Towards Verification of
Security-Aware E-services

Silvio Ranise

Dipartimento di Informatica
Universita di Verona, Italy

Abstract. We study an extension of the relational transducers intro-
duced by Abiteboul, Vianu, Fordham, and Yesha, which are capable of
specifying transaction protocols and their interplay with security con-
straints. We investigate the decidability of relevant verification problems
such as goal reachability and log validation.

1 Introduction

Web-services providing e-commerce capabilities to support business transactions
between several parties over the Internet are more and more widespread. The
development of such services involves several issues involving security, authenti-
cation, and the design of business models to name a few.

Relational transducers have been proposed [17] to model the transaction be-
havior of e-services for e-commerce and to allow for the analysis of the underlying
transaction protocols. Roughly, a relational transducer is a machine capable of
translating an input sequence of relations into an output sequence of relations;
its state being a relational database. A particular class of relational transducers,
called semi-positive cumulative (spocus) transducers, has been identified and
studied because its specification is declarative and simple to understand, and
some interesting verification problems turn out to be decidable (see again [17]).
The input-output mapping in spocus transducers is implicitly defined by a set of
non-recursive (variant of) Datalog rules. This is based on the observation that
any set of Datalog rules defines a query which is a (partial) function from rela-
tional databases (the input relations of the transducers) to answer relations (the
output relations of the transducer), see, e.g., [16].

Although spocus transducers support declarative specifications and some in-
teresting verification problems are decidable, one of their major shortcomings is
the lack of support for the specification and verification of security requirements.
In particular, the class of security requirements pertaining to authorization play
a crucial role in several business transactions. For example, failure to meet au-
thorization constraints may cause economic losses and may even have legal im-
plications. In this paper, we propose an extension of the spocus transducers
that overcome this problem. In particular, following [12], we extend the rules for
input-output in spocus transducers with constraint Datalog rules to formalize
access policy statements. This allows us to develop our ideas in the framework of

first-order logic and to adapt and reuse specification techniques belonging to the
line of research which uses extensions of Datalog to express policy statements
(see, e.g., [7,2,11]). Technically, the situation is more complex than with spocus
transducers as certain patterns in authorization policies (typically, delegation)
require recursion (see, e.g., [3]). The (variant of) Datalog rules used in [17] for
spocus transducers were assumed to be non-recursive.

Plan of the paper. Section 2 introduces some background notions on first-order
logic, relational databases, and Datalog rules. Section 3 extends spocus transduc-
ers with (constraint) Datalog rules for access policy specifications and introduces
two verification problems. In Section 3.1, a simple (yet representative) business
process specified by means of a policy-aware transducer illustrates the need to
have recursive Datalog rules and a first-order theory to be able to correctly spec-
ify delegation and trust relationships, respectively, which are relevant to capture
important business rules. As the verification problems can be reduced to satisfi-
ability problems for a certain class of formulae, Section 4 defines such a class and
proves the decidability of the satisfiability problem under suitable assumptions
(for lack of space, proofs are in the extended version [13] of this paper) and Sec-
tion 5 shows how to reduce verification to satisfiability. In particular, Section 5.1
discusses the hypotheses under which the fix-point computation of the query
induced by a set of constraint Datalog rules terminates. Section 6 concludes.

2 Preliminaries

We assume familiarity with the basic syntactic and semantic notions of first-
order logic (see, e.g., [8]). We work in first-order logic with equality and consider
the equality symbol = as a logical constant. A constraint is a (finite) conjunction
of literals. An expression is a term, an atom, a literal, or a formula. A X(z)-
expression is an expression built out of the symbols in a signature X~ where
at most the variables in the sequence x may occur free, and we write E(z) to
emphasize that E is a X(z)-expression. (Below, by abuse of notation, we consider
sequences also as finite sets and use the standard set-theoretic operations to
combine them.)

Let X' be a signature. A Y-theory T is a set of Y-sentences. In this paper,
we assume that all theories are consistent (i.e. they admit at least one model).
A Y-formula ¢(x) is T-satisfiable iff there exists a model M of T' (i.e. M |=
T) such that M = Jz.p(x). The satisfiability modulo theory T (in symbols,
SMT(T)) problem consists of establishing the T-satisfiability of any quantifier-
free Y-formula. A formula ¢(z) is T-valid if for every model M of T', we have
M E Vz.o(x). Two formulae ¢ and ¢ are T-equivalent iff the formula ¢ <
is T-valid. A theory T admits quantifier elimination if for an arbitrary formula
() (possibly containing quantifiers), it is possible to compute a T-equivalent
quantifier-free formula ¢’ (x). A X-theory T is locally finite if X is finite and, for
every set of constants a, there are finitely many ground terms ti, ..., s, , called
representatives, such that for every ground (X U a)-term u, we have T = u = t;

106

for some i. If the representatives are effectively computable from a and t; is
computable from wu, then T is effectively locally finite. For simplicity, we will
often say “locally finite” to mean “effectively locally finite.”

