
Event Processing in an Object-Oriented

Rule-Based System

Wolfgang Laun

Thales Rail Signalling Solutions GesmbH
Wolfgang.Laun@thalesgroup.com, Scheydgasse 41

A-1210 Vienna, Austria

Abstract. This paper describes concepts being developed for process-
ing events in a rule-based system, to be deployed in an embedded system
that is part of a railway interlocking system, used as a safety-motivated
secondary software channel. Events are either status notifications or op-
erator commands, both of which operate on elements in a railway in-
terlocking plant. It is shown that an object-oriented hierarchy of fact
types results in a compact set of rules for processing both event types,
illustrated by a prototype implementation.

Key words: railway interlocking, event processing, production rule sys-
tem, object-orientedness

1 Introduction

Event processing by rule-based systems has gained increased attention, resulting
in the addition of time-dependent conditional expressions and other time-related
functions to such systems. This focus of this paper, however, is centered on
the frequent observation that events (being viewed as transient facts) have to
be correlated with a considerable variety of static facts representing “tangible”
entities of the application domain, which, at first glance, results in a large number
of rules pairing event types with entity types.

Being able to view more or less similar objects as carriers of identical property
sets is one of the major advantages of object-oriented systems. It is the goal of
this paper to show the benefit of this paradigm for event-processing production
rule systems.

Section 2 provides some background information on the use of rules in a
specific application domain, i.e., railway interlocking systems. Section 3 presents
an analysis of the static entities of that domain, providing the groundwork for
section 4, which discusses the actual implementation of event processing by rules.

A demonstration program provides ample proof that the proposed concepts
permit a more compact set of rules, with all the resulting benefits.

2 Wolfgang Laun

2 Using Rules in a Railway Interlocking System

The central tasks of an interlocking system (IXL) are the setting of safe routes
for train and shunting movements and the fail-safe operation of the interlocking
plant’s equipment. Signals, sets of points,1 axle counters and other equipment
are continuously monitored via interfaces that relay all state changes to the
system’s central controller and enact element commands such as changing a
signal’s aspect or throwing over a set of points.

Safety requirements must be met according to SIL 4, the highest level defined
by EN 50128 ([2]). One of the software technology features used by Thales to
achieve compliance with this requirement is to use a second software channel
implemented as a rule-based production system, operating in parallel to the pri-
mary channel implemented according to the conventional procedural paradigm.

Current implementations of the Thales IXL LockTrac 6131 ([4]) use PAMELA
([1]), a rule-based system using the Rete algorithm ([3]), tightly coupled with the
programming language CHILL ([6]). Both compiler implementations, based on
an earlier version of the Recommendation Z.200, are not object-oriented, which
has been identified as one major source for the considerable number of rules.
Trackside equipment not only exhibits properties which can be fit into a natural
class hierarchy; subsection 3.2 elaborates why alternative “views” via interfaces
are desirable as well.

Research into object-oriented rule based systems such as Drools ([5]), imple-
mented in Java, is intended to lay the foundation for an object-oriented approach
in this domain. In addition to being used in a second software channel, rules are
very well suited for a straightforward implementation of the railway operator’s
operational requirements for interlocking, which are typically formulated accord-
ing to the when-condition-then-action pattern.

3 A Type System for Interlocking Elements

3.1 Generic Features

This section presents an object-oriented analysis of a characteristic set of in-
terlocking elements as employed by a typical railway operator. Although ele-
ments may vary with respect to their relevant properties, analyzing these element
groupings results in a Java type structure with the following characteristics:

– All element types are subtypes of a single abstract type, ElemType, with a set
of attributes used for identification.

– The first level of subclasses provides a taxonomy according to the connec-
tion properties of the elements, joining them into an abstract graph with a
maximum node degree of 4.

1 U.S.: switch, turnout

Event Processing in an Object-Oriented Rule-Based System 3

– The decisive traits of the individual elements are determined by a composition
of attributes that indicate certain capabilities (such as local operation) or
reflect specific states, either induced by external events (e.g., being occupied
by a vehicle) or resulting from the operation of the IXL itself (e.g., being
locked).

Both, the joint possession of a topological pattern and the commonness of
operational attribute sets, prepare the ground for the application of singular
methods and rules. It is, therefore, the primary goal of an object-oriented analysis
of any particular element group to identify these types, and correlate them and
the operational requirements and restrictions.

