
WebScripter: World-Wide Grass-roots Ontology
Translation via Implicit End-User Alignment

Research Paper Category

Martin Frank, Pedro Szekely, Robert Neches, Baoshi Yan, Juan Lopez
Distributed Scalable Systems Division

Information Sciences Institute
University of Southern California

{frank,szekely,rneches,baoshi,juan}@isi.edu

ABSTRACT
Ontologies define hierarchies of classes and attributes; they
are meta-data: data about data. XML Schema and RDF
Schema are both (lightweight) ontology definition languages
in that sense. In the “traditional” approach to ontology
engineering, experts add new data by carefully analyzing
others’ ontologies and fitting their new concepts into the
existing hierarchy. In the emerging “Semantic Web” ap-
proach to ontology engineering, ordinary users may not look
at anyone’s ontology before creating theirs – instead, they
may simply define a new local schema from scratch that ad-
dresses their immediate needs, without worrying how their
data may some day integrate with others’.

This paper describes an approach and implemented sys-
tem for translating between the countless mini-ontologies
that the Semantic Web approach yields. In this approach,
ordinary users graphically align data from multiple sources
in a simple spreadsheet-like view without having to know
anything about ontologies or even taxonomies. The result-
ing web of equivalency statements can then be mined to
help other users find related ontologies and data, and to
automatically align the data with theirs.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
Human information processing ; H.3.3 [Information Sys-
tems]: Information Search and Retrieval—Information fil-
tering, Relevance feedback ; H.3.5 [Information Systems]:
Online Information Services—Data sharing, Web-based ser-
vices

General Terms
Collaborative filtering, recommender systems, social infor-
mation filtering, ontology alignment, ontology translation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Semantic Web Workshop 2002Hawaii, USA
Copyright by the authors.

Keywords
Meta-data, DAML, RDF Schema, RDF, XML Schema

1. INTRODUCTION
Imagine that you work for an emergency preparedness

agency and that you were just handed the job of construct-
ing and maintaining a list of public health experts employed
by U.S. universities.

Doing this manually on the (non-semantic) Web would be
a monumental effort, both in terms of the initial effort and
in the continuous effort to keep the list up to date. The
only options are to either do the job completely manually
in a text file or spreadsheet (quickly outdated), or to write
wrapper software specific for each university’s Web pages
that extracts the experts (the wrappers constantly break as
universities change their Web page designs).

Now let us presume that all universities list their personnel
in a Semantic Web [10] format, such as RDF Schema [1].
This improves on the current sitation (because you don’t
have to work instance by instance but rather concept by
concept) but your job is still rather monumental because
the sources will likely use a myriad of different ontologies.

We have a vision and partial implementation addressing
this problem by (a) making it easy for individual users to
graphically align the attributes of two separate externally-
defined concepts, and (b) making it easy to re-use the align-
ment work of others.

2. OVERVIEW
Figure 1 depicts a number of home pages, marked up with

DAML information about the authors, located somewhere
in the world. The DAML instances in these Web pages are
organized according to one or more ontologies, such as an
ISI ontology of people, a Stanford ontology of people, and a
Karlsruhe ontology of people. The challenge is to produce
a report incorporating all of that information with minimal
effort.

At a high level, the WebScripter concept is that users ex-
tract content from apparently ordinary Web pages and paste
that content into what looks like an ordinary spreadsheet
(lower left corner of Figure 1).

What users implicitly do in WebScripter - without ex-
pending extra effort - is to build up an articulation ontology
containing equivalency statements. For example, this artic-



WebScripter

ISI

Stanford

Karlsruhe

fullname has-name

Mitarbeiter

=

= Person

... ...

= Member

Figure 1: Working With Multiple Data Sources In
Multiple Ontologies.

ulation ontology expresses that the attribute that ISI calls
“fullname” is the same as the one Stanford calls “has-name”;
and that the object Karlsruhe calls “Mitarbeiter” Stanford
calls “Person” and ISI calls “Member” are the same for the
purposes of this report (lower right corner of Figure 1).

We believe that in the long run, this articulation ontology
will be more valuable than the data the users happened to
obtain when they constructed the original report. Its equiv-
alency information reduces the amount of work future Web-
Scripter users have to perform when working in the same
domain.1 Thus, in some sense, you don’t just use the Se-
mantic Web when you use WebScripter, you help build it as
you go along.

