
Toward an Efficient Equality Computation in
Connection Tableaux: A Modification Method without

Symmetry Transformation1

— A Preliminary Report—

Koji Iwanuma §1, Hidetomo Nabeshima§1, and Katsumi Inoue§2

§1University of Yamanashi, 4-3-11 Takeda, Kofu-shi, Yamanashi, 400-8511, Japan
Email:{iwanuma,nabesima}@yamanashi.ac.jp

§2National Institute of Informatics , 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo,
101-8430, Japan. Email:ki@nii.ac.jp

Abstract

In this paper, we study an efficient equality computation in connection tableaux,
and give a new variant of Brand, Bachmair-Ganzinger-Voronkov and Paskevich’s
modification methods, where the symmetry elimination rule is never applied. As
is well known, effective equality computing is very difficult in a top-down theo-
rem proving framework such as connection tableaux, due to a strict restriction to
re-writable terms. The modification method with ordering constraints is a well-
known remedy for top-down equality computation, and Paskevich adapted the
method to connection tableaux. However the improved modification method still
causes essentially redundant computation which originates in a symmetry elim-
ination rule for equational clauses. The symmetry elimination may produce an
exponential number of clauses from a given single clause, which inevitably causes
a huge amount of redundant backtracking in connection tableaux. In this paper, we
study a simple but effective remedy, that is, we abandon suchsymmetry elimina-
tion for clauses and instead introduce new equality inference rules into connection
tableaux. These new inference rules have a possibility of achieving efficient equal-
ity computation, without losing the symmetry property of equality, which never
cause redundant backtracking nor redundant contrapositive computation. We im-
plemented the proposed methods in a sophisticated prover SOLAR which is orig-
inally designed to finding logical consequences, and show a preliminary experi-
mental results for TPTP benchmark problems. This research is now in progress,
thus the experimental results provided in this paper are tentative ones.

1 Introduction
In this paper, we study an efficient equality computation in connection tableaux, and
give a variant of modification methods investigated by Brand[2], Bachmair-Ganzinger-
Voronkov [1] and Paskevich [9]. We investigate a novel modification method such that
a symmetry elimination rule is never applied.

1This research was partially supported by the Grant-in-Aid from The Ministry of Education, Science and
Culture of Japan ((A) No.20240016)

19

P

P Q a=u1 b u1

P a u3b u3

x1=x1

Q

={u1/u3, u3/b, …}

Ordering Constraint

b>a
C2

C4 Order Violated !!

a>b

P

P Q b=u2 a u2

P a u3b u3

x1=x1

Q

Ordering Constraint

b>a
C3

C4

Succeed !!

={u2/u3, u3/a, …}

x2=x2

Figure 1: Connection Tableaux for Modification with ordering constraints

As is well known, effective equality [1, 3] computing is verydifficult in a top-down
theorem proving framework such as connection tableaux [6],due to a strict restriction
to re-writable terms [12]. The modification method proposedby Brand has the great
possibility for improving top-down equality computation.Bachmair, Ganzinger and
Voronkov improved Brand’s method with ordering constraints, and Paskevich adapted
connection tableau calculus to the modification method using ordering. However the
improved connection tableaux still causes redundant computation which is essentially
involved by a symmetry elimination rule for equational clauses. The symmetry elimi-
nation may produce an exponential number of clauses from a given single clause, which
inevitably causes a huge amount of redundant backtracking in Connection Tableaux.

LetS1 be a set of clauses{ ¬P , P ∨Q∨a ≈ b, b 6≈ a, ¬Q∨P}. The modification
method transformsS1 into the following set of clauses with ordering constraints:

C1 : ¬P

C2 : (P ∨ Q ∨ a ≃ u1 ∨ b 6≃ u1) · (a ≻ u1 ∧ b � u1)
C3 : (P ∨ Q ∨ b ≃ u2 ∨ a 6≃ u2) · (b ≻ u2 ∧ a � u2)
C4 : (b 6≃ u3 ∨ a 6≃ u3) · (b � u3 ∧ a � u3)
C5 : ¬Q ∨ P

Ref : x ≃ x (Reflexivity Axiom)

A clause with ordering constraints takes the form ofD ·δ whereD is an ordinary clause
andδ is a conjunction of ordering constraintss ≻ t, s � t or s = t. The ordering
constraintδ of D · δ is expected to be satisfiable together withD. Notice that the above
two clausesC2 andC3 are produced from the single clauseP ∨Q∨a ≈ b by symmetry
elimination rule (more precisely, together with transitivity elimination rule). Figure 1
depicts two consecutive tableaux in a connection tableaux derivation, where we assume
the orderingb ≻ a over constants. The left tableau fails to be closed because the goal
a 6≃ u2 violates the ordering constrainta � u3, where the variableu3 is substituted
with b. The failure of derivation invokes backtracking, and eventually replaces the
tableau clauseC2 below the top clauseC1 with the clauseC3. The right tableau in
Fig. 1 succeeded in being closed, and simultaneously satisfies the ordering constraints.
Notice that there are identical subtableaux below the goalQ in both left and right
tableaux. Unfortunately, none of well-known pruning methods, such as folding-up/C-
reduction or local failure caching, can prevent the redundant duplicated computation,

20

because the clauseC2 containingQ in the left tableau is replaced withC3 in the right
tableau. Such a redundant computation essentially originates in the duplication of a
given clause by symmetry elimination.