The analysis is based on static and dynamic element properties, the latter
being the target of status notification events, and all of them playing a role when
processing command events.

Since an interlocking system may be seen as a representative of a wider class
of production or service facilities, i.e., plants, the applicability of this analysis
strategy should have a much wider scope.

3.2 The ÖBB Element Set

The Natural Type Hierarchy. According to the general strategy outlined
in the preceding section, an analysis based on topological properties results in
the structure presented in Figure 1. The uppermost level of subclasses below
ElemType is given by the four abstract classes FrontBackType, EastWestType,
PointLeftRightType, and NelSerNwrSwlType.2 They classify elements accord-
ing to their topological connections, where most element have two neighbours,
sets of points have three, and intersections connect to four elements. Notice that
although both tracks and signals are connected to two neighbours, a signal’s ori-
entation is essential. Further subclassing reflects operationally distinctive prop-
erties, e.g., a track may be on the line, or insulated, or not insulated (omitted
in the figure). Connections not pointing to another element are due to dead-end
tracks and “open” ends of line tracks. Here, a NullType element with a single
connector is added, mainly to avoid the tedious null test.

It is, however, equally important to view element subsets according to their
operational characteristics, resulting in a second, orthogonal type hierarchy.

Dynamic Element States. Dynamic operational attributes are conveniently
represented as enumeration types. The low-level representation in the message
protocol prescribed by the railway operator uses boolean values for atomic
events. Operational rules, however, are based on aggregated states resulting from
the combined consideration of n > 1 such values. Furthermore, the number of
meaningful states that have to be distinguished is usually smaller than 2n, re-
quiring the mapping of all invalid combinations to a single “undefined” state.

2 Points of the compass (NE,. . . SW) are intended to express opposites, not true ori-
entations; l(eft) and r(ight) as viewed from the centre.

4 Wolfgang Laun

ElemType

-id: String

-group: int

-x25No: int

-name: String

-ident: String

FrontBackType

+getFront(): Object

+getBack(): Object

+getOver(): Object

EastWestType

+getEast(): Object

+getWest(): Object

PointLeftRightType

+getPoint(): Object

+getLeft(): Object

+getRight(): Object

NelSerNwrSwlType

+getNel(): Object

+getSer(): Object

+getNwr(): Object

+getSwl(): Object

MainSigType

+getShSig(): Object

+getStart(): Object

+getGoal(): Object

ShuntingSigType

+getMaSig(): Object

+getGoal(): Object

TrackType

+getSAS(): Object

+getSign(): Object

SwitchType

+getOther(): Object

+getSAS(): Object

LineTrackType InsTrackType Intersect ionType DiamondCrossType

Fig. 1. Interlocking plant element type hierarchy (subset).

Also, almost all element categories feature a boolean status called “status not up-
to-date” (with the German acronym “KAZD”), which overrules all operational
states by forcing them to the undefined state. It is obvious that the formulation
of operational rules would be quite cumbersome (and definitely not portable) if
based on boolean values.

Aggregated status values have a straightforward application, namely when
determining the alternative status display (ASD) for an element, a textual rep-
resentation of an element’s state, intended for the operator of a signalling box.
For this, an aggregated status is mapped to an enum constant from a single,
comprehensive enum type identifying all “sentences” shown in the ASD dialog
box.

Approximately 40 aggregated operational status types derive from the basic
event messages defined in the ÖBB specification. They will result in as many
interface definitions, used in the process of mapping boolean event patterns
to aggregated events. A selection of typical and also exceptional examples is
presented below.

A single lock is put on elements from several categories to make them tem-
porarily unavailable for any interlocking activity. The enum class is defined as
shown below, with the ASD enum constants being used as arguments for the
enum constructor.

public enum SingleLock {

UNLOCKED(AltStatus.SINGLE_NOT_LOCKED),

Event Processing in an Object-Oriented Rule-Based System 5

LOCKED(AltStatus.SINGLE_LOCKED),

UNDEFINED(AltStatus.SINGLE_LOCKED_KAZD);

private AltStatus altStatus;

SingleLock(AltStatus as){ altStatus = as; }

public AltStatus getAltStatus(){ return altStatus; }

// ...

public static SingleLock comp(Einzelsperre e){

if(e.getKazd()) return UNDEFINED;

return e.getEinzelsperre() ? LOCKED : UNLOCKED;

}

}

Method comp is responsible for computing the aggregated status value from
the pattern of boolean events from the interface Einzelsperre (German for
“single lock”), which defines methods to access the boolean event values “KAZD”
and “Einzelsperre”. This interface is implemented by all event message types for
elements featuring a single lock.