3. VISIONARY EXAMPLE
This section presents a detailed step-by-step vision of what

WebScripter (and a future Semantic Web) could be; we will
later present a step-by-step example of what our current im-
plementation can already do (with existing RDF(S) data on
the Web produced by others). In this example, the applica-
tion is to quickly produce a self-updating list of faculty at
U.S. universities that are public health experts, listing their
specialization. The user starts WebScripter and types the
names of several universities into the first column. At the
point shown in Figure 2, truly nothing is known about these
hand-typed values.

After the user selects “classify” from a menu, WebScripter
uses a list of well-known indices to find an existing taxonomy
that matches all of the typed phrases (note that commer-
cial search engines do not have to be DAMLized to be use-

1Who benefits depends on your willingness to share that
information, of course - it could be the world, your organi-
zation, your workgroup, or just yourself.

Figure 2: Visionary Example: The user types as-
yet-unrecognized example values.

Figure 3: Visionary Example: The system deter-
mines data sources and a classification.

ful to our reasoning here). Yahoo:UniversitiesAndColleges
and Lycos:Universities both apply. The universities now
appear underlined because they are recognized by the sys-
tem - double-clicking on them brings up their web pages.
The system then fetches their DAML-enabled Web pages
in the background, and computes a minimal covering set
of declared DAML IS-A types that cover all the univer-
sities. In our example, all of the current universities de-
clare to be instances of the World-Wide Web Consortium’s
W3C:University concept (Figure 3).

The user now selects “find more” from the menu bar. The
system will fetch every entity that the two known indices
point to (several hundred). It simultaneously performs a
different type of analysis: Which are the RDF(S) subclass-
of types that are declared by more than 10% of the entities
(result: U.N.:University, UsPostalService:Recipient, W3C:
University, and IRS:NonProfitInstitution) [this is a recall
test]? Of these, which apply to less than 1% of nearby cate-
gories of the same index (remaining result: W3C:University
and U.N.:University) [this is a precision test]. The latter
one is now automatically treated as an alternatively valid
type, and WebScripter will include every entity declaring
to be one of these types, thereby finding institutions not
yet listed by the well-known indices. Note that there are
no duplicate universities in this column (such as “UCLA”
and “UC Los Angeles”). The challenge, of course, is to be
able to determine that they are “different”, as they sub-
scribe to different DAML ontologies. One possiblity is that
any Semantic Web description of an entity existing on the
Web contain its normalized HTTP URL in a standardized
attribute, which can serve as a simple unique id for com-
parisons across ontologies (first choice for disambiguation
in our example). Another possibility is that they contain



Figure 4: Visionary Example: The system auto-
completes the user-provided values.

(possibly composite) keys that point into popular external
ontologies, for the same reason (“companies in this ontology
are uniquely identified by their UsTreas:IRS:TaxPayerId”),
(“universities are identical if they point to the same Us-
PostalService:UsStreetAddress”). This gets the user to the
state of Figure 4.

In this vision of a future Semantic Web, the user has to
know little to get a lot of leverage out of the existing seman-
tic information: (1) The user did not have to do anything
but type out some university names that came to mind – he
or she didn’t have to understand an ontological query lan-
guage or the notion of an ontology or even a taxonomy for
that matter - yet the result is perfectly ontologically typed.
(2) Very little DAML has to be in place for this to work: for
this particular example, two external DAML ontologies of
existing non-DAML university web sites should be sufficient
for the inferencing of this example. (3) Data from two dif-
ferent ontologies can be seamlessly integrated without the
need for pre-merging/translation between the ontologies.

In this example, the user now demonstrates that she wants
to extract the nationality of the universities, in the following
manner (Figure 5). She double-clicks on USC, which brings
up a Web browser to the (hypothetically) DAML-enabled
USC home page. The user then clicks on “Maps & Direc-
tions”, and copies and pastes “United States” from that
page, which is not just plain text but carries its embedded
DAML type.2

In response, the system now fills in all those cells that use
the same underlying W3C university definition, by inferring
the ontological path from university to country and applying
it to all other instances of this ontology. In our particular
case, the user is best served by now doing the same for the
UN-based university entry “Stanford” (not shown) because
there are only two ontologies involved.3 As a result, all miss-

2Note that one would not have to internally instrument a
Web browser to achieve this level of integration – one could
know which page the user is looking at through a proxy
Web server and receive the copied HTML+DAML out of
the window system’s paste buffer.
3If there is more than two WebScripter could attempt to
produce a generalized “fuzzy” script that will work for all
remaining university ontologies given two (or more) exam-
ples (“extract the attribute whose name contains Country
or Nation in the top-level concept or in a sub-concept called
Location or Address”).