In this paper, we study a simple but effective remedy, that is, we abandon such sym-
metry elimination of clauses, and instead introduce new equality inference rules into
connection tableaux. These new inference rules can achieveefficient equality compu-
tation, without losing the symmetry property of equality, which never cause redundant
backtracking nor redundant contrapositive computation. Finally, we evaluate the pro-
posed method through experiments with TPTP benchmark problems. Paskevich [9]
also gave a new connection tableau calculus which uses lazy paramodulation instead
of symmetry elimination. Paskevich’s paramodulation-based connection calculus is
very sophisticated, but seems to be a bit complicated and difficult in efficient imple-
mentation. Although the calculus proposed in this paper is superficially a little bit
complicated, the underlying principle is very simple, and is easy to implement. At last,
we emphasize that this research is now in progress, In this paper we show just some
tentative results.

2 Preliminaries
We give some preliminaries according to Paskevich [9]. A language considered in this
paper is first-order logic with equality in clausal form. Aclauseis a multi-set of literals,
usually written as a disjunctionL1 ∨ . . . ∨ Ln. The empty clause is denoted as⊥.

The equality predicate is denoted by the symbol≈. We abbreviate the negation
¬(s ≈ t) ass 6≈ t. We consider equalities as unordered pairs of terms; that is, a ≈ b and
b ≈ a stand for the same formula. As is well known, the equality is characterized by the
congruence axiomsE consisting of four axioms, i.e.,reflexivity, symmetry, transitivity
andmonotonicity. The symbol≃ will denote “pseudo-equality”, i.e., a binary predicate
without any specific semantics. We utilize≃ in order to replace the symbol≈ when we
transform a clause set into a logic without equality. The order of arguments becomes
significant here:a ≃ b andb ≃ a denote different formulas. The expressions 6≃ t
stands for¬(s ≃ t).

We denote non-variable terms bynv, nv1 andnv2, and also arbitrary terms byl,
r, s, t, u andv. Variables are denoted byx, y andz. Substitutions are denoted byσ and
θ. The result applying a substitutionσ to an expressionE is denoted byEσ. We write
E[s] to indicate that a terms occurs inE, and also writeE[t] to denote the expression
obtained fromE by replacing one occurrence ofs with t.

We use an ordering constraint as defined in Bachmair et al. [1]. A constraintis a
conjunction ofatomic constraintss = t, s ≻ t or s � t. The lettersγ andδ denote
constraints. A compound constraint(a = b ∧ b ≻ c) can be written in an abbreviated
form a = b ≻ c. A substitutionσ solvesan atomic constraints = t if the termssσ and
tσ are syntactically identical. It is a solution of an atomic constraints ≻ t (s � t) if
sσ > tσ (sσ ≥ tσ, respectively) with respect to a given term ordering>. Throughout
this paper, we assume that a term ordering≻ is a reduction orderingwhich is total
over ground terms.2 We say thatσ is a solution of a constraintγ if it solves all atomic
constraints inγ; γ is calledsatisfiablewhenever it has a solution.

2A reduction ordering> is an ordering over terms such that: (1)> is well-founded; (2) for any terms
s, t, u and any substitutionθ, if s > t thenu[sθ] > u[tθ] holds.

21

Expansion (Exp):
S , (L1 ∨ · · · ∨ Lk) || Γ

L1 · · · Lk

Strong Connection (SC):
S || Γ,¬P (r), P (s)

⊥ · (r = s)

S || Γ, P (r),¬P (s)

⊥ · (r = s)

Weak Connection (WC):
S || Γ,¬P (r), ∆, P (s)

⊥ · (r = s)

S || Γ, P (r),∆,¬P (s)

⊥ · (r = s)

Figure 2: Connection calculusCT for a setS of clauses

Let S be a set of clauses. Aconstrained clause tableaufor S is a finite treeT (See
Fig. 1 as an example). Each node except for a root node is a pairL · γ whereL is a
literal andγ is a constraint. Any branch that contains the literal⊥, which represents
the false, isclosed. A tableau isclosed, whenever every branch in it is closed and the
overall of constraints in it is satisfiable.

Each inference step grows some branch in the tableau by adding new leaves under
the leaf of the branch in question. Initially, an inference starts from the single root
node. Symbolically, we describe an inference rule as follows:

S || Γ

L1 · γ1 · · · Ln · γn

whereS is an initial given set of clauses,Γ is the branch being augmented (with con-
straints not mentioned), and(L1 · γ1), . . . , (Ln · γn) are the added nodes. Whenever
we choose some clauseC in S to participate in the inference, we implicitly rename all
variable inC to some fresh variables. The standard connection tableau calculus [6, 9],
denoted byCT, for a setS of clauses has inference rules depicted in Fig. 2.