For the aggregated status in the element objects, a SingleLock attribute is
included in all subtypes of ElemType implementing the interface Locking, which
defines the getters and setters for SingleLock. It is convenient that some of these
combined states occur jointly as this reduces the number of required interface
definitions. The example shows that SingleLock always occurs together with
Interlock.

public interface Locking extends AnyElement {

public SingleLock getSingleLock();

public void setSingleLock(SingleLock singleLock);

public Interlock getInterlock();

public void setInterlock(Interlock interlock);

}

<<interface>>

Locking

+setSingleLock(singleLock:SingleLock): void

+getSingleLock(): SingleLock

+setInterlock(interlock:Interlock): void

+getInterlock(): Interlock

DiamondCrossType

SwitchType

Fig. 2. Implementing classes of interface Locking. (In the full element set, three more
classes implement this interface.)

6 Wolfgang Laun

The resulting relation between the interface and its implementing element
classes is shown in Figure 2. About ten similar interfaces are defined as subin-
terfaces for AnyElement, which defines the attributes identifying an element. The
most important subinterfaces are listed below.

– AnySignal: This interface combines getters and setters for the attributes
Aspect, LampDist, and SingleLock, all of which are required for any kind
of signal, i.e., main signal, shunting signal and protection signal.

– AnyTrainSignal: This interface extends AnySignal with the attributes rep-
resenting states for signals providing train movement authority.

– Locking: This interface combines the attributes Interlock, according to an
element’s route interlock state, and SingleLock, indicating the single lock
state.

– Monitoring: The attribute FreeOccupied is used with elements that are as-
sociated with an axle counter or track relay for monitoring the occupied con-
dition of a section of running.

– Moving: The attribute Position mirrors the current state of orientation for
sets of points and similar elements.

4 Event Processing

Given the fact class and interface hierarchy presented in the preceding section,
we may now look at event processing itself.

4.1 Status Notifications

Status Notifications Processing Outline. The typical stages for processing
a status notification are as follows:

1. The status notification message is inserted as a fact into Working Memory.
2. Matching the element addressed in the status notification with an element

fact in Working Memory triggers a rule updating the element’s status and
retracting the status notification.

3. A low-priority rule would catch a status notification for an unknown element
and handle it suitably.

Implementation by Rules. The basic representation of status notification
messages is straightforward since most of them follow a uniform pattern that is
partially implemented in the abstract base type Message and its (abstract) sub-
class MsgElem. With message attributes conveniently grouped into interfaces, the
rules are very simple, matching a message type with the element it is addressed
to. Below is the rule for processing a status notification for a track segment.

rule updateMg31

when

$m : MsgMg31($elNo : elNo)

Event Processing in an Object-Oriented Rule-Based System 7

$e : InsTrackType(elNo == $elNo)

then

modify($e){

setFreeOccupied(FreeOccupied.comp($m, true)),

setInterdiction(Interdiction.comp($m)),

setRouteUsage(RouteUsage.comp($m))

}

retract($m);

end

4.2 Commands

Command events come in two groups: single element commands and route com-
mands. We shall discuss a representative of each.

Command Processing Outline. There are four distinct steps for processing
a command event:

1. The command is inserted as a fact into Working Memory. Ideally, the class
representing the command message can be used for pattern matching; if not,
an auxiliary class must provide a structure containing suitably transformed
fields.

2. After a successful check of the command’s validity, an internal fact support-
ing command processing is created. The original command may be retracted.

3. The command is processed by one or more operative rules. Complex com-
mands, i.e., commands involving more that one element, typically require
staged processing, with one stage selecting the relevant set of elements, the
next one performing the checks and the last one applying the required op-
erations to some or all of these elements.

4. In the last stage, any temporarily inserted facts must be discarded again,
and a response is prepared and sent as a network message. Also, if the
command didn’t pass the initial tests, this stage provides rules for removing
the command and sending a rejection.