Figure 5: Visionary Example: Combining HTML
navigation with embedded DAML semantics.

ing countries in the second column are now filled in. The
user selects a United States cell in the second column and
invokes “filter by” from the right-click menu, checks “United
States”, and clicks OK, which removes Oxford and all other
foreign-university rows. Performing a number of substan-
tially similar steps, the user can navigate to the universities’
chemistry, biology, and medical departments, from the de-
partment to the faculty, from the faculty to their research
interests, and filter by a particular research area, resulting
in the table shown in Figure 6. (As before, bold entries were
provided or demonstrated by the user; but we are no longer
underlining recognized cells below for readability).

In the end, what users want is a report containing the
information that serves their immediate needs. In our ap-
proach, users build a report in steps, by manipulating the
data it contains so far to refine it and to add more. This
is a qualitatively easier task than working with a query,
which is an inherently more abstract specification. In our
approach, a final report may contain dozens or hundreds
of single-step scripts that operate on DAML markup. The
equivalent query could be enormously complicated (perhaps
several pages long), but users never have to see it with this
approach.

Now that this hypothetical WebScripter report is defined,
its data can be refreshed at any time, and it itself can be-
come the source for further Web scripting as it carries all its
DAML within the generated HTML report.

4. IMPLEMENTED EXAMPLE
In our initial implementation we have focused on mak-

ing it easy for ordinary (non-programming, never heard of
ontologies) users to contruct reports from multi-ontology
DAML data. This section first describes a step-by-step
walkthrough of using WebScripter as implemented to com-
bine DAML personnel data from different organizations on
the Web. It then describes how the resulting implicit on-
tology alignment data benefits other users in constructing
similar reports.

4.1 Constructing a first report from scratch
Imagine that you work for the government DAML pro-

gram office, and that your job is to maintain a list of per-
sonnel funded by that program, and let’s assume that all of
the contractors provide their personnel data in some DAML
format. The first task is to find the URLs where the vari-



Figure 6: Visionary Example: The end result in this fictious example.

ous DAML resides. BBN’s crawled ontology library comes
closest to a Yahoo-style portal for DAML content [2]. This
site contains a registry for DAML content root files, which
a crawler uses as starting points to find more DAML files.
Teknowledge built a DAML search engine for that ontol-
ogy library which is a good starting place for finding DAML
content [3].

In this example, the DAML sources can be found by query-
ing the Teknowledge search engine for the terms “Person”,
“Employee”, and “Staff” (which will return a large number
of hits of non-DAML contractors), or alternatively it can be
found by collecting the regular project Web pages and per-
sonal home pages of the DAML contractors (because they
embed DAML content inside the HTML pages).

For the sake of this example, we started WebScripter and
loaded DAML from just the Stanford Database and Knowl-
edge Systems groups by copying and pasting the URLs of
their DAML pages into WebScripter’s “Add DAML” dia-
log box. WebScripter then displays the class hierarchy of
that DAML, intermixing the concepts from the two sepa-
rate ontologies. The user can browse the content by select-
ing classes, which displays all of their (local and inherited)
attributes as columns, and their data instances as rows.

In this example, we started a new report by (1) choos-
ing “New Report” from a menu, (2) selecting Person in
the class hierarchy, and (3) selecting three columns of Per-
son to include in the report. The latter is done by se-
lecting a cell in the data display for Person and choos-
ing “Add as new column” from the right-click menu, once
each for the Has-Full-Name, Has-Phone-Number, and Has-
Email-Address columns. The resulting WebScripter display
is shown in Figure 7. (Note that the first of the four columns,
the DAML instance identifier column, was automatically in-
serted when the first column was added to the report. The
column is hidden from the generated report Web page by
default.)