Any clause tableau built by the rules ofCT can be considered as a tree of inference
steps. Every tableau ofCT always starts with an expansion step; also that first expan-
sion step can be followed only by another expansion, since connection step requires at
least two literals in a branch. In a tableau, anexpansion clauseis the added clause in
an expansion step.

LetT be a tableau ofCT for a setS of clauses. We say thatT is strongly connected
whenever every strong connection step in a tableau follows an expansion step, and
every expansion step except for the first (or top) one is followed by exactly one strong
connection step. Moreover,T is said to be arefutationfor S if T is strongly connected
and closed.

Theorem 1 (Letz et.al [6]) TheCT calculus is sound and complete in first-order logic
without equality.

Ordered paramodulation is a well-known efficient equality inference rule. It is well
known that top-down (or linear) deduction systems, including connection tableaux, are
difficult frameworks for efficient equality computation because of hard restriction of

22

redexes, i.e., subterms allowed to rewrite. For example, Snyder and Lynch [12] showed
that: paramodulation into a variable is necessary for completeness; ordering constraints
is incompatible with top-down theorem proving even if paramodulation into a variable
is allowed. As a remedy, the modification proposed by Brand [2] has been investigated
by many researchers.

2.1 Modification Method and Connection Tableaux
In this subsection, we firstly, show the modification method given by Bachmair, Ganzinger
and Voronkov [1] which uses ordering constraints. Secondly, we show Paskevich’s con-
nection tableau calculus [9], denoted asCT≃,3 for refuting a set of clauses generated
by the modification method.

2.1.1 Elimination of Congruence Axioms

Given a setS of equational clauses, we apply three kinds of elimination rules and
replace the equality predicate≈ by the predicate≃ to obtain a modified clause set
S ’, such thatS ’ is satisfiable iffS is equationally satisfiable. IfR is a set of such
elimination rules, we say a constrained clause is inR-normal form if no rule inR is
applicable to it. We denote byR(S) the set of allR-normal forms of a clause inS.

We first show S-modification rules which replaces the equality symbol≈ with the
pseudo-equality≃, and generates several clauses which can simulate computational
effects of symmetry axiom.

• Positive S-modification:
s ≈ t ∨ C ⇒ s ≃ t ∨ C and t ≃ s ∨ C

• Negative S-modification:
nv 6≈ t ∨ C ⇒ nv 6≃ t ∨ C

x 6≈ nv ∨ C ⇒ nv 6≃ x ∨ C

x 6≈ y ∨ C ⇒ Cθ

whereθ is a substitution{x/y}.

Remark: Positive S-modification rule is quite problematic, becauseone equation is
duplicatedto two equations each of which has converse directions. We shall give a
remedy for it in the next section.

Secondly we give M-modification rules which flatten clauses by abstracting sub-
terms via introduction of new variables as follows:

P (. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ P (. . . , z, . . .) ∨ C

¬P (. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ ¬P (. . . , z, . . .) ∨ C

f(. . . ,nv, . . .) ≃ t ∨ C ⇒ nv 6≃ z ∨ f(. . . , z, . . .) ≃ t ∨ C

f(. . . ,nv, . . .) 6≃ t ∨ C ⇒ nv 6≃ z ∨ f(. . . , z, . . .) 6≃ t ∨ C

s ≃ f(. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ s ≃ f(. . . , z, . . .) ∨ C

s 6≃ f(. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ s 6≃ f(. . . , z, . . .) ∨ C

wherez is a new variable, called anabstraction variable.
The third one is T-modification rule for generating clauses which can simulate ef-

fects of transitivity axiom.

3Notice thatCT≃ was introduced to prove the completeness of thelazy paramodulation calculusin [9].

23

Expansion (Exp): Equality Resoution(ER) :
SMT(S), (L1 ∨ · · · ∨ Lk) || Γ

L1 · · · Lk

SMT(S) || Γ, l 6≃ r

⊥ · (l = r)

Strong Connection (SC):
SMT(S) || Γ,¬P (r), P (s)

⊥ · (r = s)

SMT(S) || Γ, P (r),¬P (s)

⊥ · (r = s)

SMT(S) || Γ,nv 6≃ r, s ≃ t

⊥ · (nv = s ≻ t = r)

SMT(S) || Γ, s ≃ t,nv 6≃ r

⊥ · (nv = s ≻ t = r)

Weak Connection (WC):
SMT(S) || Γ,¬P (r), ∆, P (s)

⊥ · (r = s)

SMT(S) || Γ, P (r), ∆,¬P (s)

⊥ · (r = s)

SMT(S) || Γ,nv 6≃ r, ∆, s ≃ t

⊥ · (nv = s ≻ t = r)

SMT(S) || Γ, s ≃ t,∆, nv 6≃ r

⊥ · (nv = s ≻ t = r)

Figure 3: Connection tableauxCT≃ for SMT(S)

• Positive T-modification:

s ≃ nv ∨ C ⇒ s ≃ z ∨ nv 6≃ z ∨ C

• Negative T-modification:

s 6≃ nv ∨ C ⇒ s 6≃ z ∨ nv 6≃ z ∨ C

wherez is a new variable, called alink variable.

