
How to Configure a Configuration Management
System – An Approach Based on Feature Modeling

Sebastian Wenzel
IBM Business Services GmbH

Wilhelm-Fay-Str. 30-34
Frankfurt, Germany

wenzel.sebastian@de.ibm.com

Thorsten Berger
University of Waterloo

200 University Ave West
Waterloo, ON, Canada

tberger@swen.uwaterloo.ca

Thomas Riechert
University of Leipzig

Johannisgasse 26
Leipzig, Germany,

riechert@informatik.uni-leipzig.de

Abstract—The accomplishment of an efficient IT service
management is considered a significant success factor in large
businesses. Configuration Management (CM) constitutes one of
its core disciplines. Off-the-shelf CM systems support the
maintenance of the IT by handling the lifecycle of so-called
Configuration Items (CIs) and by establishing Change,
Configuration and Release Management processes. However, due
to the complexity of today’s IT infrastructure in large companies,
the tailoring of these systems based on concrete stakeholder
requirements can become a laborious and error-prone task.

We present an approach that enables the configuration of a CM
system by leveraging variability management techniques
stemming from product line engineering. The synthesis and
configuration of a feature model is driven by the Common Data
Model, a large domain-specific model that describes CIs and
their relationships. We show how our feature-based approach
can improve the tailoring of CM systems. Furthermore, we
expand on its prototypical realization, elaborate on the
integration into the requirements engineering process and
discuss its applicability based on experiences obtained from a
first evaluation.

IT service management; configuration management; feature
modeling; requirements engineering

I. INTRODUCTION

During the past decades, the technological innovation of
information technology has been the main driving force to
achieve a higher level of efficiency and effectiveness within
businesses [1]. However, the growing complexity of
companies’ IT environments has indicated a need for more
comprehensive IT management support. One solution of
tackling the growing complexity is the introduction of IT
service management (ITSM) techniques. ITSM provides a
process-centered view on the management of IT infrastructures
and aims at assuring the quality of IT services.

One of the most important disciplines that ITSM comprises
is Configuration Management (CM) which is responsible for
keeping information about the managed IT infrastructure to be
managed both up-to-date and accurate. According to
Klosterboer [2], the implementation of CM is very difficult to
accomplish. Many companies have problems with the
realization of CM practices. Especially the tailoring and
installation of the CM database and the establishment of
change processes present some of the most complicated tasks.
It is critical to design a concrete and accurate specification for
the CM database that reflects all the data required for ITSM
processes.

We were faced with the problem of configuring a CM
database as part of an outsourcing project for a company that
has to manage a large IT infrastructure with more than 2000
servers. The tailoring of the database, i.e. the creation of its
concrete data model, was driven by requirements that had to be
elicited from stakeholders. Additionally, the data model of the
database had to conform to the Common Data Model (CDM), a
domain-specific model from IBM Tivoli that defines types of
Configuration Items (CIs) and their relationships.

The manual and indirect tailoring of the database turned out
to be very laborious and error-prone: First, the configuration
knowledge is elicited indirectly via textual requirements from
the customer. Second, the actual configuration has to be
carried out by experts with significant knowledge about the
database specification, the CDM elements and a considerable
number of constraints.

In this context, we present a model-driven approach to
creating a CM database specification that leverages Feature
Modeling [3] techniques. It dynamically synthesizes a feature
model that provides different levels of abstraction over the
database specification, incorporates CI dependencies as
constraints and supports a staged configuration process. In
summary, it exposes the structure and configuration options of
the database specification more explicitly and provides a more
abstract view of it.

The remainder of the paper is structured as follows: In
section 2, we give an introduction to Configuration
Management for IT services, describe the Common Data Model
and portray our concrete problem context. Section 3 presents
our approach that traces CM database tailoring back to a
feature configuration problem. Section 4 expands on the
prototypical realization of a tool relevant for our method and
section 5 reports on the evaluation experiences gained. Finally,
we discuss relevant conclusions and outline future
work in section 6.

II. CONFIGURATION MANAGEMENT

CM basically denotes “the process responsible for
maintaining information about Configuration Items required to
deliver an IT Service, including their relationships. This
information is managed throughout the lifecycle of the CI.” [4].
For a more comprehensive introduction to CM, including a
definition of Configuration Items, we refer to Alison et al. [5]
and Lacy et al. [6].

