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Abstract. Non-functional properties (NFPs) concern various charac-
teristics of a system (cost, power, QoS). These characteristics belong to
different models of the system, built by different design teams, using dif-
ferent formalisms. Therefore, the design of a system includes a number of
domain-specific modeling languages, used to express various NFPs. This
paper focuses on the heterogeneity of the points of view on the system.
We show that “multi-view” approaches which do not rely on a unique un-
derlying model appear better-suited to express NFPs than model weaving
or annotations. However, existing approaches in this category do not yet
support model execution. We introduce a multi-view extension to Mod-
Hel’X, a framework for executing heterogeneous models, and we show
how it can be used for modeling non-functional characteristics of a sys-
tem and expressing NFPs. A key point of this approach is that it relies
only on the core concepts of ModHel’X, but uses them in new ways.

1 Introduction

The design of a system requires to take into account different concerns besides
the core function of the system. Such concerns comprise cost, reliability, per-
formance, or power consumption. Concerns are generally classified as functional
or non-functional. While functional concerns used to be the main matter in the
development process, non-functional concerns are now taken into consideration
earlier because they constrain the design of the functional part of the system.
This is why, in the context of Model Driven Engineering, different techniques
have been developed to model non-functional characteristics of systems. One of
the goals of these techniques is to allow the analysis of non-functional properties
of a system together with its functional behavior during design.

Obviously, different concerns require different types of models since they rely
on different domains (power, security, etc.), which therefore implies the use of
suitable modeling languages or paradigms (differential equations, state machines,
statistics). In consequence, several domain-specific modeling languages (DSMLs)
are used when modeling a system with respect to different concerns. We focus
here on the problems caused by the heterogeneity of the modeling languages
which are used to model functional and non-functional features.

In this paper, we present an approach in which the system is modeled from
different points of view which correspond to different concerns. A view of the
system may regard either its functional or its non-functional characteristics. Each
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view is modeled using a modeling language which is suitable for the considered
concern. Since different views of the system may be interdependent (for instance,
the power consumption of a system, which is studied in one view, may depend
on the state of the system, which is studied in another view), we provide means
to express dependencies among views in order to ensure the coherence of the
different models of the system. Our goal is to enable the simultaneous execution
of different models which represent the system under different points of view.
Our approach relies on an existing framework, called ModHel’X [1].

First, we present related work and motivate our approach in section 2. Then,
in section 3, we introduce the approach we propose. We briefly present Mod-
Hel’X, a framework built for assembling heterogenous models through hierar-
chical composition in 3.1. Then, starting from the basic concepts of ModHel’X,
we propose an architecture for defining the coherence of several views of a sys-
tem in 3.2. This architecture introduces no new concepts in ModHel’X, but uses
the composition mechanisms of ModHel’X in two ways: for aggregation (build-
ing more complex systems by assembling simple systems), and for superposition
(adding layers for defining different aspects of a system). We detail the mech-
anisms that we propose to model interdependencies among views. In section 4,
we illustrate the principles of our approach on an example. Finally, we discuss
open issues in section 5, before concluding.

2 Related Work

Non-functional characteristics of a system may be expressed in a number of ways.
First, crosscutting concerns (including non-functional features) may be modeled
separately from the functional core of the system, and later be “woven” into it.
This constitutes the aspect-oriented approach. Second, non-functional features
may be expressed as annotations to the core model, as done in UML with the
MARTE profile. Third, the features of the system, both functional and non-
functional, may be constructed in parallel, in relation to one another, through
various “views” on the system, corresponding to various fields of concerns.

2.1 Aspects for Weaving Non-Functional into Functional Features

In the field of programming, object-oriented programming allows the structura-
tion of an application in a hierarchical fashion. However, non-functional, cross-
cutting concerns are interwoven in the object-oriented code. For instance, in
an application that performs logging, virtually every class is “polluted” with
logging-related code, which increases complexity. To allow for more modularity,
aspect-oriented programming (AOP) was introduced [2]. Crosscutting concerns
like logging are extracted from the main code and called aspects. An aspect is
composed of an advice, a portion of code to add to the main program, and a
pointcut, an expression which specifies at which points in the main program the
advice is to be added. The action of automatically combining a base program
with a number of aspects to get a new program is known as weaving. Well-known
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implementations of aspect-oriented programming include, for the Java language,
AspectJ [3] and Hyper/J [4].