We consider the Bernays-Schionfinkel-Ramsey (BSR) class, also called Ef-
fectively Propositional Logic, whose satisfiability problem is well-known to be
decidable. A formula of the BSR class is of the form 3z.Vy.p(z,y), where z,y
are (disjoint) tuples of variables and ¢ is a quantifier-free formula built out of a
signature containing only relation and constant symbols (i.e. no function symbol
oceurs in).

A finite instance of (a n-ary relation) r is a formula of the form

Va.r(z \7g=g

where = 21, ..., %, is a sequence of variables, ¢/ = c{, ...,c) is a sequence of
constants (for j = 1,...,m), and 2 = ¢/ abbreviates (z; = ¢, A--- Az, = cl).
Let R be a finite set of predicate symbols, a database over R is a conjunction of
finite instances of r € R; we sometimes call R a database schema.

A Datalog formula is a BSR formula of the form

Vz,y. /\ Ai(z,y) — Ao(z) also written as a rule Ag(z) /\ Ai(z,y),
=1

=1

where A; is an atom (for ¢ =0, 1,...,n) and z,y are disjoint tuples of variables.
Furthermore, Ay is said the head, \!_; A;(z, y7 the body of the rule, and when
n = 0, the Datalog rule is also called a fact. A set of Datalog rules is semi-positive
if whenever a negative literal appears in the body of a rule, then the relation
symbol of this literal is not the relation symbol of any literal which is the head
of a non-trivial rule in the set. Another generalization of Datalog rules is that of
constraint Datalog rule where, for some X-theory T', one quantifier-free X' (z, y)-
formula may appear in its body. A set of Datalog (semi-positive or constraint
Datalog) rules is recursive if some predicate symbol occur both in the heads and
the bodies of the rules; otherwise, we say it to be non-recursive.

3 Security-Aware Transducers

For the rest of the paper, we fix a X-theory T and a relational signature
In U Out U DB U Policy such that X NY =) and X N Y = (for X,
{In, Out, DB, Policy}.

R =
Y €

Definition 1. A (cumulative and policy-aware) transducer (over (X, R)) is a
tuple (past, T,w,) where
— past = past; ..., past; for In = {r;,,...,r;, } is a sequence of fresh predicate

symbols, i.e. past N (E UR) =0,

107

— given a finite database over the database schema I C In of the form

N\ (Vzri(@) = \/z=d]),

ri€l Jj=1

where cz are constant symbols, T(I) is a finite set of (cumulative) transitions
of the form

Va.past, (z) < \[z = dv past,. (z),

for each r; € I and
Vz.past, (z) < past, (z),

for each r; € In\I. Let T be the set of cumulative transitions for every finite
instance over every possible sub-set of In;

— w is a a finite set of semi-positive non-recursive rules of the form Ag «—
Ai1 Ai such that (i) Ao is an Out-atom, (i) A; is a (InU past U DB)-literal
(fori=1,...,n), and (iii) every variable appearing in a rule must occur in
at least one positive literal;

— 7 is a finite set of (possibly recursive) constraint Datalog rules of the form
Ag — Ny Ai N such that (i) Ao is a Policy-atom, (ii) A; is a (DB U
Policy U past)-atom, for i = 1,...,n, (iii) ¢ is a quantifier-free X-formula,
and (i) the set of variables occurring in Ao are a sub-set of the variables
occurring in N\i_; A;.

To understand why what we have just defined is a transducer, recall that (con-
straint) Datalog rules define queries on databases; which, in turn, can be seen as
mappings associating a so-called answer relation to each database (see, e.g., [6]
for details). In this perspective, we can consider the union of (non-recursive)
semi-positive rules in w with the constraint (Datalog) rules in 7 as defining a
mapping between databases over InU past U DB to databases over OutU past. By
taking Policy = () and T to be the empty theory, it is easy to see that our notion
of transducer reduces to that of relational Spocus transducer in [17]. Notice that
the set = may contain recursive (constraint) Datalog rules. Recursion is cru-
cial to express important mechanisms in policy management such as delegation.
So, although, recursion complicates the reduction of verification problems for
cumulative and policy-aware transducers to logical satisfiability problems (see
Section 5 below), it is of paramount importance for naturally expressing several
patterns of policy management.

Below, given a cumulative and policy-aware transducer (past,7,w,) over
(X, R) and a (¥ U R U past)-formula ¢, the formula obtained by replacing each
symbol s € In U Out U past occurring in ¢ with a fresh symbol s? and each
symbol p’ € past’ with fresh symbols p? ! will be denoted by ren(yp, 5) for j > 0.