A. System Architecture

Fig. 1 provides a high-level view on the realization of the
CM system in our project context as well as the connection to
the various service management processes. The system consists
of two main parts: ITADDM 1 and CCMDB 2 [7]. ITADDM
denotes the Discovery System responsible for discovering,
collecting and storing information about the IT infrastructure.

1 IBM Tivoli Application Dependency Discovery Manager:

http://www-01.ibm.com/software/tivoli/products/taddm/
2 IBM Tivoli Change and Configuration Management Database:

http://www-01.ibm.com/software/tivoli/products/ ccmdb/

This information comprises CIs and their relationships and is
saved in a database called Discovered CI Store.

However, not all the data that has been discovered by
ITADDM is relevant for IT service management processes.
Thus, the information is filtered and transferred into the
CCMDB. The CCMDB, in turn, consists of two logical
databases realized in one physical database. These logical
databases are named Actual CI Store and Authorized CI Store.
The former one just keeps a subset of the discovered data, but
still contains sufficient information that is necessary for the
CM system to operate correctly. This information is stored with
a high level of detail and is necessary for root cause analysis,
but not for the IT management itself. In contrast, the
Authorized CI Store only keeps CIs and relationships that are
subject to change and configuration management processes.
This information is essential for a failure-free operation of
the IT infrastructure.

Fig. 2 shows an example of how part of the data discovered
by ITADDM is filtered for its usage in conjunction with IT
service management processes. More precisely, the diagram
shows parts of the CI Stores’ specifications, which are sets of
CI Types and their relationships. The CI Types themselves,
their attributes and relationships are defined in IBM Tivoli’s
Common Data Model.

B. Common Data Model

The Common Data Model3 is a domain-specific model that
describes concepts in the CM domain. According to Tai et
al. [8], CDM “provides consistent definitions for managed
resources, business systems and processes, and other data, and

3 http://www.redbooks.ibm.com/redpapers/pdfs/redp4389.pdf

Figure 1. CM system and processes overview

the relationships between those elements”. Thus, it can be seen
as a domain-specific language rather than just as a data model
for the CI Stores. In fact, many CM tools from the IBM Tivoli
family are built upon concepts as defined in the CDM.

Technically, it is modeled in UML2 and contains about 750
classes with attributes as well as 82 named association types
(e.g. contains, installedOn, virtualizes). Three UML2
Profiles define stereotypes in order to specify technical tool and
data mappings. CDM further introduces the notion of Sections,
which categorize related classes. They are organized
hierarchically and each of the 36 Sections corresponds to a
concrete class diagram.

Classes that represent real-world CIs realize the interface
ConfigurationItem and are subject to IT service
management processes. Thus, they embody the main entities
that are to be saved in the CI Stores. However, since
administrative and meta-information also has to be stored in the
CI Stores, all classes derived from ModelObject can be
persisted in the databases. Furthermore, concrete relationships
between classes are defined and named according to their
corresponding association type. Altogether, almost 1600
unique relationships – defined as associations – exist in CDM.

C. CI Store Specification

In order to support the IT service management processes, the
stores have to be tailored towards the stakeholders’
requirements. Basically, this tailoring comprises the creation of
a specification for the CM databases, i.e. for the Actual and the
Authorized CI Store. A specification contains (1) a set of CI
Types including meta/administrative information and (2) a set
of relationships as defined by the CDM. Furthermore, a
logical hierarchy is introduced, which is based on a specific

relation between classes in CDM. This hierarchy is defined
using a Parent attribute in classes, but each parent-child
relation is further detailed by a corresponding association.
Fig. 3 illustrates the mapping between a store specification
and the CDM.

In this paper we focus, however, on the specification of the
Authorized CI Store. Setting up the Actual CI Store is not
addressed here since it is rather driven by technical aspects than
by customer requirements. The mapping and transfer between
Discovered and Actual CI Store is realized by predefined
adaptors with the option to define the hierarchy depth.

