
Semantics-Based Composition of
EMBOSS Services with Bio-jETI

Anna-Lena Lamprecht1, Stefan Naujokat1, Bernhard Steffen1, and Tiziana
Margaria2

1 Technical University Dortmund, Chair for Programming Systems, Dortmund,
D-44227, Germany

{anna-lena.lamprecht|stefan.naujokat|bernhard.steffen}@cs.tu-dortmund.de
2 University Potsdam, Chair for Service and Software Engineering, Potsdam,

D-14482, Germany
tiziana.margaria@cs.uni-potsdam.de

Abstract. Bio-jETI is a framework for model-based, graphical design,
execution and management of bioinformatics analysis processes. Formal
methodology like automatic service composition extends the framework
and, in particular, allows for semantically aware workflow development.
In this study we apply the workflow synthesis methodology to the EM-
BOSS suite of sequence analysis tools. As neither the tool suite itself nor
its various interfaces provide ready-to-use semantic annotations, we set
up a domain model that uses a high-level, semantically meaningful type
nomenclature to describe the input/output behavior of the single EM-
BOSS tools. Based on this domain model, we demonstrate how working
with the large, heterogeneous, and hence manually intractable EMBOSS
collection is simplified by our service composition methodology.

1 Introduction

Research projects in modern molecular biology rely on increasingly complex com-
binations of computational methods to handle the data that is produced in the
life science laboratories. A variety of bioinformatics databases, algorithms and
tools is available for specific analysis tasks. Their combination to solve a specific
biological question defines more or less complex analysis workflows or processes.
Software systems that facilitate their systematic development and automation
have found a great popularity in the community.

More than in other domains the heterogeneous services world in bioinfor-
matics demands for a methodology to classify and relate resources in a both
human and machine accessible manner. The Semantic Web, which is meant to
address exactly this challenge, is currently one of the most ambitious projects
in computer science. Collective efforts for modeling the bioinformatics domain
have already led to a basis of standards for semantic service descriptions and
meta-information. More concretely, the corresponding state of the art can be
characterized as follows:

– Domain Modeling: Has started in particular in the BioMoby project [1],
where a number of services has been prepared mainly for supporting semantics-
based retrieval.

– Components and Interfaces: A popular example is the EMBOSS suite [2], a
large collection of diverse tools for a specific field of bioinformatics (sequence
analysis) that is already integrated into a common technical interface. That
is, the components are ’wrapped’ in order to simplify their use: they work
seamlessly for a number of different formats and types, and therefore free
the user from caring about compatibility and type conflicts.

– Design Methodology: There are different tools for the graphical development
of analysis processes [3–7], most of them data-flow based and without con-
nection to semantic modeling. An exception is Bio-jETI [8, 9], which supports
the incorporation of semantically modeled domain information for control-
flow oriented process construction.

– Validation: Bio-jETI is unique in supporting domain-modeling-based verifi-
cation of processes.

In this paper, we present an extension of the Bio-jETI platform that simplifies
the process development phase (item 3) in order to even reach biologists without
programming background by

– Extending the currently available domain modeling to comprise the EM-
BOSS suite [2].

– Achieving type compatibility beyond predefined ’compatibility wrappers’ by
dynamic mediator synthesis. This allows us to cover also third party com-
ponents without any programming effort.

– Generalizing Bio-jETI’s synthesis technology to support a flexible kind of
loose process programming: loosely specified components and partially de-
fined connectors are concretized by ontology-based synthesis.

– Applying model checking to check global properties of complex (partially
synthesized) processes.

The paper is structured as follows. Section 2 describes the workflow synthesis
technology that is available in Bio-jETI from a user’s perspective. In Section 3 we
present the setup of the EMBOSS domain. As neither the tool suite itself nor its
various interfaces provide ready-to-use semantic annotations, we extracted the
relevant user-level semantic information from the tool descriptions and built a
domain model that uses a high-level, semantically meaningful type nomenclature
to describe the input/output behavior of the single EMBOSS tools. Based on
this domain model, we demonstrate in Section 4 how working with the large,
heterogeneous, and hence manually intractable EMBOSS collection is simplified
by our service composition methodology. The paper ends with a conclusion and
perspectives for future work in Section 5.

2 Semantics-Based Service Composition in Bio-jETI

Bio-jETI [8]3 is a framework for model-based, graphical design, execution and
management of bioinformatics analysis processes. It has been used in a number
of different bioinformatics projects [10–13] and is continuously evolving as new
service libraries and service and software technologies become established.