Notice that if the termt in s ≃ t is a variable, then T-modification doesnothing.
Let SMT(S) denote a set T(M(S(S))), i.e., the set of normal clauses obtained from

S by consecutively applying S, M and T-modification. Notice that the size of SMT(S)
is exponentialto the one ofS.

Theorem 2 (Bachmair et al. [1]) S ∪ E is unsatisfiable iff SMT(S) ∪ {x ≃ x} is
unsatisfiable, where≃ is a new symbol for simulating the equality.

Bachmair et al. [1] studied weak ordering constraints for modification. An atomic
ordering constraints ≻ t (s � t) is assigned to each positive (or respectively, negative)
literal s ≃ t (or respectively,s 6≃ t) in SMT(S), except for the negative equalityx 6≃ y
for any variablesx andy.

CEE(S) denote the set of clauses of SMT(S) with ordering constraints.

Theorem 3 (Bachmair et al. [1]) S ∪ E is unsatisfiable iff CEE(S) ∪ {x ≃ x} is
unsatisfiable, where≃ is a new symbol for simulating the equality.

2.1.2 Connection Tableaux for Modification with Ordering Constraints

Paskevich [9] adapted the calculusCT for computing CEE(S), and gave the connection
tableau calculusCT≃ for modification with ordering constraints, which is described
in Fig. 3. Notice thatnv denotes a non-variable term inCT≃.

24

Theorem 4 (Paskevich [9])The calculusCT≃ is sound and complete. That is,S ∪ E
is unsatisfiable iff there is a closed and strongly connectedtableau inCT≃ for
SMT(S).

3 Connection Tableaux for Modification without S-Mo-
dification

The size of SMT(S) is unfortunatelyexponentialto the one ofS, which is truly prob-
lematic and causes a huge amount of redundant computation. The positive S-modifi-
cation, hence, should be abandoned. We alternatively introduce new inference rules
for simulating the effects of symmetry axiom and construct anew connection tableau
calculusCTwS (Connection Tableaux for modification Without S-modification).

Definition 1 Let P-modificationbe a transformation rule of clauses, which just re-
places the equality symbol≈ with the pseudo symbol≃ in positive equalities. We
define nSMT(S) to be a a set of normal clauses obtained fromS by just succes-
sively applying P-modification, negative S-modification, M-modification and negative
T-modification.

Notice that the size of nSMT(S) is linear to the one ofS because positive S-modification
is never applied.

Once the positive S-modification is abandoned, no symmetry formulat ≃ s of an
initial equalitys ≃ t is generated in the modification process, which means that the
succeeding positive T-modification is not accomplished either. Therefore, we need a
mechanism compensating such a deficit of clause transformation. In this paper, we
introduce new inference rules which can simulate not only positive S-modification but
alsopositive T-modificationfor keeping transitivity properties of a positive equality.

We propose the following new rules, calledsymmetry and transitivity splitting
rules, abbreviated asST-splitting, which can simultaneously simulate the computa-
tional effects of symmetry and transitivity axioms.

Naive ST-Splitting Rule:

nSMT(S) || Γ, s ≃ nv

s ≃ z nv 6≃ z

nSMT(S) || Γ, s ≃ x

s ≃ x

nSMT(S) || Γ, nv ≃ t

t ≃ z nv 6≃ z

nSMT(S) || Γ, x ≃ t

t ≃ x

wherenv is a non-variable term andx is a variable.

3.1 Controlling ST-Splitting I: A Raw Equality

ST-Splitting should be applied to each positive equalityat most one time, because more
than two times applications of these rules are clearly redundant. Therefore we need a
controlling mechanism.

In this paper, we firstly give araw positive equality, denoted ass ≃ t , which is

introduced into a tableau by the expansion rule. Some of raw positive equalitiess ≃ t

25

are changed toordinary equality literalsby ST-splitting. Conversely ST-Splitting rule
is restricted to apply only to a raw positive equality. Moreover, the strong connection
rule for a negative equality is also restricted to apply onlyto raw positive equalities.
Furthermore, we force every raw positive equality to be followed either by ST-Splitting
or by new strong contraction rules shown below.

Given a literalL, we write [L] to denote a framed literals ≃ t , called araw
positive literal if L is a positive equalitys ≃ t; otherwise[L] denotesL itself. We
modify the expansion rule into the one which produces a raw literal for a positive
equality.

Expansion for nSMT(S):
nSMT(S), (L1 ∨ · · · ∨ Lk) || Γ

[L1] · · · [Lk]
ST-Splitting Rule should be changed to treat only raw positive literals.