108

Definition 2. Let (past,7,w,) be a cumulative and policy-aware transducer
over (X, R) and db be a finite instance over DB. The sequence Iy, O1;...; Iy, Opn
is a (finite) run (with length n) of (past, T,w,) iff the formula

db A /\PE;Dast Vz.pl(z) < false A
Nj=i ren(Z;,) A ren((Z;), 3) A ren(w,) A ren(m,) A ren(Oj, §)

(1)

is T-satisfiable, where 11, ...,I, is a finite sequence where each I; is an instance
over In, for j = 1,...,n, called the input sequence, and Oq,...,0, is a finite
sequence where each O; is an instance over Out, for j = 1,...,n, called the
output sequence.

Given a cumulative and policy-aware transducer (past,T,w,n) over (X, R) and
a (X U RU past)-formula ¢, Rq;...; R, be a run of the transducer, and Log C
(In U Out); then, prj(Log, Ri;...;Ry) is a finite sequence of formulae obtained
from Rq;...; R, by forgetting all those finite instances over (In U Out) \ Log. A

goal is a BSR formula of the form
3z. N\ Aj(x)

where A; is an Out-literal, for j =1, ..., n.

Definition 3. Let (past,T,w,) be a cumulative and policy-aware transducer
over (X, R) and Log C In U Out. We define the following two verification prob-
lems for (past,T,w,m):

Goal reachability: does a given goal v hold in the last output of some run of
(past, T,w,m)?

Log validity: given a finite sequence L1, ..., L, where each L; is a finite in-
stance over Log for j = 1,...,n, does there exist a finite run Si;...;S, of
(past, 7,w,) such that Ly, ..., L, = prj(Log,S1;...;Sn)?

Goal reachability consists of checking whether a set of goals can be reached
by some run of the transducer. This verification problem is a first sanity check
on the design of the business model underlying the transducer as the latter is
usually conceived to reach a certain goal, e.g., delivering a product provided that
certain conditions are met. Log validation consists of checking whether a given
log sequence can be generated by some input sequence. This problem arises, for
example, when the transducer of a supplier is allowed to run on a customer’s site
for efficiency or convenience. The trace provided by the log allows the supplier
to validate the transaction carried out by the customer.

3.1 Example

We consider a business model where a customer wants to buy a book, is billed
for it, pays, and then takes delivery and a discount voucher for his/her next

109

purchase if he/she is a preferred customer and is an employee of an accredited
company. One kind of preferred customers are those affiliated to a organization
EOrg, which issues credentials to certify that a person is one of its members.
The business process has a database for accredited companies which are trusted
by the business model to pass to other companies the fact of being accredited
as well as the possibility of declaring other companies being accredited. The
identification of an employee of a company is done by issuing a certificate signed
by the company. Companies are organized according to a certain hierarchy which,
for the purpose of this paper, can be assumed to be a partial order. The customer,
willing to get a discount voucher should provide suitable valid credentials that
he/she is a preferred customer (e.g., a member of EOrg) and an employee of an
accredited company.

We need the theory of partial orders T}, to specify the trust relationship
between companies. The signature X, of T}, consists of the binary relation
is_trusted_by (written infix) and its axioms are the following three sentences:

Va,y, z.(x is_trusted_by y A y is_trusted_by z — x is_trusted_by z),
Va.x is_trusted_by z,and Va,y.(z is_trusted_by y Ay is_trusted_by x — = = y).

Intuitively, « is_trusted_by y means that company y trusts company x with respect
to the fact of being accredited and the possibility of delegating this capability.

The business model can be formalized by a policy-aware transducer (whose
policies use the theory T,,) as follows. We fix the following relational signature
R := InU Out U DB U Policy, where In := {order, pay, eorg, emplcert}, Out :=
{sendbill, deliver, sendvoucher}, DB := {price, available, accredited}, Policy :=
{preferred, employee, employeeof }.

The business process has three databases price, available, and accredited
storing the prices of books, their availability, and the set of (root) accredited
companies, respectively. A customer interacts with the business system by in-
serting tuples in four input relations, order, pay, eorg, and emplcert. The system
responds by producing output relations sendbill, deliver, and sendvoucher and
it keeps track of the history of the business transaction using the state relations:
DSt o ders PASLyays PASLeyy g, and past .y, ..+ The state of the transducer cumu-
latively adds the tuples inserted into the input relations. The output rules w of
the transducer are the following:

sendbill(X,Y, Z) «— order(X, Z) A price(X,Y) A —past
deliver (X, Z) «— past o, qer (X, Z) A price(X,Y) A
pay(X,Y, Z) A —past (X, Y, Z)
sendvoucher(Z) «— past gopiver (X, Z) A preferred(Z) A employee(Z) .