Technically, Bio-jETI is based on the jABC modeling framework [14] as an
intuitive, graphical user interface and the jETI electronic tool integration plat-
form [15] for dealing with remote services. Using the jABC technology, process
models, called Service Logic Graphs (SLGs) are constructed graphically by plac-
ing process building blocks, called Service Independent Building Blocks (SIBs),
on a canvas and connecting them according to the flow of control. SLGs are
directly executable by an interpreter component, and they can be compiled into
a variety of target languages via the Genesys code generation framework [16].

Fig. 1. Graphical User Interface of Bio-jETI

The Bio-jETI Graphical User Interface (GUI) is structured as follows (cf.
Figure 1): The major part of the interface is used for the canvas where the SIBs
are placed and connected to form the SLG (A). The SIB library (B) shows the
available SIBs, whereas the Inspector Pane (C) is used for various GUI elements,
such as global model configurations, SIB parameter editing, but also task specific
elements for model-checking, local checking, synthesis, etc. Common structures
like status bar and menu (D) complete the interface. The modeling with the
Bio-jETI framework usually consists of the following steps:

3 http://biojeti.cs.tu-dortmund.de/

1. drag & drop SIBs from the SIB library to the canvas,
2. connect SIBs with edges,
3. assign branch names,
4. define one start SIB, the entry point for execution, and
5. directly execute the model using an interpreter plugin (E) (window (F) shows

a window that is opened by the currently executed SIB) or generate exe-
cutable code with the Genesys code generation framework.

In [17, 9], we presented our approach to semantics-based service composi-
tion in the Bio-jETI platform. By integration of automatic service composition
functionality into an intuitive, graphical process management framework, we
maintain the usability of the latter for semantically aware workflow develop-
ment. Furthermore, we can integrate services and domain knowledge from any
kind of heterogeneous resource at any location, and are not restricted to any
semantically annotated services of a particular platform.

We now present PROPHETS4, an extension to the Bio-jETI framework that
seamlessly integrates automatic service composition into the jABC. It enhances
the previous approaches by including more formal methodology, but with less of
it being required for the user to know, thus enabling the system to be used by a
wider range of users. These enhancement are in particular:

– visualized/graphical semantic domain modeling,
– loose specification within the process model,
– non-formal specification of constraints using natural language templates, and
– automatic generation of model checking formulas.

Two roles are designed for using this extension. The domain expert provides
information on available services and semantic classification over these services
and their input and output types. The application expert is the one who uses
the available services to model the processes. The following subsections deal with
one of those roles, respectively, starting with the domain expert.

2.1 Domain Modeling

The domain model essentially consists of service definitions and their semantic
classifications. The service definition enhances the SIBs by meta-information
regarding their input/output behavior. Throughout our framework, types are
represented by symbolic names, thus abstracting from concrete implementations.
So a service is characterized by two subsets of the set of all symbolic type names,
namely input types and output types. The SIBs meta-information is stored in a
separate file within the project directory.

Furthermore, the services and types can be classified using taxonomies. These
taxonomies are expressed as ontologies in OWL format. Although we also provide
a seamlessly integrated graphical editor for these OWL files (see Figure 2), the
domain expert may use any OWL tool according to his personal liking.
4 Process Realization and Optimization Platform using a Human-readable Expression

of Temporal-logic Synthesis

Fig. 2. Bio-jETI’s integrated ontology editor

Finally, there might be domain specific knowledge like ordering constraints on
services or general compatibility information. This knowledge must be formalized
by the domain expert. Basically there are two possible options to do so: Either
he expresses model checking formulas that must hold for every SLG within the
project or he defines global constraints that are used for every process synthesis.

2.2 Process Design

After a domain has been set up by the domain expert, it can be used by the
process expert for workflow design. He does not need to provide fully specified
processes, because model parts that are marked as incomplete can be automati-
cally synthesized by the framework. As part of the seamless integration into the
jABC, the new extension concentrates on the usability for non-technical users.
It facilitates incomplete specification of processes in an easily accessible way
by introducing loosely specified branches, which the synthesis replaces by con-
crete solutions. Figure 3 (background) shows an example model using a loosely
specified branch (colored red to be distinguishable from normal branches).

Behind the scenes the algorithm requires formal specifications of the synthesis
problem using a configuration universe and a formula in the temporal logic SLTL
(see [18] for details). Our goal with the here presented approach is to hide this

Fig. 3. Loosely specified model and synthesis execution wizard

formal complexity from the user and replace it by intuitive (graphical) modeling
concepts. Furthermore, the actual execution of the synthesis is presented to the
user as a set of wizard windows where he finally can choose the favored solution
from the list of all possible solutions (”Wizard Step 2” in Figure 3).