ST-Splitting Rule:
nSMT(S) || Γ, s ≃ nv

s ≃ z nv 6≃ z

nSMT(S) || Γ, s ≃ x

s ≃ x

nSMT(S) || Γ, nv ≃ t

t ≃ z nv 6≃ z

nSMT(S) || Γ, x ≃ t

t ≃ x

Example 1 Consider the setS1 of clauses in Section 1. The set nSMT(S) of normal
clauses is:

C1 : ¬P.

C6 : P ∨ Q ∨ a ≃ b

C′

4 : (b 6≃ u3 ∨ a 6≃ u3)
C5 : ¬Q ∨ P

Figure 4 shows two connection tableaux inCTwS for S1, each of which corresponds
with the one in Fig. 1. Notice that no backtracking occurs forundoing the expansion
introducing the clauseC6 in the derivation from the left tableau to the right one. There-
fore none of duplicated computations invoked for the subgoal Q in CT≃ occur in the
calculusCTwS.

3.2 Controlling ST-Splitting II: Strong Connection

The original form of strong connection for negative equality is no longer appropriate,
because it cannot deal with raw positive equalities nor corporate with ST-splitting rule.
The new calculusCTwS has to simulate all valid inferences involving the strong con-
nection inCT≃ for SMT(S) in order to preserve completeness. LetC ∈ S be a clause
s ≃ t ∨ K1 ∨ · · · ∨ Km. There are four possible clauses obtained by S-modification
and T-modification from C with respect tos ≃ t:

D1 : s ≃ z ∨ nv2 6≃ z ∨ K′

1 ∨ · · · ∨ K′

m if t is a non-variable termnv2

D2 : s ≃ x ∨ K′

1 ∨ · · · ∨ K′

m if t is a variablex
D3 : t ≃ z ∨ nv2 6≃ z ∨ K′

1 ∨ · · · ∨ K′

m if s is a non-variable termnv2

D4 : t ≃ x ∨ K′

1 ∨ · · · ∨ K′

m if s is a variablex

wherez is a fresh variable. All of these clauses have possibilitiesto be used as an
expansion clause for the strong connection inCT≃. Next we consider new strong
connection rules forCTwS in order to simulate these inferences inCT≃.

26

P

P Q

a=z b z
P

a u3

b u3

x1=x1

Q

={z/u3, u3/b, …}

Ordering Constraint

b>a
C6

C4 Order Violated !!

a>b

a=b

ST-Left

P

P Q

b=z a z
P

a u3b u3

x1=x1

Q

={z/u3, u3/a, …}

Ordering Constraint

b>a
C6

C4

Succeed !!

a=b

x2=x2

ST-Right

Figure 4: Two connection tableaux inCTwS for nSMT(S1)

Firstly, we study a simulation of strong connection using the clauseD1 in SMT(S).
Consider an expansion inference forD1 in CT≃.

L

s ≃ z nv2 6≃ z K
′

1 · · · K
′

m

(Exp)

If L is a negative equalitynv1 6≃ r such thatnv1 is non-variable and is unifiable with
s, then the following strong connection is available inCT≃:

nv1 6≃ r

s ≃ z

⊥ · (nv1 = s ≻ z = r)
(SC) nv2 6≃ z K

′

1 · · · K
′

m

(Exp)(1)

On the other hand, ifL is a positive equalityu ≃ v such thatu is unifiable withnv2,
then we have the following strong connection inCT≃:

u ≃ v

s ≃ z
nv2 6≃ z

⊥ · (nv2 = u ≻ v = z)
(SC) K

′

1 · · · K
′

m

(Exp)(2)

The above first inference (1) inCT≃ can be simulated in nSMT(S) with the new
expansion rule and ST-splitting for a raw equalitys ≃ nv2 and theweak connection
rule as follows:

nv1 6≃ r

s ≃ nv2

s ≃ z

⊥ · (nv1 = s ≻ z = r)
(WC) nv2 6≃ z

(ST) K
′

1 · · · K
′

m

(new Exp)

However, it is definitely better to use a sort of strong connection rule instead of the
weak connection, because a connection constraint for a tableau becomes much simpler
and more effective to drastically reduce the search space. We, hence, introduce a new
strong connection rule which can perform the above inference steps as an integrated
one-step inference inCTwS. The following is a naive form for directly simulating the

27

inference (1):
nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ z = r) nv2 6≃ z

wherenv1 andnv2 are non-variable terms. We can eliminate the link variablez
becausez never occurs elsewhere in a tableau, and moreover we can add an ordering
constraint. The final form of the above rule is:

nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ r) nv2 6≃ r · (nv2 � r)

Remark: The above ordering constraintnv2 � r is not explicitly used in the strong
connection inCT≃, as shown in the inference (1). Thus this additional constraint can
reduce the alternative choices of expansion rules, compared with CT≃. Recall the
termnv2 initially occurs as an argument of the equalitys ≃ nv2 of the original clause
s ≃ nv2∨K1∨· · ·∨Km in S. Thus we can say,CTwS directly uses full information
of the equalitys ≃ nv2 for strong connection and thus expansion, whileCT≃ just
uses this information indirectly through variable bindingfor a linked variable.4 This
difference is a rather important point because several state-of-arts top-down provers,
such as SETHEO [6] and SOLAR [8], often reorder goals for improving the efficiency
of inferences.