In this example, we will now add and align data from a
different research group using a different ontology. This is
done by (1) selecting PhDStudent in the class hierarchy to
display its instance data, (2) selecting a cell in the “name”
column of that instance data and choosing “Add to column
1” from the right click menu, and (3) repeating the second
step for the “phone” and “email” columns. Figure 8 shows
the combined data from the two groups.

This in a nutshell is how WebScripter looks to the users.
This report can then be published in various formats, includ-
ing as a plain Web page that color-codes its content based
on where it came from; Figure 9 shows a snapshot of a large
DAML personnel report that loads data from more than 30

Figure 7: Implemented Example: Initial report of
Stanford KSL personnel.

Figure 8: Implemented Example: Adding and align-
ing Stanford Database personnel.

different sources [4]. The largest such report we have gener-
ated is 3.3MB, taking 8.7MB of DAML input, and running
for about 45 seconds.

The Web page embeds the WebScripter report definition,
thus it can be re-run at any time and will then possibly show
more people (presuming their DAMLized Web pages can be
found by following just one link from the two group Web
pages, and presuming their DAML instance data follows one
of the two ontologies).

There are a large number of WebScripter features that we
will not discuss here – such as un-loading DAML sources,
deleting columns, re-arranging columns, filtering rows, and
sorting by multiple criteria, and so on – because they are
what you would expect from any DAML report generator.
Instead, we’ll focus on the generated DAML equivalency
statements shown in Table 1.

These statements can be automatically published on a
Web site and registered as a new DAML content root in
BBN’s DAML content library. Consequently, you can then



<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdf="http://www.w3.org/2000/01/rdf-schema#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#">

<rdfs:Class

rdf:about="http://ksl.stanford.edu/Projects/DAML/ksl-daml-desc.daml#PERSON">

<daml:sameClassAs rdf:resource=

"http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml#PhDStudent"/>

</rdfs:Class>

<rdfs:Property

rdf:about="http://ksl.stanford.edu/Projects/DAML/ksl-daml-desc.daml#Has-Full-Name>

<daml:samePropertyAs rdf:resource=

"http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml#name"/>

</rdfs:Property>

<rdfs:Property

rdf:about="http://ksl.stanford.edu/Projects/DAML/ksl-daml-desc.daml#Has-Phone-Number>

<daml:samePropertyAs rdf:resource=

"http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml#phone"/>

</rdfs:Property>

<rdfs:Property

rdf:about="http://ksl.stanford.edu/Projects/DAML/ksl-daml-desc.daml#Has-Email-Address>

<daml:samePropertyAs rdf:resource=

"http://www.semanticweb.org/ontologies/swrc-onto-2000-09-10.daml#email"/>

</rdfs:Property>

</rdf:RDF>

Table 1: Implemented Example: Resulting DAML
equivalency statements.

make use of the equivalency statements by selecting the “Ex-
tended with Equivalence” option in Teknowledge’s DAML
search engine (note that it can take up to 24 hours for the
statements to make it into BBN’s cache and then up to
another week from there into Teknowledge’s search engine
cache). Concretely, if you for example now query for all
instances of person (“?x type Person”) in the first ontol-
ogy in that fashion you will now also retrieve PhDStudent
instances from the second ontology.

4.2 Constructing a second report using the
alignment data

We have also implemented an intial use of the WebScripter-
generated equivalency statements in WebScripter itself: if
you start it with the insert-equivalents flag it will automati-
cally add and align any classes that it has sameClassAs and
sameInstanceAs data for. It reads these equivalency state-
ments from a fixed location on our Web site to which you
can contribute more via the “Easy Publish” menu in Web-
Scripter.

Let’s assume that a second user comes along later whose
job it is to maintain a list of researchers with Semantic Web
expertise, plus their email addresses and home pages. She
starts WebScripter in the same way as above, selects for ex-
ample PhDStudent and adds “name” as the first column in
her report. At that point, WebScripter will not only add
all instances of Person, but also automatically align their
names into the column. Similarly, when then selecting the
email address for either Person or PhDStudent and saying
“Add as new column” WebScripter will fill in the email ad-
dresses for the other ontology as well. This will not happen
after she adds Has-Home-Page as a new column (as there is
no existing equivalency data) so that she has to manually
select homepage and say “Add to column”. (However, if she
is willing to share her alignment data via the “Easy Pub-
lish” option future users do not have to align this column
by hand either.)