Alternative Status Display. The Alternative Status Display (ASD) is a sim-
ple command, directed at a single element, determining its status according
to the specification for “Method Safe Operation”. This element status consists
of a set of discrete values, each of which represents the state of a certain ele-
ment property. Given that many properties occur with two or more elements,
the computation of the ASD result per element would result in extensive code
replications. Therefore, the concise approach of evaluating elements via suitably
defined interfaces was adopted, even though this requires repeated rule activa-
tions and RHS executions, and the additional effort for collecting the results of
these executions.

The temporary fact ReplyASD carries the standard element identification.
Also, it features a field of type java.util.Set where the results of the individual

8 Wolfgang Laun

executions can be collected. Notice that a set is not ordered, which concurs with
the indeterministic firing of the individual rules.

As a simple example, an ASD for a set of points requires the evaluation
of the properties reflected by the attributes freeOccupied, interlock and
singleLock, among others. Matching the ReplyASD with the identified element
according to the interface Monitoring provides access to the selected element’s
freeOccupied attribute, whereas a match according to the interface Locking

permits the evaluation of attributes singleLock and interlock.

rule getMonitoringASD

when

$r : ReplyASD($mg : group, $elNo : elNo, $ss : statusSet)

$m : Monitoring(group == $mg, elNo == $elNo,

$fo : freeOccupied)

then

$ss.add($fo.getAltStatus());

end

rule getLockingASD

when

$r : ReplyASD($mg : group, $elNo : elNo, $ss : statusSet)

$m : Locking(group == $mg, elNo == $elNo,

$sl : singleLock, $il : interlock)

then

$ss.add($sl.getAltStatus());

$ss.add($il.getAltStatus());

end

The computation of the resulting enum constant is invariably handled by
the method getAltStatus of the enum type representing a property. Typically,
this method simply returns the value from the overall enum type ASDType that
corresponds to the local attribute value. (Refer to the code example showing
enum class SingleLock on page 5.)

Route Command: Subsidiary Signal. The railway operator’s specification
for the command setting the subsidiary signal demands that the elements in the
anticipated route of the train must meet a considerable set of conditions, accord-
ing to element category. This route must be selected according to a predefined
train route, which may be the regular route from start to goal, or one of the
defined detours. The elements to be checked are the elements on the selected
route. The information defining a route consists of the start element, the goal
element, and the set of decision switches, entered via point, combined with the
required direction.

Failing checks must be brought to the operator’s attention. The required
result consists of a list of element identifications combined with an indication
of the noncompliant state. This list is sent as the regular reply to the ASD
command.

Event Processing in an Object-Oriented Rule-Based System 9

The first stage of the execution of a route command has to establish the set
of elements to be checked, based on the start and goal elements and the full set
of decision switches. The auxiliary fact types used in this stage merit a closer
look:

– A Collector fact is created which maintains a reference to the command and
contains the list of elements and status values, and the set of general operator
alerts.

– A Movement fact plays the role of a vehicle progressing from the track in front
of the start signal to the goal element. It keeps track of the current position
and references the Collector element.

– SubSigRouteToken and its subclasses (e.g., SubSigRouteSwitchToken for
switches) are types for “token” facts created along the route, whenever the
Movement fact matches with another element on the route. A token fact points
to the element it belongs to and to the Collector fact.

Creating the route tokens proceeds by having rules match the Movement

fact field pointing to the “current” element with a representative from one of
the topological categories. Calling method goAcross of that element returns the
next element, to replace the current element of the movement. A simple example,
the single rule for advancing on track and signal elements which implement the
Interface GoAcross is shown below. Somewhat more complex is the rule for
traversing a set of points, from point, which must use the next direction from
the route definition, kept in the field startGoalConn of the Movement object.

rule advanceGoAcross

when

$m : Movement($sgc : startGoalConn, $g : goal,

$p : previous, $c : current != $g,

$co : collector)

$e : GoAcross(this == $c)

then

insert(new SubSigRouteToken($co, $sgc, $c));

modify($m){

setPrevious($c),

setCurrent($e.goAcross($p))

}

end

rule advanceFromPointToLeftRight

when

$m : Movement($sgc : startGoalConn, $go : goal,

$pr : previous, $cu : current != $go,

$si : switchIndex, $co : collector)

$e : PointLeftRightType(this == $cu, $pt : point == $pr)

then

LeftRight lr = $sgc.getDirList().get($si);

10 Wolfgang Laun

insert(new SubSigRouteSwitchToken($co, $sgc, $cu, lr));

modify($m){

setPrevious($cu),

setCurrent($e.goAcross($pr, leftRight)),

setSwitchIndex($si + 1)