XY, 7)

pay(

The first rule governs the sending of a bill whose amount is Y about a book X
to a customer Z when an order is placed on X by Z, the price of X is Y, and Z
has not already been paid for X. The second rule enables the delivery of a book
X to Z if X has been ordered by Z and it is being paid the correct price by Z.
Finally, the last rule is about sending the discount voucher to Z if a book has

110

order(Booki, Alice) | pay(Booki, 8, Alice)
order(Bookz, Bob) pay(Bookz, 15, Bob) eorg(Bob)
eorg(Alice) emplcert (Alice, Comps)
output || sendbill(Booki, 8, Alice) | deliver(Book;, Alice)
sequence || sendbill(Bookz, 15, Bob) | deliver(Book:, Bob)

Table 1. A run of a policy-aware transducer

input
sequence

sendvoucher (Alice)

been delivered to Z and this last is both a preferred customer and an employee
of an accredited company. Finally, the policy rules 7 of the transducer are the
following:
preferred(Z
employee(Z

— past Z)

eorg(

— past ey picert (2, U) A employeeof (Z,U)
— accredited (F)

— employeeof (Z, F) AU is_trusted_by F

employeeof (Z, F
employeeof (Z,U

~— ~— ~— ~—

The first rule simply establishes whether Z is a preferred customer by checking if
the credential saying that Z is an EOrg member has been presented. (There can
be other rules of this kind once the business model establishes that customers
having a certain affiliation become preferred customers.) The last three rules
check if Z has presented a certificate saying that he is an employee of a com-
pany which is in the suitable trust relationship with some accredited company.
Notice the use of recursion to express delegation of the capability of certifying
the fact of being an employee of an accredited company to some of its units.
Since employeeof is a recursive predicate, w U 7 is not a set of non-recursive
semi-positive rules and, hence, the associated transducer is not spocus; all the
techniques developed in [17] cannot be used to investigate verification problems
for this business process. Also the results in [14] cannot be used here as the
rules considered in that work (which allow for non-cumulative transducers) are
assumed to be non-recursive. An interesting line of future work is to allow for
non-cumulative rules also for the policy-aware transducers considered in this
paper (i.e. in presence of recursive rules for policy specification).

Table 1 shows an example of a run for the transducer specified above. We
have assumed that price(Booky, 8), price(Booka, 15), accredited(Comps), Comps
is_trusted_by Compy, and Comp, is_trusted_by Comp; . Now, if we take Log = Out,
then the instance of the log validity problem for the run in Figure 1 reduces to
the checking T),-satisfiability of the following formula (only an excerpt is shown
for the sake of conciseness):

Va,y.price(z,y) < ((x = Book; Ay =8) V (x = Booky Ay = 15)) A
Vx.accredited(x) < x = Compy AN A
(Comps is_trusted_by Compy) A (Compy is_trusted_by Compy)

<Vx,y.past8rder(:c,y) — false ANV, y, z.pastgay(:c,y, z) < false /\> A

Va.pastd,,,(x) < false NNV, y.past?, .o (T,y) < false

111

v, y.(order®(z,y) < (x = Booky Ay = Alice) V (z = Booka A y = Bob)) A
Va,y.(eorg®(z) < x = Alice A
Va,y, z.(order® (z, 2) A price® (z,y) A ﬁpastgay(x, Yy, z) — sendbill’ (z,y, 2)) A ...

From the piece formula above, it is not difficult to see that the output sequence
(at time instant 0) of the transducer is exactly the one depicted in the first
column, second line of Table 1.

4 An extension of the BSR class

Since the goal reachability and the log validity problems will be reduced to the
satisfiability of a certain class of first-order formulae (see Section 5), we define
such a class of formulae and study their decidability.

Let T be X-theory, we are interested in studying the T-satisfiability of for-
mulae of the form

Jz.Vy.o(z,y)

where ¢ is a quantifier-free X£ formula and X2 := X' U R such that Y U R = (.
Sentences of this form are called BSR(X%)-sentences. If T' is the empty theory,
then BSR(X%)-sentences are BSR formulae.

We show the decidability of BSR(X%)-sentences under suitable hypotheses
on the theory T in two steps. First, we eliminate universal quantifiers by identi-
fying finitely many instances which are sufficient for (un-)satisfiability checking
(under suitable hypotheses). Second, we show the decidability of the resulting
quantifier-free formulae.

Lemma 1 (Instantiation). Let T be a locally finite X'-theory and the class of
models of T be closed under sub-structures. Furthermore, let R be a finite set of
predicate symbols such that ¥ N R = (. The BSR(XE)-sentence

Jz.Vy.p(z,y)
1s satisfiable iff it is satisfiable in a finite model iff the quantifier-free formula

3z. \ ez, yo)

is satisfiable, where o ranges over the substitutions mapping the variables y into
the set of representative X (x)-terms and yo denotes the simultaneous application
of o to the variables of the tuple y.