AOP enables one to weave non-functional behaviors into a core program.
Likewise, one may wish to be able to weave non-functional aspects into a func-
tional model. To this end aspect-oriented modeling (AOM) was introduced [5].
An aspect-oriented design model consists of a primary (functional) model and
a set of aspect (non-functional) models. Each aspect model describes a feature
that crosscuts elements in the primary model. The primary model and the as-
pect models can be woven automatically to obtain a global model which contains
both functional and non-functional features [6].

Theme/UML [5] extends the UML standard to explicitly support modular-
ization and the composition of concerns. The extensions include a new type of
classifier called theme and a new type of relationship called composition relation-
ship. A theme contains two types of UML diagrams, class diagrams and sequence
diagrams. Themes correspond to functional or non-functional concerns in the de-
sign of the system. When a theme corresponds to a crosscutting concern, it is
called an aspect theme. Composition relationships define how themes are woven
with each other: concepts and behaviors may be composed between themes [7].

RAM (Reusable Aspect Models) [8] follows the same philosophy as
Theme/UML, but crosscutting concerns can be described using three types of
UML diagrams: class diagrams, sequence diagrams and state diagrams.

2.2 Annotations for Expressing Non-Functional Properties

Non-functional features are not necessarily intended to be woven into the system.
Instead, one may wish to express properties to be verified on the system. Starting
from a functional model of the system, which states what the system shall do,
one can add annotations to state how the system shall do it – non-functional
properties. For instance, when using UML to model a system, one can use various
profiles that allow the addition of domain-specific annotations [9], for instance
SPT (UML Profile for Schedulability, Performance and Time Specification) or
more recently MARTE (Modeling and Analysis of Real-Time and Embedded
systems) for real-time constraints, QoS&FT (UML Profile for Modeling Quality
of Service and Fault Tolerance) for QoS constraints, etc.

In this context, annotating a UML model amounts to attaching information
to model elements, which can be done in two ways [9]. First one can use tagged
values, which are value slots associated to stereotype attributes. Hence a tagged
value applies to one element only. Second, one can use OCL constraints, which
are more flexible, and apply to several elements. A syntax must be given for non-
functional properties, in order to define their types, their values and possibly the
source of the values (required values, assumed values, achieved values, etc.).

The annotations may be used for two purposes: analyzing a model, and
constraining the synthesis of the actual system from the model. For instance,
MARTE annotations to a UML model may be used to check the model for
schedulability (analysis), but also to choose a scheduler or allocate resources
when generating an implementation (synthesis).



4

2.3 Multiple Views for Representing a System from Various Angles

Adding annotations to a core model does not allow one to create complex descrip-
tions of the system from the non-functional points of view. Instead, a designer
or a team of designers may wish to be able to build full-fledged models of a
system from several points of view in parallel, while ensuring consistency among
the points of view. This is called multi-view modeling, and it can be approached
in two ways [10]. The first and most common one is to consider that views are
projections of a hybrid reference model. In this approach, the reference model ag-
gregates all the information about the system. Views are queries on the reference
model; they perform projections hiding irrelevant information when studying a
particular aspect of the system. The second approach uses views as partial def-
initions or expected observations of the system. Therefore, there is no explicit
reference model of the system. However, information about the system can be
obtained dynamically by combining information observed in different views. The
different views must be linked so that global properties can be computed from
properties which come from different models. This approach is similar to the
drawing of a front view, a top view and a side view in order to model a building:
it provides global information about the building without requiring to build a
3D global model.

The work of Attiogbé et al. [11] and View-based UML (VUML) [12] belong
to the first approach: they are centered around a reference model.

In the framework of Attiogbé et al., there is a clear distinction between
an abstract reference model, which concentrates all information available about
the system, and specific models, which are built from the reference model. The
specific models constitute various points of view on the system. Analysis (ver-
ification of properties) can be performed on specific models. Modifications on
one specific model are fed back into the reference model and then to the other
specific models.

VUML is a UML profile for multi-view modeling. It is based on the concept
of multi-view class. A multi-view class consists of a default (common) view and
a set of specific views related to the common view through extension relations.
OCL constraints enforce consistency among views. As UML is the underlying
framework, there is indeed a reference model, the UML model itself.