}

end

Advancing the Movement fact terminates when the route’s goal element
is reached, where the Movement fact is retracted. The rule set checking ele-
ments with an attached token may now fire, indeterministically. Once again, the
rules are mostly written with patterns referencing interfaces, thereby potentially
matching with elements from a range of categories. As an example we present
the rule that detects that some running section is occupied.

rule checkFreeOcc

when

$t : SubSigRouteToken($co : collector, $el : element)

$m : Monitoring(this == $el,

freeOccupied != FreeOccupied.FREE)

then

$co.getElemBoxStatusList().add(

new ElemBoxStatus($el, BoxStatus.NOT_FREE));

end

A low-priority rule concludes the first phase of processing, by sending a com-
mand reply from the data collected in the Collector fact, for the operator to
acknowledge. A second processing phase will begin after the operator’s confir-
mation. Any element update happening while the operator’s confirmation is still
expected sets the flag changed in the Collector fact to true, indicating that
the command will be aborted. Finally, a low-priority rule cleans up by removing
all SubSigRouteToken elements.

5 A Demonstration Program

The element set outlined in section 3 and the processing of the status notifica-
tions and commands described in section 4 were implemented as a Java program
in combination with Drools.

The demo program loads, from an XML data file, a set of elements describ-
ing some specific shunting yard as facts into working memory. Incoming status
notifications and commands are fed as event facts to the engine. Command re-
sponses (normally sent to an operator station) are here presented in a pop-up
window, which must be acknowledged to let input processing proceed.

Event Processing in an Object-Oriented Rule-Based System 11

6 Conclusion and Further Work

Fact Types. The presented object and interface type structure guarantees sim-
ple, orthogonal rules. Considering a simple use case, we can compare the rules for
extracting ASD results we find that the object-oriented approach needs 20 rules
with distinct consequences, 16 of them with just two patterns and 4 requiring a
third pattern. No if-statements are used in the consequences. When rules cannot
be written with interfaces as fact types, a corresponding set of rules would re-
quire one rule per element type, i.e., 21 rules, but the consequences would have
about as many if-statements and sections of duplicated code.

More complicated rule groups show even better savings. For iterating over
the elements of a route, from the start signal to the goal element, we need
just 5 orthogonal rules, whereas the conventional implementation takes 19 rules.
Similar savings arise from the rules checking the conditions in a route. Asserting
that all running sections are free requires either 7 rules (or as many if-statements)
instead of just a single rule.

Event Processing in a Rules Engine. Event processing is done by assert-
ing event messages as facts, firing after matching static facts. Complex events
are handled conveniently using abstractions defined as interfaces, avoiding code
replications.

Multi-stage processing of events involving several facts is done by following a
pattern where elements are selected according to their relative position, with in-
deterministic firings of elements marked with appropriate tokens. The possibility
of using subclasses also simplifies the handling of temporary tokens.

Further Work. Commands acting on some trackside equipment require time

supervision, with timeouts resulting in an internally generated element. Also,
a third category (in terms of persistence) of facts is required for representing
routes between having been set and before being dissolved; event processing will
then not only affect elements but also the semi-persistent route fact the element
currently belongs to.

References

1. Barachini, F.: PAMELA: A Rule-Based AI Language for Process-Control Applica-
tions. IEA/AIE (Vol. 2), pp. 860–867 (1988)

2. DIN EN 50128; VDE 0831-128:2001-11: Bahnanwendungen – Telekommunikation-
stechnik, Signaltechnik und Datenverarbeitungssysteme – Software für Eisenbahn-
steuerungs- und Überwachungssysteme. Deutsche Fassung EN 50128:2001

3. Forgy, C.L.: RETE: A Fast Algorithm for the Many Pattern/Many Object Pattern
Matching Problem, Artificial Intelligence, 19(1), pp. 21–37 (1982)

4. Fuß, W.: Tailored Solutions for Safety-Installations in the Loetschberg Tunnel – A
Project with Importance for the Trans-European Rail Traffic, DATE’08 Proceed-
ings, pp. 21–25 (2008)

5. JBoss: Drools 5, http://www.jboss.org/drools/

12 Wolfgang Laun

6. ITU: CHILL – The ITU-T Programming Language, CCITT/ISO/IEC International
Standard ISO/IEC 9496, ITU Recommendation Z.200, Geneva (2003)