We are left with the problem of showing the decidability of the satisfiability of
quantifier-free formulae over TE.

Theorem 1 (Decidability). Let T' be a locally finite X'-theory whose class of
models is closed under sub-structures and the SMT(T) problem be decidable; R
be a finite set of predicate symbols such that X N R = (). Then, the satisfiability
of BSR(XE)-sentences is decidable.

112

The assumption of the background theory 7" to be locally finite, at first, seems to
be quite restrictive. However, the constraint domains considered as relevant for
trust management in [12] have quite simple algebraic structures so as to allow
for efficient algorithm to answer policy access queries. We believe that locally
finite theories can be put to productive use for the verification of policy-aware
transducers as suitable abstractions of this class of constraint domains.

5 Decidability of goal reachability and log validity

Before describing the reduction of the goal reachability and the log validity
problems to the satisfiability of the extension of the BSR class considered in
the previous section, we re-consider how semi-positive (non-recursive) rules and
(constraint) Datalog rules define queries on databases, or, equivalently, mapping
of databases to answer relations. As already observed in Section 3, this is crucial
to characterize the input-output behavior of the class of relational transducers
considered in this paper.

5.1 Constraint Datalog queries

A database query is a mapping associating to each database an (answer) relation.
A set of (constraint) Datalog rules can be seen as a way to implicitly define
queries as follows. Let T be a X-theory admitting quantifier-elimination and R
be a database schema such that Y N R = @. Let Il = w U 7 be a finite set
of rules such that R = B U E for some cumulative and policy-aware transducer
(past, T,w,), where B is the set of predicate symbols occurring only in the body
of the rules in I7 and not in their heads, and E is the set of predicate symbols
occurring both in the body and head of the rules in II. Consider a rule p € IT of
the form e(z) — A7, bi(z,y) A (z,y) where e € E, the predicate symbol of b;
isin R (for i = 1,...,n), and v is a quantifier-free X'(z, y)-formula, the constraint
query associated to p is the formula -

Jy. N\ bi(z,y) A, y).

i=1

If b; contains only symbols in B (as it is the case of the semi-positive non-
recursive rules in w), then it is possible to replace each occurrence of such sym-
bols with disjunctions of conjunctions of equalities (recall the definition of finite
instance in Section 2). In this way, the resulting (existentially quantified) for-
mula turns out to be a X(z,y)-formula and the decidability result above (i.e.
Theorem 1) can be used. This is the key insight used in reducing both log va-
lidity and goal reachability to the satisfiability of BSR formulae in [17] which in
our framework corresponds to the case there m = (). However, this is not enough
for the class of transducers considered in this paper because of the presence of
the constraint Datalog rules in IT which may be recursive (we have already ar-
gued that this complication is necessary to be able to express certain patterns

113

function constraintFixPoint(F : constraint facts, R : constraint Datalog rules)
1 results «— F'; Changed «— true;
2 while Changed do
3 Changed < false
4 foreach rule € R do
5 foreach tuple of constraint facts constructed from results do
6 newres «<— constraint facts obtained by
constraint rule application between rule and tuple

7 foreach fact € newres do

8 if (results £ fact) then results «—— results U {fact};
9 Changed <« true;

10 end

11 end

12 end

13 end

14 return results

Fig. 1. Least fix-point computation of constraint Datalog rules

of policy management such as delegation). As a consequence, we need a fix-
point characterization for the queries associated to a set IT of possible recursive
rules. To this end, we proceed as follows. First, we regard each finite instance of
r € InU Out U DB as a constraint fact, i.e. Vr(z) « \/;":1 z = ¢/ is transformed
into the Datalog rule r(z) «— \/;n:1 x = ¢/, where z is a tuple of variables and
¢/ is a tuple of constants, for j = 1,...,m. Let ro(z) < A, ri(z) A ¢o(z) be a
constraint Datalog rule in II for r; € R and i = 0,1,...,n and r;(zy,) < ¥i(zy,)
be a constraint fact for ¢; be a X(z;)-quantifier-free formula, k; the arity of
ri, and i = 1,...,n. A constraint rule application produces m > 0 facts of the
form ro(z) < 9 (x) where ¢ is a quantifier-free X(z)-formula for j = 1,...,m
(m > 0) and \/7_, 9} is equivalent (by the elimination of quantifiers in T') to the
formula

n

Fy-(\ ¢ila,) A o)),

=1

where y is the tuple of variables occurring in the body of the rule but not in the
head. The least fix-point of a set of constraint Datalog rules can be computed
by the algorithm in Figure 1. The function constraintFixPoint terminates when
all derivable new facts are implied by previously derived facts.! The requirement

! The test at line 8 can be reduced (by eliminating quantifiers) to a T-satisfiability test
on a conjunction of two quantifier-free Y'-formulae. To understand how, consider two
facts r1(x) «— ¥1(x) and ra2(y) < ¥2(y). To check that latter is a logical consequence
of the former (modulo T), it is sufficient to check the T-validity of V.t (z) —
Vy.12(y). This, reasoning by refutation, is equivalent to check the T-unsatisfiability
of the negation of the previous formula, which, by eliminating quantifiers can be
reduced to a quantifier-free formula.