5. THOUGHTS ON INCENTIVIZING PRO-
DUCERS

As of the time of writing, one issue we encountered is that

Figure 9: Snapshot of (a fragment of) a large-size
WebScripter DAML people report.

there is not that much interesting, continuously updated
RDF(S), much less DAML, available on the Web today.4

What made the original Web take off was that there was
an immediate incentive for producers to use the technology
because it was an easy way to publish information. We cur-
rently see no strong motivation for producers to put work
into putting out RDF(S) in addition to their regular HTML
pages, but there is at least a compelling intra-organizational
benefit in using RDF(S) and WebScripter to generate regu-
lar HTML pages by pulling RDF from various pages within
the organization.

To be more concrete, once a DAML-enabled document is
published on the Web, WebScripter makes it easy to access
and republish portions of it as part of a larger report – an
effort savings for federated information providers who cur-
rently need to maintain the same information in multiple
places. For example, professors routinely publish a list of
their publications on their home page. Departments pub-
lish a list of all publications, and project pages publish a
list of project-related publications from the project mem-
bers. Today, someone has to manually construct these pages
(presuming these federated organizations are not so tightly
integrated that they maintain a shared database or other
common structured information source, of course). When
an author publishes a new paper or makes a correction on
an existing one, he or she has to either manually update the
other pages, or coordinate with the appropriate people to
have all the other lists updated. WebScripter can eliminate
the additional work, authors only need to mark up their
personal paper publication with DAML, and the reports
for the department and project-specific pages will automat-
ically pick up the new publication (e.g. every night). Web-
Scripter eliminates overhead not only for the organization,
but also for the individual producing the information, who
no longer needs to coordinate the redistribution effort. Web-
Scripter can also enhance the flexibility and value of Web
sites with large amounts of information by publishing skele-
ton WebScripter reports that visitors can refine to obtain
customized reports. Thus, we are cautiously optimistic that
WebScripter may help with the adoption of RDF(S)/DAML
on the producer side as well.

4The notable exception are headline exchange files such as
slashdot.org/slashdot.rdf.



6. THOUGHTS ON END-USER CONTROL
OVER AUTO-ALIGNMENT

You can currently run WebScripter either in an “ignore all
equivalencies” mode or in an “auto-insert all known equiv-
alencies” mode, neither of which is ideal of course. In par-
ticular, the latter may quickly become impractical if a large
number of people share alignment data, even if they are
not ill-intentioned. This is either because they made a hon-
est mistake (they aligned homepages from one ontology with
email addresses from another and did not notice) or because
they had a different type of equivalency in mind when they
authored their report (graduate research assistants are the
same as machines in the sense that they cost the project
money to support, but that may then cause machines to
auto-appear in a report of someone else trying to author
a personnel list). We see the following potential solutions
(which are not mutually exclusive).

• Centralized Human Editors. One possiblity is for an
organization to appoint an “alignment czar”. The job
of such a czar would be to periodically validate the
equivalency data contributed by organization members
into a staging area. If approved, equivalency files are
then moved to that organization’s official equivalency
data area. Cautious organization members can then
exclusively make use of the approved equivalency data
while adventurous ones are free to use staging data or
external data. Obviously, any use of explicit human
effort is associated with costs; however, one attraction
of this model is that the “alignment czar” does not
nearly need the technical sophistication of an “ontol-
ogy librarian” and can possibly be a clerical worker
given a specialized graphical application.

• Social Filtering. Another approach would be to keep
track of the authors of equivalency statements as well
as the users of equivalency statements (neither of which
we currently do); this would enable users to say “I
want to use the same equivalency data that Jim and
Chris are using” (this is a nicely implicit way to limit
equivalencies to e.g. the accounting context if they are
co-workers in accounting, without having to more for-
mally define the context, which is a more abstract and
difficult task). This would also allow cautious users to
express “I am willing to use any DAML equivalency
file that at least 10 others are using” (which addresses
the erroneous-alignment problem but not the context
mismatch problem).