D. Authorized CI Store

The current process of creating a specification for the
Authorized CI Store can be characterized as follows:

Elicitation of requirements from the customer: Based on
the current specification of the Actual CI Store, requirements
reflecting the necessary CI Types and relations have to be
elicited from the stakeholder. Our project, for example,
comprised more than 700 requirements [9].

Analysis of requirements: CIs, meta/administrative
information and relationships that are to be transferred from the
Actual to the Authorized CI Store have to be identified on the
basis of the elicited requirements and the CDM. In practice,
requirements are currently mapped to CDM elements in
Microsoft Excel spreadsheets.

Discovered CI Store

ComputerSystem

OperatingSystem

CPUMemory

ComputerSystemCluster

federates runsOn installedOn

containscontains

MediaAccessDevice

contains

Actual CI Store

ComputerSystem

OperatingSystem

CPUMemory

ComputerSystemCluster

federates installedOn

containscontains

Authorized CI Store

ComputerSystem

OperatingSystem

CPUMemory

installedOn

containscontains

virtualizes

Figure 2. Filtering of CIs among the CI Stores

CI Store

Common Data Model

sys.computersystem

sys.operatingsystem sys.cpu

sys.momory

installedOn

contains

contains

Figure 3. Mapping between CDM and CI Store specifications

Applying the specification: Finally, the specification has
to be applied to the Authorized CI Store by entering all
elements into a web configuration interface. Furthermore,
the former hierarchy of the Actual CI Store has to be
retained or recreated.

In its current form, the process turns out to be quite
ineffective for the following reasons: First, profound
knowledge about possible CI Types and relationships is
expected from the stakeholders. Second, available elements are
limited by the current specification of the Actual CI Store.
Third, consistency between CI Types and relationships is
difficult to maintain. Furthermore, terminology and translation
issues concerning the textual requirements occur.

III. FEATURE MODEL SYNTHESIS AND CONFIGURATION

In order to bridge the gap between the (1) Actual CI Store
specification, the definitions in the (2) CDM and the implicit
(3) configuration knowledge of the stakeholders, we introduce
an approach based on Feature Modeling and Feature Model
Configuration [10,11] techniques as known from Software
Product Line Engineering [12,13].

We try to reduce the disadvantage of the current method by
providing a simplified and more coherent view on the Actual
CI Store specification in form of a feature model. This model
provides a higher level of abstraction for the selection of
relevant CI Types and relations that are essential for the
stakeholders. The goal is to obtain a specification for the
Authorized CI Store.

Our approach (cf. Fig. 4) consists of three main steps:

• Feature Model Synthesis

• Feature Model Configuration

• Authorized CI Store Creation

The approach facilitates the configuration of the feature
model on different levels of abstraction. On the highest level,
the presented view is intended to be simpler and easier to
understand for stakeholders without specific knowledge about
the underlying CDM.

A. Feature Model Synthesis

The first step of our approach deals with the dynamic
creation of a feature model. The model is based on the current
specification of the Actual CI Store and allows an adjustable
representation of the prospective Authorized CI Store. We
introduce four types of features:

 Diagram Concept features: root feature describing the
underlying logical data model (i.e. the scope of the
feature model).

 CDM Section features: describing the highest
abstraction level of the CDM - Sections.

 CI Type features: representing CI Types contained in
the logical data model.

 CI Relation features: representing relations between
CI Types.

The feature model is built in three stages. In each stage
features of different types are added to the model. All of them
are optional, we didn’t need to introduce mandatory features or
mutual exclusions. An example of the feature model levels,
created by the described procedure, is presented in Fig. 5. The
synthesis stages are as follows:

The first stage consists of two steps: the creation of the
Diagram Concept feature (e.g. Actual CI Store) and the
creation of CDM Section features (e.g. Administration
Section or ComputerSystem Section). These features are
either child features of the Diagram Concept feature or of other
CDM Section features. This stage of feature model synthesis is
initially executed once for all projects.