Maintaining a reference model requires to update this model each time a view
is changed, as well as to propagate the change to the other views. Moreover,
the reference model must be an instance of a meta-model which encompasses
the semantics of every possible view of the system. Defining the semantics of
such a union language is very difficult, and reference models are therefore purely
syntactic. This makes the verification of the global coherence of a model a difficult
problem. That is why the second approach, in which there is no explicit reference
model, seems promising. Let us now see two examples of this approach: the work
of Benveniste et al. [13] and Rosetta [14–16].

Benveniste et al. introduce a framework for system design, inspired by the
Tagged Signal Model [17], in which components are characterized by contracts.
A contract comprises assumptions and guarantees, which are sets of acceptable
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behaviors, or “traces”. An implementation of a component conforms to a contract
if the guarantees are satisfied whenever the assumptions are satisfied. Several
contracts can be provided for a given component, which allows the designer to
express both functional and non-functional properties.

Rosetta is a system specification language based on formal (coalgebra-based)
semantics. Central in Rosetta is the notion of facet. A facet corresponds to an
observable aspect of a component, either functional or non-functional. Facets
which model different components can interact with each other. Also, several
facets of the same component may be combined with a product operator, mean-
ing that all of them must be satisfied simultaneously, which ensures consistency
among views. Rosetta can therefore be used to model the structure of systems,
as well as different points of view on system components.

However, the framework of Benveniste et al. and Rosetta remain at the level
of specifications, which means that models cannot be executed directly. Therefore
a designer who uses one of these tools to specify a system will have to use another
tool in order to get an executable implementation.

In the remainder of this paper, we introduce a proposal which adds multi-view
modeling capabilities to ModHel’X, an existing framework for heterogeneous
modeling. Contrary to the aforementioned frameworks, ModHel’X is capable of
executing a model: it can calculate its behavior. ModHel’X belongs to the second
approach, since it considers views as layers that add information to each other
in order to build an implicit model of a system. The originality of the approach
presented here is to specify the links between views using the same mechanisms
that were designed for the hierarchical composition of heterogeneous models.
It therefore provides a uniform framework for combining heterogeneous models
both for hierarchical composition and for the superposition of views.

3 Multi-view Modeling with ModHel’X

3.1 ModHel’X

We start here with a very short introduction to the basic concepts of ModHel’X,
so that we can show later how these concepts can be used for multi-view model-
ing. ModHel’X [1] is a framework for modeling heterogeneous systems. It relies
on a generic metamodel for describing the structure of models, and on a generic
execution engine for interpreting such structures.

In ModHel’X, the interpretation of a model by the generic execution en-
gine is directed by a model of computation. A model of computation is a set of
rules for combining the behaviors of a set of components into the behavior of a
model. Well-known examples of models of computation include discrete events,
synchronous data-flows, finite state machines and continuous time [18]. In Mod-
Hel’X, a model of computation dictates the rules for scheduling the components
of a model, for propagating values between components, and for determining
when the computation of the state of a model is complete. The concept of model
of computation is essential in ModHel’X because it allows ModHel’X to sup-
port the execution of models described using different modeling languages as
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well as the execution of models composed of sub-models which are described us-
ing different modeling languages (which are called “heterogeneous models”). In
order for ModHel’X to support a given modeling language, an expert of this lan-
guage must describe the corresponding model of computation. Once described
in ModHel’X, this model of computation is used by the generic execution engine
in order to interpret any model described using the chosen modeling language.
This mechanism is further detailed in [1].

Block
Pin

Pin
Pin

Fig. 1. A block

A B
relation

Fig. 2. A composite

The elementary unit of behavior in ModHel’X is the block, as shown on
figure 1. A block is defined (a) by its interface which is composed of pins, and
(b) by an update operation which allows the observation of the behavior of the
block through its interface. Pins are used to send and receive information and
they define what is observable from a block. The behavior of a block is observed
by requiring an update of its interface. The update operation requires that the
block take its inputs into consideration and update its outputs according to the
inputs and its current state.

Blocks can be assembled by setting relations between their pins. A composite
block, as shown on figure 2, is composed of a set of blocks with relations between
their pins. Its interface is a subset of the union of the interfaces of its blocks (it
can hide their pins or make them visible from the outside). On the figure, the pins
exposed at the interface of the composite block are shown as dashed circles in
order to emphasize that they are just pins of the internal blocks which are made
visible through the interface of the composite block. A model of computation is
used to define the semantics of the interconnected blocks. A composite associated
to a model of computation forms a model, as shown on figure 3.