• Fine-Grained Control in the User Interface. Finally, it
would be nice to have a compact display of the avail-
able equivalency information. This display would show
a row of information about the available equivalency
information and give the user a checkbox for incorpo-
rating or ignoring each. Table 2 sketches a preliminary
design for deciding which sameClassAs statements to
use. (This sketch assumes that we store much more
fine-grained information in the equivalency files than
we currently do.)

The first column shows the human-given label of the
class that is being declared as equivalent to the one the
user added by hand. The second column indicates the
level of indirection - 1 if the equivalency file directly

Class Hops Origin Author Rows Date Users

Person 1 stanford.e... Smith 235 10/6/02 12
Employee 1 stanford.e... Smith 57 10/6/02 6
Staff 1 stanford.e... Smith 697 10/6/02 0
Member 2 www.isi.e... Chen 15 3/4/01 17
Person 2 cmu.edu/... Miller 973 12/7/01 4
Member 2 cmu.edu/... Miller 107 12/7/01 9

Table 2: Sketch of a graphical user interface.

states that the class the user just added by hand is
the same as the class shown, 2 or more if the equiv-
alence was inferred by transitive closure. The third
column contains the Uniform Resource Locator for the
equivalency file. The fourth column shows the name
of the author of the WebScripter report that implied
the equivalencies. The fifth column contains the num-
ber of additional rows inserted into the user’s report
if she would incorporate the equivalency. The sixth
column indicates when the report that resulted in the
equivalency statements was authored. The last col-
umn sums up how many other users already made use
of the equivalency statement in their reports.

7. THOUGHTS ON OTHER OPEN QUES-
TIONS

Addressing a number of other issues would also help in
making DAML and WebScripter use take off.

• How do ordinary users find good original Semantic
Web content? WebScripter does not address this prob-
lem: once you found one it can point you to related
content that others may have by using an equivalency-
aware DAML search engine such as Teknowledge’s DAML
Semantic Search Service [3]. There are no Yahoo-style
portals for DAML content yet to our knowledge. There
are, however at least two RDF crawlers – one from
BBN [2] and one from the University of Karlsruhe [5]
– that could help in building such a portal.

• What does it really mean for two classes or two at-
tributes to be “the same”? The current DAML equiv-
alance statements allow users to say that x is equiva-
lent to y. We likely need a replacement construct that
allows users to express that x is equivalent to y in the
sense of (or context of) z. We will try to influence the
DAML language definition in that direction (but ad-
mittedly aren’t quite sure ourselves how to model z).
The most difficult problem we see is in the end-user
interface for stating these more complex equivalencies.

8. RELATED WORK
WebScripter’s approach to ontology alignment is extreme:

terms from different ontologies are always assumed to mean
different things by default, and all ontology mapping is done
by humans (implicitly, by putting them into the same col-
umn of a report).

This is similar in spirit to Gio Wiederhold’s mediation ap-
proach to ontology interoperation [18], which also assumes
that terms from different ontologies never mean the same
thing unless committees of integration experts say they are.
WebScripter pushes that concept to the brink by replacing
the experts with ordinary users that may not even be aware



of their implicit ontology alignment contributions. (Note,
however, that we cannot yet proof that this collective align-
ment data is indeed a useful source for automatic ontology
alignment on an Internet scale – we lack sufficient data from
distributed WebScripter use to make that claim.)

The ONION system [15] takes a semi-automated approach
to ontology interoperation: the system guesses likely matches
between terms of two separately conceived ontologies, a hu-
man expert knowledgeable about the semantics of both on-
tologies then verifies the inferences, using a graphical user
interface. ONION’s guessing analyzes the schema informa-
tion using relationships with semantics known to the sys-
tem in advance (subclass-of, part-of, attribute-of, instance-
of, value-of); in WebScripter human users rely purely on
the data instances to decide what collates and what doesn’t
(because they are just not expert enough to analyze the
abstractions). That being said, incorporating ONION-style
alignment guessing into WebScripter would clearly be ben-
eficial presuming the rate of correct guesses is sufficiently
high.