The second stage of the synthesis comprises the creation of
CI Type features corresponding to CDM Sections. The parent
feature of these features is a CDM Section feature. This stage is
automatically executed on the basis of the CDM Section – CI
Type mapping and the Actual CI Store structure. For instance,
the CI Types CPU and ComputerSystem belong to the CDM
Section ComputerSystem Section and are part of the Actual

Figure 4. Feature model synthesis and configuration steps

Diagram Concept

CDM Sections

CI Types

CI Relations

Actual CI Store

Administration Section ComputerSystem Section

AdminInfo ComputerSystem

administers_ComputerSystem contains_CPU

CPU

Figure 5. Levels of the feature model

CI Store; thus, they are added to the feature model as children
of the ComputerSystem Section feature. If the added feature
represents a CI Type which is not labeled in the Actual CI Store
as top-level, a constraint pointing to the feature of its parent CI
Type in the logical Actual CI Store hierarchy is added to the
feature model.

The third stage of the synthesis creates CI Relation
features. This stage is automatically executed on the basis of
the Actual CI Store structure. Those CI relations are added to
the feature model, for which the source CI Type and the target
CI Type exist in the feature model. They are added to the model
as children of the source CI Type feature. Furthermore, for each
CI Relation feature, a constraint pointing to the target CI Type
feature is added to the feature model.

B. Feature Model Configuration

The second step of the feature-based approach comprises a
kind of staged configuration of the synthesized feature model.
This configuration is performed by the stakeholders in order to
select features directly and, thus, to omit or at least reduce the
error-prone elicitation of requirements. We also leverage the
choice propagation functionality in feature model tools for the
purpose of assuring relationships, which have been added as
extra constraints to the feature tree.

In summary, this step extends the current requirements
engineering that is carried out for gaining configuration
knowledge from stakeholders (cf. Fig. 1 and Fig. 4).

The configuration of the feature model is executed in three
stages. The initial feature model is created in the first Feature
Model Synthesis stage. In the first configuration stage the
CDM Sections relevant for the stakeholder are selected. After
that, the second feature synthesis stage is performed and the CI
Type features corresponding to the selected CDM Sections are
loaded. This allows the execution of the second configuration
stage in which the stakeholders select the required CI Types.
Based on the selected CI Types, the third feature model
synthesis stage is executed and CI Relation features are added
to the feature model. The third configuration stage is
performed on the basis of the CI relations added in the third
synthesis stage. The CI relations necessary for the
stakeholder’s IT infrastructure are selected, resulting in the
final configuration of the feature model. This configuration is
the basis for the specification of the Authorized CI Store.

C. Authorized CI Store Creation

The last step of our feature-based approach constitutes the
creation of the Authorized CI Store specification. This
specification is generated on the basis of the final configuration
of the feature model (see Fig. 6). The Authorized CI Store
specification is subdivided into two parts: a list of CI Types
selected by the stakeholders and a list of selected CI relations
between those selected CI Types. These specification lists are
saved in database-specific XML format. Based on these XML
files, the Authorized CI Store logical hierarchy is created in the
CM system.

IV. PROTOTYPICAL REALIZATION

We have realized our approach as an Eclipse plug-in, since
we wanted to be able to embed it with other tools from IBM
Tivoli and since we chose to integrate with FMP4 [14] as a
Feature Modeling tool. FMP turned out to be the most
appropriate one for our purpose. It is available as Open Source
software, supports basic Feature Modeling with extra
constraints, staged configuration and choice propagation.
Cardinalities are also supported in FMP, but were not necessary
for our approach.

In summary, our plug-in extends FMP, realizes the feature
model synthesis and staged configuration as well as it provides
adapters for the Actual CI Store in order to obtain the current
specification.

As described in section 3, the synthesis procedure creates a
feature model in FMP by leveraging the structure of CDM
Sections and loading the current Actual CI Store specification.
We load subsections just on demand since we faced
performance issues5 when creating the whole feature model
from a large Actual CI Store in one step. Our plug-in adds
relationships as subfeatures and adds binary constraints in FMP
in order to support choice propagation. Since there exists
another logical hierarchy between CIs (cf. section 2.3),
additional constraints representing it are introduced into the
feature model. For further implementation details such as
naming rules, feature ID definition for traceability reasons, or
constraint realization, we refer to [15].

Fig. 7 illustrates the feature model view, especially with the
ComputerSystem and OperatingSystem sections. Fig. 8
shows a list of constraints of the feature model presented on
Fig. 7. For instance, constraints between the features
SYS.COMPUTERSYSTEM and SYS.OPERATINGSYSTEM and
between relations and whose target CI Types.