A B
MoC

Fig. 3. Model

A B

MoC

adaptin
adaptOut

Fig. 4. Interface block
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ModHel’X has support for hierarchical composition and heterogeneity thanks
to interface blocks. An interface block is a kind of block whose behavior is defined
by a model (which is therefore “inside” the block). An example is shown on
figure 4. The model which defines the behavior of an interface block may use a
different (internal) model of computation than the (external) one used for the
model in which the interface block is used. Hierarchy through interface blocks
is the mechanism used to combine heterogeneous models in ModHel’X. The
semantic adaptation between the two models of computation is specified by
defining the adaptIn and adaptOut operations of the interface block. These
operations are in charge of adapting the control (scheduling, synchronization)
and the data between the internal model of computation and the external one.
An interface block has its own pins, and the data available on those pins is
processed by its adaptIn and adaptOut operations. Typically, adaptIn uses the
valuation of the pins of the interface block to compute scheduling and status
information as well as a valuation of the pins of the composite block. adaptOut
uses status information and the valuation of the pins of the composite block to
give a valuation of the pins of the interface block.

3.2 Multiple Views of a System in ModHel’X

A block in ModHel’X represents an observable behavior. When we consider a
component that we want to model from different points of view, each view can be
considered as an observable behavior and represented as a block in ModHel’X.
With this approach, a “real world” component may be modeled by a block Cϕ

for its functional behavior, by a block CP for its power consumption, and by a
block CT for its thermal behavior.

By considering that a view of a component is a ModHel’X block, we can build
composite views by assembling components and interpreting this composition
according to a model of computation. This is composition by aggregation, the
usual way of building models with block diagram tools, for which the metamodel
of ModHel’X was built.

Actually, there can be several of these views for a given system: in the same
way we build a functional view of a system by assembling blocks which represent
the functional behavior of the components of the system, we can also build a
power consumption view of the system by assembling the blocks which represent
the power consumption behavior of these components. Each of these two models
computes one aspect of the behavior of the system, and they are interdependent.

3.3 Multi-view Models and Coherence among Views

Indeed, the power consumption of a system may depend on its functional be-
havior, and this dependency should be stated in the model of the system. This
leads us to consider that blocks may be combined in two ways: by aggregation, in
order to build larger models (as seen in the previous section); and by superposi-
tion, in order to build multi-view models. Composition by superposition amounts
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to maintaining coherence between models which represent different views of a
system so that the behaviors observed in the different views are coherent.

The abstract syntax (block, pin, relation, MoC) of ModHel’X has been de-
signed for composition by aggregation, but we will now show that it can also be
used for composition by superposition. In a multi-view model, coherence between
views can be denoted by relations between the ports of the views, just as the
composition of the behaviors of several blocks is denoted by relations between
their ports. Figure 5 shows two views of a component C, which are superposed
so that observations on view CP are coherent with observations on view Cϕ.
The relations between the pins of the two views represent the coherence relation
between their behaviors, and the semantics of the interconnection of these views
is defined by a model of computation, as for any model in ModHel’X.

Cϕ

CP
M
oC

Fig. 5. Superposition of views

Aϕ

AP

M
oC

s1

Bϕ

BP

M
oC

s2

MoCϕ

MoCP

Fig. 6. Superposition and aggregation

Figure 6 illustrates the general pattern for using both composition by aggre-
gation and composition by superposition. Views Aϕ and Bϕ are composed by
aggregation according to MoCϕ in order to build a functional view of a system.
Views AP and BP are also composed by aggregation according to MoCP to build
a power consumption view of the system. The coherence of these views is ob-
tained by maintaining the coherence of Aϕ and AP, and of Bϕ and BP. This is
achieved by composing these views according respectively to MoCs1 and MoCs2.

4 Illustrative Example

In order to illustrate our approach of multi-view modeling, we present on figure 7
a simple example in which a thermostat regulates the temperature in a room by
switching a heater on or off. For the sake of simplicity, the border and pins of the
composite blocks are omitted on the figure, and the internal model of interface
blocks is represented in a form (state machine, pseudo code) which is easier to
understand than a strict ModHel’X model. In the functional view, a thermometer
(denoted by T◦) provides the thermostat with the ambient temperature. The
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T◦ Off On

T < 20◦C

T > 20◦C
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Main switchSDF

Heater
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if (state == On) {
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} else {
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if (in > 0) {
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} else {
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}
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Fig. 7. Example multi-view model

thermostat is modeled as a state machine which switches between the On and Off
states when the temperature goes below or above 20◦C. When the main switch
is on, the output of the thermostat is used to drive a heater. A synchronous
data flow (SDF) model of computation is used for the model of the thermostat,
and the continuous time (CT) model of computation is used to combine the
behaviors of the thermometer, the thermostat and the heater.