The synthesis algorithm requires a set of start types as initial state within the
configuration universe. Previously, these start types had to be specified manu-
ally. These are now determined automatically according to preceding SIBs using
data-flow analysis methods. The types that are available independently from
the execution path in the model are taken as start types. The input types of a
loosely specified branch’s goal SIB form the goal types for the synthesis. Both
are implicitly specified by the user by marking branches as loosely specified.

As stated above, the synthesis requires constraints that are expressed in the
modal logic SLTL. As we won’t expect common process experts to deal with this
formal specification, we provide means to express constraints using a system that
is based on templates in natural language. The user chooses a restricting concept
and then simply has to fill in a cloze text with prepared values (”Wizard Step 1”
in Figure 3). The templates can easily be extended to the needs of the specific

domain. The possible values for the cloze text fields are automatically extracted
from the domain (i.e. module definition and semantic classification).

The previous subsection already mentioned that the domain expert can define
global knowledge in means of model checking formulas to describe properties that
must hold for any model in this domain. In addition to these manually defined
formulas, our framework can automatically generate formulas that check the type
consistency of the given model. The type usage is considered to be consistent,
if there is no execution path possible that contains a SIB with an input type
that has not been generated as output on this very path. This verification is
done by a combination of data-flow analysis (the same as is used for start type
determination) to annotate available types to SIBs and checking locally if every
SIB has all required types (i.e. all input types) annotated that way.

3 Setting up the EMBOSS Domain

EMBOSS (European Molecular Biology Open Software Suite [2]) is a collection
of freely available tools for the molecular biology user community. It contains a
number of small and large programs for a wide range of tasks, such as sequence
alignment, database searches, protein motif identification, nucleotide sequence
pattern analysis, and codon usage analysis as well as the preparation of data
for presentation and publication5. As of October 2009, EMBOSS (Release 6.1.0)
consists of around 230 tools, some derived from originally standalone packages.

EMBOSS provides a common look and feel for the diverse tools that are
contained in the suite. They can easily be run from the command line, or accessed
from other programs. Thus, it is also suitable for being set up behind GUIs and
web interfaces. What is more, EMBOSS automatically copes with data in a
variety of formats, even allowing for transparent retrieval of sequence data from
the web. This enables us to focus on the actual service semantics rather than on
technical details of data compatibilities when setting up the domain.

Of the around 230 tools of the complete EMBOSS suite, 175 are currently
integrated in our domain. For presentation in this paper we use a representable
subset of this domain, consisting mainly of the HMMER [19] applications. HM-
MER is a software for biosequence analysis using Profile Hidden Markov Models
[20]. It contributes 9 applications to EMBOSS, namely ehmmalign, ehmmbuild,
ehmmcalibrate, ehmmconvert, ehmmemit, ehmmfetch, ehmmindex, ehmmpfam,
and ehmmsearch. The prefix ’e’ is used to distinguish the EMBOSS integra-
tion from the orginal HMMER programs. In addition to the HMMER tools,
our domain contains the multiple sequence analysis tools emma and edialign,
makeprotseq and makenucseq for the generation of random protein and nu-
cleotide sequences, respectively, as well as some tools for the display of specific
data. A complete list of the services in our domain subset is given in Table 1.

Additional structuring of the domain is provided by the classification of
types and services in taxonomies, which are simple ontologies that relate en-
tities in terms of is-a relations. Figure 4 shows the service taxonomy that we
5 http://emboss.sourceforge.net/index.html

Table 1. Services in the HMMER subset of the domain.

Service
Description

Input Types Output Types

edialign
Local multiple alignment of sequences.

MultipleSequence Alignment

ehmmalign
Align sequences to an HMM profile.

HMM, Sequence Alignment

ehmmbuild
Build a profile HMM from an alignment.

Alignment HMM

ehmmcalibrate
Calibrate HMM search statistics.

HMM HMM

ehmmconvert
Convert between profile HMM file formats.

HMM HMM

ehmmemit
Generate sequences from a profile HMM.

HMM EhmmemitOutput

ehmmfetch
Retrieve an HMM from an HMM database.

HMMDatabase HMM

ehmmindex
Create a binary SSI index for an HMM database.
HMMDatabase HMMDatabase

ehmmpfam
Search one or more sequences against an HMM database.
HMMDatabase, Sequence EhmmpfamOutput

ehmmsearch
Search sequence database with a profile HMM.

HMM, SequenceDatabase EhmmsearchOutput

emma
Global multiple alignment of sequences.

MultipleSequence Alignment, Tree

makenucseq
Create random nucleotide sequences.

- MultipleNucleotideSequence

makeprotseq
Create random protein sequences.
- MultipleProteinSequence

showalign
Display a multiple sequence alignment in pretty format.