114

that T" admits elimination of quantifiers is not sufficient to guarantee termination
of the algorithm in Figure 1. We need the following notion which is adapted
from [16].

Definition 4. Let T be a X-theory and x be a finite set of variables. If for
every (possibly infinite) T-satisfiable set S of X(z)-constraint, there exists a
finite subset Sfin, C S such that for every ¢ in S, there exists a ¢’ in Sy for
which VYz.ap(z) — '(z) is T-valid, then T is said to be constraint compact. If
Stin is effectively computable from S, then T is said to be effectively constraint
compact (in the following, when we say ‘constraint compact’, we in fact always
mean ‘effectively constraint compact’).

Constraint compactness is a sufficient condition for the termination of the algo-
rithm in Figure 1.

Theorem 2 ([16]). Let T be a constraint compact theory. Then, the algorithm
in Figure 1 terminates for every query.

The sketch of the proof is as follows. By contradiction, assume that the algorithm
does not terminate. Thus, every iteration of the loop produces at least one fact
which is not a consequence of those which were already derived. Since there
are only finitely many different predicate symbols, there must be at least one
such symbol for which the algorithm derives an infinite set S of facts. But,
T is assumed to be constraint compact and so we can replace S with a finite
subset Spy, such that the facts in S\ Spg, are consequence of those in Sg,. As
the algorithm checks for the logical consequence of newly derived facts before
adding it to the resulting set of derived facts, all the facts in S'\ S, should not
be considered: a contradiction.
Interestingly, locally finite theories are also constraint compact.

Proposition 1. If T is an (effectively) locally finite theory, then it is also (ef-
fectively) constraint compact.

Proof. Let S be a set of constraints over a finite set x of variables. Then, since
the theory T is locally finite, there exists a finite set RTerms of X(z)-terms
such that for every term w in S, there exists t € RTerms, T |= u = t. By using
the terms in RTerms and the finite signature X, it is possible to build only
finitely many distinct X(z)-atoms 1 (z), ..., ¥n(2) (also called representative
atoms) such that for any further X'(z)-atom (z), there exists i € {1,...,n},
T E Vz.a(z) < ¥(z). If we consider a X'(x)-constraint ¢(z), it is possible
to collect all the atoms occurring in it, say {a1,...,am }; for each a; (for j =
1,...,m), find the equivalent representative atom 1y, and then substitute each
a; with the corresponding 9, in ¢ and then eliminating duplicates. The result
will be a constraint taken from the finitely many distinct conjunctions of literals
built out of the finitely many representative atoms ¢ (), ..., ¥, (z). This can be
generalized to sets of constraints in the obvious way. Clearly, this implies the
constraint compactness of 7. O

As an immediate consequence of the last two facts we obtain the following result.

115

Corollary 1. Let T be an (effectively) locally finite theory. Then, the algorithm
in Figure 1 terminates for every query.

This will be a crucial ingredient in the reduction of goal reachability and log
validity to the satisfiability of the BSR(Z£) class.

5.2 Reduction to satisfiability

We first consider the log validity problem as goal reachability can be reduced to
this problem.

Lemma 2. Let T be a locally finite X'-theory admitting elimination of quanti-
fiers. Furthermore, let (past, T,w,) be a cumulative and policy-aware transducer
over (X, R), db be a database over DB, and Log C In U Out. The log validity
problem for (past,T,w,) reduces to the T-satisfiability problem of an effectively

computable BSR(X2)-formula.

Proof. The proof is along the lines of Theorem 3.1 in [17] for Spocus transducers.
A log Ly, ..., L, is valid if there exists an input sequence Iy, ..., I,, generating it.
We view I, ..., I, as database over the set of predicate symbols obtained by
making n copies of each relation r € In yielding rq,...,7,. To state that the
input sequence I, ..., I, yields the log L, ..., L,,, we require that the relations in
I, ..., I, recorded by the log have the values specified by L1, ..., L, together with
the relations in Out determined by I, ..., I,. For input relations, the situation is
easy (we analyze concrete cases as the generalization are straightforward). For
example, suppose that L; requires that a tuple ¢ belongs to the relation r; in
the input sequence; this can be stated by the following BSR(R) formula:

Jz.(rj(z) Nz = ¢). (2)