In the power consumption view, the left block models the power consumption
of the thermostat: 10W when in the On state and 2W when in the Off state. The
power consumption of the heater is modeled by the next block (2000W when
powered). The last block in the power consumption view is an adder which
computes the power consumption of the system by adding the power consump-
tion of the thermostat and of the heater. The continuous time (CT) model of
computation is used for this view.

Let us examine now the coherence of the views. The power consumption
of the thermostat depends on its internal state, so this information must be
provided by the functional view to the power consumption view. However, for
the sake of modularity, the internal state of the thermostat is an implementation
detail that should not be revealed to other blocks in an aggregation model. We
can consider it as protected information that should be available only for blocks
whose behavior is tightly coupled to the functional behavior of the thermostat.
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The model of the thermostat has therefore two interfaces, one for composition by
aggregation, and one for composition by superposition. ModHel’X has support
for this since a given model may be wrapped into several interface blocks. On
figure 7, aggregation interfaces are shown using solid black rectangles and pins,
and superposition interfaces are shown using thick gray rectangles and gray pins.

In a similar way, the power consumption view of the heater needs to know
if the heater is powered. This is determined by the output of the And block in
the functional view, which is therefore published in the superposition interface
of the thermostat. This illustrates that pins that appear in the superposition
interface of a model can provide information which comes either from aggregation
interfaces (the output of the And block) or from superposition ones (the state
output of the thermostat).

In ModHel’X, the role of the interface blocks is not only to define different
interfaces for a given model, but also to adapt the behavior of this model to
different models of computation. Here, the coherence of the two views of the
system is expressed using the discrete event (DE) model of computation. The
superposition interfaces therefore perform the semantic adaptation of the model
of computation used for these models with DE. The aggregation interfaces of the
same models also perform a semantic adaptation, but with CT. Let us examine
the semantic adaptation of the model of the thermostat, which uses SDF. Its
aggregation interface adapts between SDF and CT by making the internal model
react only to significant changes in the continuous input signal, and by holding
a constant continuous output when no data sample is produced by the model.
Its superposition interface adapts between SDF and DE by producing output
events only when the automaton changes its state or when the output of the
And block changes.

5 Discussion

We have shown that the basic meta-model designed to represent the structure of
hierarchical heterogeneous models in ModHel’X can also be used to represent the
coherence relations between several views of a system. However, we did not give
the precise semantics of this representation. The generic execution algorithm
of ModHel’X was designed with the hypothesis that a given block belongs to
only one model because only composition by aggregation was possible. Adding
composition by superposition allows a block to belong to several models, behind
different interfaces. Since the observations that are made of this block through
different interfaces are interdependent, the result of the execution of a multi-view
model may depend on the order in which the different views are observed. In the
simple example of the thermostat, the power consumption view depends on the
functional view, and there is no other dependency, so we can merely compute the
behavior of the functional model, then the behavior of the superposition model,
and last, the behavior of the power consumption model. However, if there were
cyclic dependencies between these different views, defining the semantics of the
multi-view model would be more difficult. Actually, the current version of the
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execution engine of ModHel’X does not support it. In the following, we illustrate
the problem and present some possibilities to address it.

A

A’

su
pe
rp

a
M

oC
a

B

B’

superp
b

M
oC

b

view 1MoC1

view 2MoC2

Fig. 8. Cyclic dependencies

First, to show what a multi-view model with cyclic dependencies looks like,
let us consider the example of figure 8. view 1 and view 2 model the behavior of
the system according to different points of view. superp a and superp b are used
to maintain the coherence between the views. One may consider that A and B
are views of some components of the system according to the point of view of
view 1, and that A’ and B’ are views of the same components according to the
point of view of view 2. Arrows are used to show that the behavior of B depends
on data produced by A, the behavior of B’ on data produced by B, the behavior
of A’ on data produced by B’, and finally, the behavior of A depends on data
produced by A’.