Similarly, the above inference (2) can also be simulated in nSMT(S) with a raw
positive equalitys ≃ nv2 as follows:

u ≃ v

s ≃ nv2

s ≃ z
nv2 6≃ z

⊥ · (nv2 = u ≻ v = z)
(WC)

(ST) K
′

1 · · · K
′

m

(new Exp)

This observation leads to the following rule, which can achieve the above inference
steps as a single inference.

nSMT(S) || Γ, u ≃ v, s ≃ nv2

s ≃ z ⊥ · (nv2 = u ≻ v = z)

We can also eliminate the link variablez and add an additional ordering fors ≃ z
without losing completeness. Finally, we obtain the following new rule:

nSMT(S) || Γ, u ≃ v, s ≃ nv2

s ≃ v · (s ≻ v) ⊥ · (nv2 = u ≻ v)

Notice that this rule superficially requires apositiveraw literal s ≃ nv2 as a partner
of strong connection of apositiveliteral u ≃ v.

Next we study a simulation of strong connection using the clauseD2. Consider the
following inference involving expansion and strong connection of D2 in CT≃.

nv1 6≃ r

s ≃ x

⊥ · (nv1 = s ≻ x = r)
(SC) K

′

1 · · · K
′

m

(Exp),(3)

4See the variable binding ofz in the inference (1), for example.

28

wherenv1 is a non-variable term. The above (3) can simply be simulatedin nSMT(S) with
the raw equalitys ≃ x as follows:

nv1 6≃ r

s ≃ x

s ≃ x

⊥ · (nv1 = s ≻ x = r)
(WC)

(ST) K
′

1 · · · K
′

m

(new Exp),

This observation derives the following strong connection rule inCTwS:

nSMT(S) || Γ, nv1 6≃ r, s ≃ x

⊥ · (nv1 = s ≻ x = r)

Moreover, we have to investigate inferences using strong connections with the
clausesD3 andD4 of SMT(S), and can derive additional three rules for nSMT(S) by
similar discussions. Eventually, we obtain the following set of strong connection rules
for nSMT(S):

Strong Connection for Negative Equality in nSMT(S):

nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, s ≃ x

⊥ · (nv1 = s ≻ x = r)

nSMT(S) || Γ, nv1 6≃ r, nv2 ≃ t

⊥ · (nv1 = t ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, x ≃ t

⊥ · (nv1 = t ≻ x = r)

Strong Connection for Positive Equality in nSMT(S):

nSMT(S) || Γ, u ≃ v, s ≃ nv2

s ≃ v · (s ≻ v) ⊥ · (nv2 = u ≻ v)

nSMT(S) || Γ, u ≃ v, nv2 ≃ t

t ≃ v · (t ≻ v) ⊥ · (nv2 = u ≻ v)

wherenv1 andnv2 denote non-variable terms,x is a variable.
We show a total view of the connection tableauxCTwS for nSMT(S) in Fig. 5.

The following is the first main theorem of this paper:

Theorem 5 The calculusCTwS is sound and complete. That is,S ∪ E is unsatisfiable
iff there is a closed and strongly connected tableau inCTwS for nSMT(S).

3.3 Yet another Connection Tableaux for Modification
In this section, we consider yet another connection tableaux, calledCTwST, where the
strong connection for positive equality is further improved with a more strict ordering
constraint. As was shown in the previous subsection, one of the strong connection for
a positive equality for nSMT(S) is:

SC-PosE-1:
nSMT(S) || Γ, s ≃ t, nv1 6≃ r

⊥ · (nv1 = s ≻ t = r)

29

Expansion (Exp): Equality Resolution (ER)
nSMT(S), (L1 ∨ · · · ∨ Lk) || Γ

[L1] · · · [Lk]

nSMT(S) || Γ, l 6≃ r

⊥ · (l = r)

ST Splitting (ST):
nSMT(S) || Γ, s ≃ nv1

s ≃ z nv1 6≃ z

nSMT(S) || Γ, s ≃ x

s ≃ x

nSMT(S) || Γ, nv1 ≃ t

t ≃ z nv1 6≃ z

nSMT(S) || Γ, x ≃ t

t ≃ x

Strong Connection for Non-Equality (SC–NonE):
nSMT(S) || Γ,¬P (r), P (s)

⊥ · (r = s)

nSMT(S) || Γ, P (r),¬P (s)

⊥ · (r = s)

Strong Connection for Neg. Equality (SC–NegE):
nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, s ≃ x

