDD. The
work is based on Schirmer’s research on the Verification Condition Generator
(VCG) to generate the proof obligations for Hoare Logic. The proofs are carried
out in the theorem prover Isabelle/HOL.

Our work follows the verification of the Boolean manipulating package, but
using MDG instead. We provided a complete formalization of the MDG logic
and its well-formedness conditions as DFs in HOL mechanically. Based on this
infrastructure we formalized the basic MDG operations in HOL following a deep
embedding approach and proved their correctness. Our work focuses more on
how one can raise the level of assurance by embedding and proving formally the
correctness of those operators in HOL to use them as an infrastructure for MDG
model checker.

5 MDG-HOL Platform Methodology

The intention of our work is to provide a secure platform that combines an au-
tomatic high level MDGs model checking tool within the HOL theorem prover.
While related work has tackled the same problem by representing primitive Bi-
nary Decision Diagrams (BDD) operations [10] as inference rules added to the
core of the theorem prover [20], we have based our approach on the Multiway
Decision Graphs (MDGs) [13]. MDG generalizes ROBDD to represent and ma-
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nipulate a subset of first-order logic formulae which is more suitable for defining
model checking inside a theorem prover. With MDGs, a data value is represented
by a single variable of an abstract type and operations on data are represented
in terms of an uninterpreted functions. Considering MDG instead of BDD will
rise the abstraction level of what can be verified using a state exploration within
a theorem prover. Furthermore, an MDG structure in HOL allows better proof
automation for larger datapaths systems. The work consists of two main phases:

1. provide all the necessary infrastructure (data structure + algorithms) to
define a high level state exploration in the HOL theorem prover named as
MDG-HOL platform.

Correctness Proof

for each operation

Directed Formulae & Well-formedness Conditions

MDG Syntax

MDG

MDG Operations

Conjunction PbySDisjunctionRelP

Fig. 3. Overview of the Embedding Methodology in HOL

As shown in Figure 3, we firstly define the MDG structure inside the HOL
theorem prover to be able to construct and manipulate MDGs as formulae
in HOL. This step implies a formal logic representation for the MDG Syntax.
It is based on the Directed Formulae DF: an alternative vision for MDG in
terms of logic and set theory [7]. Secondly, HOL tactic is defined to check
the satisfaction of the well-formedness conditions of any directed formula [4].
This step is important to guarantee the canonical representation of the MDG
in terms of DF. Then, the definition of the MDG operations, is associated
naturally with a proof of their correctness [5, 6]. Finally, the MDG based
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reachability analysis is defined in HOL as a conversion that uses the MDG
theory (syntax and operations).

2. Based on this MDG-HOL platform, we propose an automatic methodology
to verify the soundness of model checking reduction techniques. The idea is
to use the consistency of the specifications to verify if the reduced model is
faithful to the original one. The user provides the reduction technique, the
specifications and the system under verification. Then, we verify automati-
cally using High Order Logic if the reduction technique is soundly applied.
The methodology verifies the soundness of the verification output and not
the reduction algorithm itself (non-decidable problem).

Reduction

Technique
HDL

Reduced

Model

Extract

DF

DFSpec

Soundness-Verification

(MDG-HOL)

Extract

DF

DFReduced

Fig. 4. Overview of the Soundness-Verification Methodology

As shown in Figure 4, we start with a specification of a circuit design written
in Hardware Description Language (HDL) and extract a mathematical model
in terms of Directed Formulae (DFSpec). The reduction technique itself could
be applied on the HDL description either using HOL or an external tool.
Similarly, the reduced model is expressed in terms of Directed Formulae
(DFReduced).
Then, both DFs should be fed to the MDG-HOL platform where the sound-
ness verification is checked. If the the reduction is proved sound then the
formal verification can be performed on the obtained reduced model.



14

The powerful of our methodology is that it can be used with any verification
tool. All what we need is to translate in a sound manner both the model and
its reduction in order to embed them thereafter as DFs in HOL and then
prove that the reduced model is derived correctly using high order logic.

6 Conclusion and Future Work

BDD based symbolic model checking has proved to be a successful automatic
verification technique that can be applied to real designs. However, the state
space explosion problem caused by large datapaths is often the bottleneck in
applying the symbolic model checking technique. Theorem provers are based
on expressive formalisms that are capable of modeling complex systems but
requires expertise to verify most properties of practical interest. It has been
shown through several research papers that model checking can be efficiently
combined with theorem proving in a way that sacrifices neither efficiency of the
former, nor the expressiveness of the latter.

In this paper we discussed two alternatives used for the formalization in the
theorem proving of decision diagrams, namely BBDs. We compare both of them
according to their efficiency, complexity and feasibility.

Moreover, we distinguished two approaches to extend theorem provers. The
first approach consists of adding a layer of deduction theorems and rules on
top of model checking tool leading to a combination of theorem provers with
powerful model checking tool. This approach suffers from two drawbacks: first,
very often model checking is used to prove the current sub-goal, and many re-
duction techniques developed in model checking are simply omitted in the hope
that can be done with the existing theorem proving techniques. Second, the
translator and the model checking algorithms must be verified or trusted. The
second approach consists of deeply embedding the model checker algorithms in-
side theorem prover. In this approach, the correctness of the result is correct
by construction. The drawback is the performance penalty due to the theorem
proving itself. Much work is promising in this area to enhance the performance
by developing techniques such as reduction and abstraction.

Also, the paper served as an introduction to formalize model checking in
high order theorem provers and an extended survey of relevant work. Finally, we
have created a new formal theory for MDGs (data structure + operations) inside
the HOL theorem prover which provides us with several theoretical advantages
without too high performance penalty. We used this secure theory or platform
to verify the soundness of model checking reduction techniques. We thus hope
that this work will be of interest to the research community and also be of use
to industrial practitioners.
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