Such cyclic dependencies are common and appear naturally in models of sys-
tems. In the example of the thermostat and the heater, we could have modeled
the fact that the heater makes the temperature increase when it is on. Such a
model is shown on figure 9. It uses three views to model the functional behavior
of the system, its power consumption behavior, and its thermic behavior. The
functional and power consumption views are similar to the ones shown on fig-
ure 7, with simplified schematics for complex blocks. The thermic view models
the production of heat by the heater, as well as the thermic behavior of the
room. A second superposition model is used to maintain the coherence between
the power consumption view and the thermic view. A third one is added to main-
tain the coherence between the thermic view and the functional view, because
the temperature measured by the thermometer depends on the thermic behavior
of the room. The relation between the output of the room thermic model and
the input of the thermometer in the functional view closes a dependency loop:
the temperature in the room depends on the output of the thermostat (because
it drives the heater), which depends itself on the temperature. However, when
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Fig. 9. Model of the thermostat with a dependency cycle

the heater is switched on, the temperature does not rise instantaneously, so the
dependency cycle is broken by a delay: the output of the thermometer depends
on the current room temperature, but the heater acts on the future temperature.

Introducing delays in communications between ports is a way of solving the
issue of cyclic dependencies. However, we have seen that the semantics of the
relations between blocks is determined by a model of computation. Therefore,
in general, and for instance on figure 8, we cannot assume that the models of
computation used in view 1, view 2, superp a and superp b all have “propagate
with delay” semantics for relations.

Another way of considering cyclic dependencies is to regard the cycle as
an equation of the form ~x = f(~x), with ~x the vector of values given to their
pins, and to choose the value of the pins in order to solve this equation. The f
function represents the behaviors of the blocks and the rules used by the model
of computation to combine these behaviors. If the equation has no solution,
the model has no behavior and is ill-formed. If there are several solutions to
the equation, we can either consider the model as ill-formed, or pick a random
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solution (this allows non-deterministic behaviors), or choose a solution according
to some criterion (for instance, the smallest or the largest solution according to
some order). Indeed, ModHel’X allows cyclic dependencies in models, provided
that a solution can be computed by repeated observations of the blocks. With
the equation above, this means that ModHel’X allows cyclic dependencies when
∃k0 ∈ N,∀k ≥ k0, f

k( ~x0) = fk0( ~x0). Starting from an initial guess ~x0 for the
values of the pins, we repeatedly apply f , which represents the observation of
the blocks and the propagation of the observed values according to the relations
between pins. When two successive series of observations yield the same values
for the pins, a fixed point ~xf has been reached and gives the behavior of the
model for this observation.

The fixed point which is reached depends on the individual behavior of the
blocks, but also on the model of computation, which determines the order in
which blocks are observed, and how the values associated to the pins are prop-
agated according to the relations. When ModHel’X computes the behavior of a
model, it relies on the MoC of the model to compute f(~x). In our multi-view
example, four models of computation are involved (one for each view, and one
for each superposition model), so it is much more difficult to determine f , and
therefore to find its fixed-point, if it exists. We are studying a new version of
the execution engine of ModHel’X which observes the structure of multi-view
models in order to schedule the observations of their views and superposition
models in order to compute the behavior of the whole model as a fixed-point.

6 Conclusion

Non-functional aspects of a system can be captured in models which focus on a
specific point of view on the system. Such models often require different modeling
formalisms or DSMLs because they belong to different domains. In consequence,
different models which represent views on different aspects of a system are of-
ten heterogeneous. Since non-functional properties may be interdependent (e.g.
temperature, dissipated power and clock frequency in a CPU), and may also
depend on the functional behavior of the system, it is necessary to model these
dependencies so as to ensure the coherence of the different models of the system.

The approach of multi-view modeling presented in this paper relies on Mod-
Hel’X, a framework for heterogeneous modeling and design, to model each view
of a system. Each view combines the behavior of components according to the
rules of a model of computation which is equivalent to the semantics of a DSML.
Components are aggregated into models and a model can be wrapped in a com-
ponent to give a hierarchical structure to a larger model.

In the work presented in this paper, we introduce superposition, a new way
of combining components to express the coherence between different views of a
system. In this approach, a multi-view model of a system consists of several views
(which are models of the system built according to different points of view), and
of superposition models which propagate information between the views in order
to ensure their coherence.
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This approach has the main advantage of reusing the basic mechanisms de-
signed in ModHel’X for hierarchical heterogeneous modeling. It only assumes
that a given model can be encapsulated in several interfaces for composition
by aggregation and superposition. It therefore provides the base of a unified
framework for building heterogeneous multi-view models.
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