⊥ · (nv1 = s ≻ x = r)

nSMT(S) || Γ, nv1 6≃ r, nv2 ≃ t

⊥ · (nv1 = t ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, x ≃ t

⊥ · (nv1 = t ≻ x = r)

Strong Connection for Pos. Equality (SC–PosE):
nSMT(S) || Γ, s ≃ t, nv1 6≃ r

⊥ · (nv1 = s ≻ t = r)

nSMT(S) || Γ, u ≃ v, s ≃ nv1

s ≃ v · (s ≻ v) ⊥ · (nv1 = u ≻ v)

nSMT(S) || Γ, u ≃ v, nv1 ≃ t

t ≃ v · (t ≻ v) ⊥ · (nv1 = u ≻ v)

Weak Connection (WC):
nSMT(S) || Γ,¬P (r), ∆, P (s)

⊥ · (r = s)

nSMT(S) || Γ, P (r), ∆,¬P (s)

⊥ · (r = s)

nSMT(S) || Γ,nv1 6≃ r,∆, s ≃ t

⊥ · (nv1 = s ≻ t = r)

nSMT(S) || Γ, s ≃ t,∆, nv1 6≃ r

⊥ · (nv1 = s ≻ t = r)

Figure 5: Connection tableauxCTwS for nSMT(S)

30

Recall that T-modification splits a given negative equalityl 6≃ r into the disjunction
l 6≃ z ∨ r 6≃ z if r is not a variable. Thus, the literall 6≃ z (or r 6≃ z) loses the
information about the initial partner termr (or respectively,l). Thus the above strong
connection rule cannot utilize full information provided by negative equalities in a
clause setS which is initially given. As a remedy, we omit T-modificationfor negative
equality literals as well, and instead give a set of new connection rules for preserving
transitivity

Definition 2 We define nSM(S) to be a a set of normal clauses obtained fromS by
just applying negative S-modification and M-modification.

The calculusCTwST differs fromCTwS in the following points; firstlyCTwST ac-
cepts nSM(S) as an input set of clauses, not nSMT(S); secondly we add a new expan-
sion rule and T-splitting rules for treating araw negativeequality; thirdly we replace
the strong connectionSC-PosE-1with new three rules withraw negativeequalities.
We modify the expansion rule to the one which produces raw literals both for positive
and negative equalities. Given a literalL, we write [[L]] to denote the framed literal
L , called araw literal if L is a positive equalitys ≃ t or a negative equalitys 6≃ t;

otherwise[[L]] denotesL itself.

Expansion Rule for nSM(S):

nSM(S), (L1 ∨ · · · ∨ Lk) || Γ

[[L1]] · · · [[Lk]]

We add the following T-splitting rules in order to treating raw negative equalities,
which naturally correspond with T-modification.

T-Splitting for Negative Equality for nSM (S):[-0.5ex]

nSM(S) || Γ, s 6≃ nv1

s 6≃ z nv1 6≃ z

nSM(S) || Γ, s 6≃ y

s 6≃ y

At last, we replace the ruleSC-PosE-1by the following three rules:

Strong Connection for Positive Equality for nSM(S):

nSM(S) || Γ, l ≃ r, nv1 6≃ nv2

⊥ · (nv1 = l ≻ r) nv2 6≃ r · (nv2 � r)

nSM(S) || Γ, l ≃ r, s 6≃ nv2

s 6≃ r · (s � r) ⊥ · (nv2 = l ≻ r)

nSM(S) || Γ, l ≃ r, nv1 6≃ y

⊥ · (nv1 = l ≻ r = y)

4 Extended SOLAR and Experimental Evaluation
In this section, we show some tentative experimental results with SOLAR [8], which
is an efficient consequence finding program based on SkippingOrdered Linear Reso-
lution [4] by using Connection Tableaux technology [6, 5]. At first we show the basic

31

Table 1: Basic performance comparison of theorem provers

SOLAR Otter E 1.0 E 1.0 (A)∗

of solved unit EQ. 170 474 589 630
of solved non-unit EQ. 676 727 907 2013
of solved non-EQ. 1163 1044 1131 1640
∗ Note: (A) means that E system uses the option“-xAuto -tAuto”.

performance of SOLAR compared with state-of-the-art theorem provers Otter 3.0 [7]
and E 1.0 [11]. Table 1 shows the numbers of problems of TPTP library v.3.5.0 which
each theorem prover can solve within the time limit of 60 CPU seconds. The first row
is for unit equation problems; the second is non-unit equational ones; the third is for
non-equational ones. SOLAR is competitive for the class of non-equational problems,
but is not for equational problems.5