For example, if the log specifies that r; contains the tuples c and d, the inclusion
of r; in the log is state by the following BSR(R) formula:

Vz.(rj(z) — (x =cVaz =d)). (3)

For relation in the output sequence, we need to resort to Corollary 1 above:
the fix-point algorithm in Figure 1 terminates on all queries and generates a
(finite) set of constraint facts. Then, for each fact of the form 7;(z) — ¢%(z) in
the output set, we take the disjunction of each 1/1§ for ¢ > 0. Let ¢;(z) be the
resulting quantifier-free X (z)-formula. The remainder is similar to the case of
input relations. Requiring that a tuple belongs to the relation r; in the output
sequence can be expressed by a formula similar to (2) except that r; is replaced
by ¢; obtained by the fix-point computation. Similarly, if the log specifies that
r; contains the two tuples ¢ and d, the inclusion of 7; in the log is stated by a
formula which is similar to (3) except that r; is replaced by ¢; obtained by the
fix-point computation. It is easy to see that the resulting formula is a BSR(R)
formula and its satisfiability is equivalent to the existence of an input sequence
yielding the desired log. ad

116

Before stating our main decidability results for log validity and goal reachability
of cumulative and policy-aware transducers, we observe the following. An imme-
diate consequence of Lemma 2 and Theorem 1 is the decidability of both verifi-
cation problems for cumulative and policy-aware transducers whose X-theory is
locally finite and admits elimination of quantifiers. Unfortunately, local finiteness
and elimination of quantifiers are difficult to reconcile as the former is obtained
for theories with simple “algebraic structure” while the latter is satisfied for
those with rich “algebraic structure”. To illustrate, we consider three theories.
The theory whose signature contains only constants cq, ..., ¢, and axiomatized
by the following sentences:

ciFcjfori,j=1,...,nandi#j

Ve.x =c1 V- - = cp,

is both locally finite and admits elimination of quantifier. The theory T}, of linear
orders whose signature contains the binary relation = and axiomatized by the
following sentences:

Ve,y,z. (e R yAyz—x=<2) Vey(zlyAy=sz—ax=y)
Ve <x Ve,y(r3yVy=<zx)

is locally finite, the SMT(7},) problem is decidable, but it does not admit elim-
ination of quantifiers. The theory Ty, of dense linear orders is the theory over
the same signature of T}, and obtained by adding the following two sentences to
the set of axioms of T},:

Ve,y(r <y — 3z (r <2Az=y)) and dz,y.x #£y,

where t; < to abbreviates t1 < to Aty # to for t1,ts variables. The SMT(Ty,)
problem is decidable, Ty, admits elimination of quantifiers, but it is not locally
finite.

Fortunately, it is sometimes possible to reconcile local finiteness and quan-
tifier elimination. For the theories T}, and Ty, it is possible to show that a
quantifier-free formula is Tj,-satisfiable iff it is Ty;,-satisfiable. So, to check the
T)o-satisfiability of BSR(XE) sentences, we can use its being locally finite to ap-
ply the instantiation procedure underlying the proof of Lemma 2 while we can
use the fact that Ty, admits elimination of quantifiers to obtain the termination
of the fix-point algorithm in Figure 1 (as we know that the Tj,-satisfiability of
quantifier-free formulae is preserved). This phenomenon is not an accident but
an application of the notion of model completeness of a theory.

A X-theory T is model complete iff, for all models M, N of T, if M is a
sub-structure of A/, then M is also an elementary sub-structure of N, i.e. for
every Y-formula ¢(z) and all elements a, we have that M = p(a) iff N = p(a).
Intuitively, the elementary sub-model M of a model A/ preserves the set of satis-
fiable first-order formulae (and hence of quantifier-free formulae in particular). It
is possible to show that Ty, is model complete (see, e.g., [4]). The key property

117

(see Remark 3.5.6 in [4]) is that M is a sub-model of the set of universal sen-
tences which are logical consequences of Ty, (if T is a theory, the set of universal
sentences which are T-valid is denoted with TV) iff M is a sub-model of some
model of Tdvlo. (The validity of universal sentences is the dual of the satisfiability
of quantifier-free formulae.) Now, since T, = T)% (see [10]), we have formally
justified the use of T}, in Lemma 2 and that of Ty, to eliminate quantifiers in
the algorithm of Figure 1. Notice that the class of models of Tj, is closed under
sub-structures since its axioms are universal sentences (see, e.g., [4]). Further-
more, these observations constitute the sketch of the proof of our first (main)
decidability result about the verification of cumulative and policy-aware trans-
ducers.