OBSERVER [14], SIMS [9], TSIMMIS [11] and the Infor-
mation Manifold [13] are all systems for querying multiple
data sources of different schemata in a uniform way; how-
ever, they all rely on human experts to devise the ontolog-
ical mappings between the sources to our knowledge. This
is because they mediate between structured dynamic data
sources (such as SQL/ODBC sources) without run-time hu-
man involvement where a higher level of precision is required
to make the interoperation work. In contrast, WebScripter
is targeted towards mediating between different ontologies
in static RDF-based Web pages with run-time human in-
volvement, where the need for precision in the translation is
naturally lower.

9. EVALUATION AND CONCLUSIONS
WebScripter has turned out to be a valuable practical tool

even for the simple single-ontology case where there is only
one schema but the instance data is distributed over many
Web pages. For example, the Distributed Scalable Systems
Division at ISI automatically pulls together its people page
from many different DAMLized Web pages: some informa-
tion is maintained by individuals themselves (such as their
research interests), other information is maintained by the
division director (such as project assignments), and some in-
formation is maintained at the institute level (such as office
assignments); this relieved the administrative assistant from
manually maintaining everyone’s interests [6]. WebScripter
has also been used externally, for example to maintain a Se-
mantic Web tools list [7]. You can download WebScripter
from [8].

However, the most exciting application of WebScripter, as
a world-wide collaborative ontology translation tool, is con-
fined to experimental use by ourselves at this point. This is
more due to a lack of widespread interesting RDF(S) content
than it is due to any limitation of WebScripter itself. Nev-
ertheless, we are excited about this new approach to global
knowledge sharing, may it be achieved by a future version
of WebScripter or a similar tool or tools. The key difference
we see between “traditional” ontology translation and our
approach is that non-experts perform all of the translation
- but potentially on a global scale, leveraging each others’
work.

10. ACKNOWLEDGMENTS
We gratefully acknowledge DARPA DAML program fund-

ing for WebScripter under contract number F30602-00-2-
0576. The first author would also like to acknowledge AFOSR
funding under grant number F49620-01-1-0341.

11. REFERENCES
[1] http://www.w3.org/TR/2000/CR-rdf-schema-

20000327/.

[2] http://www.daml.org/crawler/.

[3] http://reliant.teknowledge.com/DAML.

[4] http://www.isi.edu/webscripter/daml-
personnel.gen.html.

[5] http://ontobroker.semanticweb.org/rdfcrawl.

[6] http://www.isi.edu/divisions/div2/. Click on People.

[7] http://tools.semanticweb.org.

[8] http://www.isi.edu/webscripter.

[9] Y. Arens, C. Knoblock, and W.-M. Shen. Query
reformulation for dynamic information integration.
Intelligent Information Systems, 6(2-3):99–130, 1996.

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, May 2001.

[11] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, and
J. Widom. The TSIMMIS approach to mediation:
data models and languages. Intelligent Information
Systems, 8(2):117–32, 1997.

[12] E. Hovy. Combining and standardizing large-scale,
practical ontologies for machine translation and other
uses. In Proceedings of the First International
Conference on Language Resources and Evaluation
(LREC), 1998.

[13] A. Levy, D. Srivastava, and T. Kirk. Data model and
query evaluation in global information systems.
Intelligent Information Systems, 5(2):121–43, 1995.

[14] E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth.
OBSERVER: an approach for query processing in
global information systems based on interoperation
across pre-existing ontologies. Distributed and Parallel
Databases, 8(2):223–71, 2000.

[15] P. Mitra and G. Wiederhold. An algebra for semantic
interoperability of information sources. In 2nd Annual
IEEE International Symposium on Bioinformatics and
Bioengineering, pages 174–82, Bethesda, MD, USA,
November 4-6 2001.

[16] P. Mitra, G. Wiederhold, and M. Kersten. A
graph-oriented model for articulation of ontology
interdependencies. In Advances in Database
Technology - EDBT 2000. 7th International
Conference on Extending Database Technology,
Lecture Notes in Computer Science, pages 86–100,
Konstanz, Germany, March 27-31 2000.

[17] N. F. Noy and M. A. Musen. PROMPT: Algorithm
and tool for automated ontology merging and
alignment. In 17th National Conference on AI, 2000.

[18] G. Wiederhold. Interoperation, mediation, and
ontologies. In International Symposium on Fifth
Generation Computer Systems, Workshop on
Heterogeneous Cooperative Knowledge-Bases,
volume W3, pages 33–48. ICOT, Tokyo, Japan,
December 1994.