4 Feature Modeling Plug-in: http://fmp.sf.net
5 These are known issues owed to FMP’s meta-modeling and just-in-

time reasoning capabilities.

Requirements
Elicitation

Feature Model

Feature Model
Configuration

Selection of
CDM Sections

Selection of
CI Types

Selection of
CI Relations

Actual CI Store

Authorized CI Store

Authorized CI Store
Creation

Figure 6. Requirements elicitation-based feature model configuration

V. EVALUATION

We evaluated our approach and the realized prototype in a
small-scale setup with some colleagues. Although they did not
represent stakeholders, they were familiar with customer
projects. Their experience with CDM and the CM system
ranged from deep to no experience at all with CDM.

Based on the goal of our work, we wanted to know (1) if
the synthesized feature model provides a simplified view on the
CDM-based Actual CI Store specification, (2) if our approach
speeds up creating the specification and (3) how the tool would
be accepted by stakeholders.

Accordingly, we gave a quick introduction into the
approach and the tool. Thereafter, the participants performed a
test scenario and created an Authorized CI Store specification.
Finally, we asked them to fill out a questionnaire with
nine questions.

We received very positive answers from the participants
(for details cf. [15]): (1) The tree-based navigation and the
support of constraints within the configured feature model were
regarded as a significant advantage. (2) All participants also
mentioned the time-saving potential. However, some of them
also pointed out that time saving depends on the project size,
i.e. the difference could be marginal for smaller projects. (3)
Furthermore, participants agreed on the potential to increase
customer acceptance, since less knowledge about CDM is
necessary when using the tool. However, experts might miss
some additional information that is intentionally omitted in the
feature model.

In summary, the feature-based approach met with favor and
appreciation participants of the evaluation. Especially the
convenience and the focus on the stakeholder’s interests and
goals were emphasized very positively.

VI. RELATED WORK

Although our approach is – to a certain degree – specific to
the CDM, we depict some work that, in a broader sense, deals
with variability in data models or data specifications by using
Feature Modeling techniques.

Usually, feature models are used in various kinds of domain
analysis. However, there is some work that uses feature models
to provide a tree-oriented-view on fine-grained data with many
relationships. Czarnecki et al. [16] elaborate on the
expressiveness of feature models compared to rich ontology
modeling techniques. In their work, they also provide a case
study that synthesizes a feature model from a domain-specific
ontology, i.e. they accomplish a more abstract view on
domain data.

Barthold et al. [17] address the problem of variability in
data models that appears in conjunction with software
variability. They propose an approach to represent and manage
data variability in entity models. Their approach is based on
adapters that provide a specific view on the database, i.e. they,
for example, omit entities or relations that are not relevant for a
certain feature.

Some work that deals with mappings between UML
diagrams and feature models comprises for example the
following: Braganca and Macada [18] provide a mapping
between features and the elements of Use Case diagrams. They
establish a model-driven approach to deriving a concrete Use
Case diagram that represents one product of a product line
based on the feature configuration. Furthermore, Czarnecki and
Antkiewicz [19] treat class and activity diagrams as templates
containing variability in order to derive concrete model
instances. They also deal with checking the consistency of
derived UML diagrams.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have developed a feature-based approach
to creating a data specification for a CI Store. We dynamically
synthesize a feature model that represents such specifications
on a higher level of abstraction and provides a simplified view
that is more stakeholder-oriented. This model is configured in
three stages in order to obtain a concrete CI Store specification.
The aim of our approach was to reduce the gap between

Figure 7. Feature model example

Figure 8. Feature constraints

stakeholder’s implicit configuration knowledge and the
complex Common Data Model’s definitions of CIs and
relationships.

More precisely, we defined a mapping between features and
CDM elements that exploits structural characteristics in order
to obtain a hierarchical feature tree. Further CDM relationships
are incorporated as extra constraints of the feature tree. We
have realized the approach as a tool prototype and have
performed a first, small-scaled evaluation.