Table 2 shows the performances of several kinds of equality computation methods
in connection tableaux.6 The first “Axioms” indicates a naive use of the congruence
axioms, and the second “M-mod” represents a method for usingjust M-modification
together with reflexivity, symmetry and transitivity axioms. Each row denoted by “in-
fer.” is the sum total of the numbers of inferences needed forequational problems
which can commonly be solved by all ofCT≃, CTwS andCTwST. The upper half of
Table 2 shows the results obtained by using ordinary M-modification, while the lower
half is for the ones obtained by using a semi-optimized M-modification, given in [1],
such that the flattening never applies to any occurrences of an ordering-minimal con-
stant symbol. Regretfully, the best performance is provided by the naive use method
of the congruence axioms. Modification methods commonly inherit a disadvantage
caused by M-modification which increases the length of each clause by flattening.
CT≃ andCTwS, however, significantly decrease the number of inference steps from
M-modification method. With the semi-optimized M-modification, CTwS is superior
to CT≃. Certainly,CTwS decreases the amount of inference steps compared with
CT≃, which means thatCTwS succeeds to prevent redundant computations origi-
nating in S-modification. By comparison between the upper part and the lower one
in Table 2, we can understand the importance of optimizationof M-modification for
avoiding redundant computations, which are invoked by longdisjunctions ofthin neg-
ative equalities produced by flattening operations.

5 Conclusion and Future Work
We investigated Paskevich’s connection tableaux for equality computation, and pointed
out that a naive use of S-modification is problematic. We proposed, as some reme-
dies, improved connection tableau calculi for efficient equality computation. We also
showed tentative experimental results of evaluating the proposed methods using SO-
LAR. This research is now in progress. For example, we are still studying a further

5TPTP library v.3.5.0 has 2,175 non-equational problems and4,171 equational problems, where there are
863 unit equational problems.

6Throughout experiments, we used non-recursive Knuth-Bendix ordering given by Riazanov and
Voronkov [10]. as a reduction ordering.

32

Table 2: Comparison of equality computation methods in connection tableaux

Axioms M-mod CT≃ CTwS CTwST

of unit EQ. 170 161 180 183 179
of non-unit EQ. 636 490 507 499 489
of infer. of unit EQ. 4,883K 12,900K 8,903K 1,403K 2,367K
of infer. of non-unit EQ. 38,621K 251,244K 86,837K 78,339K 119,094K

of unit EQ. — — 183 185 183
of non-unit EQ. — — 518 540 512
of infer. of unit EQ. — — 5,545K 5,212K 8,397K
of infer. of non-unit EQ. — — 66,529K 58,588K 86,253K

improvement of M-modification. Moreover, we found that the dynamic term-binding
to variables in derivations frequently gives ill effects onthe behaviors ofCTwS and
CTwST. In order to improve this situation, we will re-formalize our methods in the
context of the basic method and the closure mechanism in the near future. Furthermore,
one of anonymous referees suggested that the effects of ST-splitting can be achieved
by the following clause transformation:

s ≈ t ∨ C ⇒ Pnew(~x) ∨ C, ¬Pnew(~x) ∨ s ≃ t and¬Pnew(~x) ∨ t ≃ s

wherePnew is a new predicate symbol and~x denotes the list of variables occurring ins
andt. Notice that the literalPnew(~x) corresponds to a raw equality in our framework.
This rule can be used for simulating ST-splitting instead ofpositive S-modification
rule. This method seems to have a great possibility in several aspects. We are now
conducting some theoretical studies and experimental evaluations.

References
[1] L. Bachmair, H. Ganzinger and A. Voronkov: Elimination of equality via transformation with ordering

constraints.Proc. CADE-15, LNCS, Vol.1421, pp.175-190 (1998)
[2] D. Brand: Proving theorems with the modification method.SIAM Journal of Computing, Vol.4, pp.412-

430 (1975)
[3] P. Baumgartner and C. Tinelli: The model evolution calculus with equality.Proc. CADE-20, LNAI.

Vol.3632, pp.392–408 (2005)
[4] K. Inoue: Linear resolution for consequence finding.Artificial IntelligenceVol.56 pp.301–353 (1992)
[5] K. Iwanuma, K. Inoue and K. Satoh: Completeness of pruning methods for consequence finding pro-

cedure SOL.Proc. Int. Workshop on First-order Theorem Proving (FTP2000), pp.89-100 (2000).
[6] R. Letz, C. Goller and K. Mayr: Controlled integration ofthe cut rule into connection tableau calculi.

J. Automated Reasoning, Vol.13, pp.297-338 (1994).
[7] W. McCune: Skolem functions and equality in automated deduction. Proc. AAAI-90, pp.246–251

(1990)
[8] H. Nabeshima, K. Iwanuma and K. Inoue: SOLAR: a consequence finding system for advanced rea-

soning.Proc. Tableaux’03. LNAIVol.2796, pp.257-263 (2003)
[9] A. Paskevich: Connection tableaux with lazy paramodulation. J. Automated Reasoning(2008).

[10] A. Riazanov: Implementing an efficient theorem prover.PhD thesis, University of Manchester, 2002.
[11] St. Schulz: System description E 0.81.Proc IJCAR-2004, LNAI, Vol.3097, pp.223-228 (2004)
[12] W. Snyder and C. Lynch: Goal directed strategies for paramodulation,Proc. RTA-91, LNCSVol.448,

pp.150–111 (1991).

33