Theorem 3. Let (past,T,w,) be a cumulative and policy-aware transducer over
(X, R), db be a database over DB, and Log C InU Out. If (a) T is a locally fi-
nite theory such that the SMT(T) problem is decidable and its class of models
is closed under sub-structures, (b) Tx 2 T is a model complete theory admitting
elimination of quantifiers, and (c) TV = T, then the log validity problem for
(past, T,w,) is decidable.

We are now ready to state and prove our second (main) decidability result.

Theorem 4. Let (past,T,w,) be a cumulative and policy-aware transducer over
(X, R), db be a database over DB, and Log C InU Out. If (a) T is a locally fi-
nite theory such that the SMT(T) problem is decidable and its class of models
is closed under sub-structures, (b) Tx 2 T is a model complete theory admitting
elimination of quantifiers, and (c) TV = TY, then the goal reachability problem
for (past, 7,w,) is decidable.

Proof. Again the proof is along the lines of Theorem 3.2 in [17] for Spocus trans-
ducers. First of all, observe that only runs of length two should be considered.
To understand why this is so, consider an input sequence I, ..., I,, with n > 2.
Since outputs depend only on the current input, the database, and the state
relations (storing the union of all previous inputs), the last output in the run
of the transducer on Iy, ..., I,, is the same as the last output on the run of the
same transducer on the following input sequence of length 2: (I; U ---I,,_1), I,,.
At this point, the problem is reduced to that of the satisfiability of a BSR(R)
with the same technique described in the proof of Lemma 2. a

6 Conclusion

We have introduced a class of policy-aware relational transducers. We have stud-
ied the hypotheses under which log validity and goal reachability are decidable
for this class of transducers by a reduction to the satisfiability problem of an
extension of the BSR class of formulae.

There are two main lines of future work. First, we intend to study the de-
cidability of those verification problems involving two or more transducers such
as containment and equivalence [17]. Second, it would be interesting to see how

118

to implement the algorithm for checking the satisfiability of the extension of the
BSR class on top of state-of-the-art theorem provers or Satisfiability Modulo
Theories solvers. The latter, in particular, with the recent interest in developing
decision procedures for the BSR class (see, e.g., [5]) and techniques for quantifier
instantiation (see, e.g., [9]) seem to be ideal candidates.

Acknowledgments. The work presented in this paper was partially supported by the
FP7-ICT-2007-1 Project no. 216471, “AVANTSSAR: Automated Validation of Trust
and Security of Service-oriented Architectures.” We thank Silvio Ghilardi and the mem-

bers of the AVANTSSAR project for many stimulating discussions.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

Franz Baader and Silvio Ghilardi. Connecting many-sorted theories. Journal of
Symbolic Logic, 72:535-583, 2007.

M. Y. Becker, C. Fournet, and A. D. Gordon. Security Policy Assertion Language
(SecPAL). http://research.microsoft.com/en-us/projects/SecPAL/.

M. Y. Becker and S. Nanz. The Role of Abduction in Declarative Authorization
Policies. In 10th International Symposium on Practical Aspects of Declarative
Languages (PADL), 2008.

C.-C. Chang and J. H. Keisler. Model Theory. North-Holland, Amsterdam-London,
third edition, 1990.

L. de Moura and N. Bjgrner. Deciding effectively propositional logic using dpll
and substitution set. In Int. Joint Conference on Automated Reasoning, 2008.

. J. Van den Bussche. Constraint Databases, chapter Constraint databases, queries,

and query languages. Springer, 2000.

J. DeTreville. Binder, a logic-based security language. In IEEE Symposium on
Security and Privacy, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New
York-London, 1972.

Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using
satisfiability modulo theories. Annals of Mathematics and Artificial Intelligence,
2009. To appear.

S. Ghilardi. Model theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning, 33(3-4), 2004.

Y. Gurevich and I. Neeman. DKAL: Distributed-knowledge authorization lan-
guage. In Proceedings of CSF 2008, pages 149-162. IEEE Computer Society, 2008.
N. Li and J. C. Mitchell. Datalog with constraints: a foundation for trust manage-
ment langauges. In PADL’03, pages 58-73, 2003.

S. Ranise. Towards Verification of Security-Aware E-Services. Extended version
of the paper with the same title in FTP’09.

M. Spielmann. Verification of relational transducers for electronic commerce. In
19th ACM Symp. on Princ. of DB Systems (PODS). ACM Press, 2000.

C. Tinelli and C. G. Zarba. Combining non-stably infinite theories. Journal of
Automated Reasoning, 34(3), 2005.

D. Toman. Computing the well-founded semantics for constraint extensions of
datalog. In 2nd Int. WS on Constraint Database Systems, volume 1191 of LNCS,
pages 64-79, 1997.

S. Abitebouland V. Vianu, B. Fordham, and Y. Yesha. Relational Transducers for
Electronic Commerce. J. of Comp. and Sys. Sciences, 61:236—269, 2000.

119