However, there is definitely room for improvement in this
field and several enhancements to the method are possible. The
current focus was on providing a general view for all
stakeholders on the complex CDM-based specifications.
Stakeholder may be even more enabled to configure this
complex data model by using hierarchically structured feature
models that are tailored towards particular groups. View
integration and derivation with feature models, as proposed in
[16], could provide interesting opportunities. Concerning the
actual configuration by the stakeholders, an increase of the
number of stages would also be possible. Furthermore, the
synthesized feature model could be extended with additional
features that reflect supplementary meta information, as
requested by some evaluation participants.

Another reason for extending the approach lies in the
conceivable evolution of CI Stores. When IT service
management processes change, the modifications have to be
reflected in the CI Store specification as well.

ACKNOWLEDGMENT

We would like to thank our colleagues from the
IBM Service Management Department, especially
Claudia Dahl and Jürgen Pfaffenberger for supporting this
work, as well as the evaluators of the prototype.

REFERENCES
[1] M. Khosrow-Pour and M. Khosrowpour, Cases on Information

Technology And Business Process Reengineering, IGI Publishing, 2006.

[2] L. Klosterboer, Implementing ITIL Configuration Management, IBM
Press, 2008.

[3] K. Czarnecki and U.W. Eisenecker, Generative Programming. Methods,
Tools and Applications: Methods, Techniques and Applications,
Addison-Wesley Longman, 2000.

[4] Office of Government Commerce, “ITIL V3 Glossary: Glossary of
Terms, Definitions and Acronyms,” 2009.

[5] C. Alison, A. Hanna, C. Rudd, I. Macfarlane, J. Windebank, and S.
Rance, An Introductory Overview of ITIL V3, The UK Chapter of the
itSMF, 2007.

[6] S. Lacy and I. Macfarlane, Service Transition, The Stationery Office
Ltd, 2007.

[7] H. Madduri, S.S.B. Shi, R. Baker, N. Ayachitula, L. Shwartz, M.
Surendra, C. Corley, M. Benantar, and S. Patel, “A configuration
management database architecture in support of IBM service
management,” IBM Syst. J., vol. 46, 2007, pp. 441-457.

[8] L. Tai, R. Baker, E. Edmiston, and B. Jeffcoat, IBM Tivoli Common
Data Model: Guide to Best Practices, IBM International Technical
Support Organization: http://www.redbooks.ibm.com/abstracts/redp
4389.html (2009.06.10), 2008.

[9] C. Dahl, Configuration Management: System Requirements
Specification, IBM Corp., 2007.

[10] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged Configuration
Using Feature Models,” Software Product Lines, 2004, pp. 266-283.

[11] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, and
C.U.P.P.S.E. INST, Feature-oriented domain analysis (FODA)
feasibility study, The Institute, 1990.

[12] K. Pohl, G. Böckle, and F.V.D. Linden, Software Product Line
Engineering. Foundations, Principles, and Techniques., Springer, Berlin,
2005.

[13] M. Sinnema and S. Deelstra, “Classifying variability modeling
techniques,” Inf. Softw. Technol., vol. 49, 2007, pp. 717-739.

[14] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature Modeling
Plug-in for Eclipse,” In proceedings of the Workshop on Eclipse
Technology eXchange, 2004, pp. 67-72.

[15] S. Wenzel, “How to Configure a Configuration Management Database –
An Approach Based on Feature Modeling,” Diploma Thesis, University
Leipzig, 2009.

[16] K. Czarnecki, C.H.P. Kim, and K.T. Kalleberg, “Feature Models are
Views on Ontologies,” Proceedings of the 10th International on
Software Product Line Conference, IEEE Computer Society, 2006, pp.
41-51.

[17] J. Bartholdt, R. Oberhauser, and A. Rytina, “An Approach to Addressing
Entity Model Variability within Software Product Lines,” Software
Engineering Advances, 2008. ICSEA '08. The Third International
Conference on, 2008, pp. 465-471.

[18] A. Braganca and R.J. Machado, “Automating Mappings between Use
Case Diagrams and Feature Models for Software Product Lines,” 11th
International Software Product Line Conference, 2007. SPLC 2007,
2007, pp. 3-12.

[19] K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A
Template Approach Based on Superimposed Variants,” Lecture Notes in
Computer Science, vol. 3676, 2005, p. 422.