Alignment -

showseq
Display sequences with features in pretty format.

Sequence -

showtext
Display a text.

Text -

Fig. 4. Service Taxonomy for the HMMER subset of the domain.

defined for the HMMER subset of our domain. The generic type Thing (cen-
ter) represents the root of the taxonomy, underneath which four abstract service
groups are defined. The abstract group Edit has the services makenucseq and
makeprotseq as instances, the services showseq, showalign and showtext are
classified as Display by the taxonomy. Edialign and emma are abstractly de-
scribed as AlignmentMultiple, the remaining tools belong to the HMM group.

The type taxonomy for the subset of the domain is shown in Figure 5. All
services in this subset work on text-based data, thus all available types belong to
the Text group. The different Sequence types are distinguished further into the
groups ProteinSequence, NucleotideSequence, and MultipleSequence. Note
that some types are instances of multiple groups: MultipleNucleotideSequence,
for instance, is both a MultipleSequence and NucleotideSequence.

Currently the service taxonomy for our complete EMBOSS domain contains
the 175 services and 42 abstract groups, which to the most part correspond to
the groups that EMBOSS defines. The type taxonomy for the complete domain
consists of 135 different data types and 11 abstract classifications. This large
number of concrete data types is due to the fact that several tools that are
integrated in EMBOSS produce specific tool outputs, often in addition to data
that is formatted in a common format. Although these tool outputs can not
directly be used as input to other tools, they are relevant to the domain, since
it is possible to extract information from them that is suitable as input data.

Fig. 5. Type Taxonomy for the HMMER subset of the domain.

4 Working with the EMBOSS Domain

In the previous section we described the setup of the EMBOSS domain, which is
the task of the domain expert. In this section, we illustrate the work of the appli-
cation expert, who designs the actual analysis processes dealing with particular
biological questions.

As a first example we consider the small workflow in Figure 6 (A): it consists
of the services makeprotseq6 and showalign, which are connected by a loosely
specified default branch. The synthesis problem that is defined by the loose
branch is simply given by the output type of makeprotseq, providing the input
type for the synthesized sequence, and the input type of showalign, which is the
type that the synthesized sequence must finally produce. That is, the synthesis
algorithm has to find a way from MultipleProteinSequence to Alignment. Ob-
viously, this request can be met by inserting a single multiple sequence alignment
service, for example emma. Figure 6 (B) shows the result.

A similar synthesis problem is defined by the process shown in Figure 6 (C),
where the type Sequence must be produced. Obviously, the shortest solution is
an empty service sequence, as makeprotseq already provides a suitable input for
showseq. We might, however, have a process in mind that does some analysis
on the initially generated sequences and produces another set of sequences, for
instance via a Profile HMM. As already indicated in Section 2, additional con-
straints can be used in the workflow specification that is given to the synthesis
algorithm. For expressing the sketched case, we can give an additional constraint

6 For simplicity, we let our example processes begin with services that randomly gener-
ate sequences that can be processed further. Note that they can be easily exchanged
by the retrieval of sequences from a public database, or by loading a sequence file.

Fig. 6. A: Loose specification between makeprotseq and showalign. B: Result of sim-
ple synthesis. C: Loose specification between makeprotseq and showseq. D: Result of
synthesis with additional constraint that enforces the use of ehmmemit.

to the synthesis algorithm that enforces the use of the service ehmmemit. One
of the shortest thus possible processes is given in Figure 6 (D): the initial in-
put sequences are converted into an Alignment by emma, which is then used by
ehmmbuild to create a Profile HMM. Ehmmemit emits a set of sequences based
on this HMM that are finally displayed by showseq.

In [17, 9] we showed how model checking techniques can be applied to mon-
itor global properties of the process models, and used it preliminarily to detect
mismatching data types. However, model checking can also validate higher-level
constraints that are expressed in terms of application-level domain knowledge.
For an example, consider the process in Figure 7 (A). It corresponds to the result
from Figure 6 (D). Now, we might want to calibrate each built HMM before it
actually emits sequences. Formally, this is expressed as

ehmmbuild ⇒ (¬ehmmemit WU ehmmcalibrate)

denoting that the use of ehmmbuild implies that ehmmemit is not used before
ehmmcalibrate has been executed. As Figure 7 (A) shows, this requirement is
not met by the previously created process, because the ehmmbuild SIB does not
fulfill the property (indicated by the red overlay icon in the lower right corner of
the SIB). Inserting the ehmmcalibrate service into the workflow fixes this issue,
as Figure 7 (B) shows: all SIBs are marked by a green icon. Naturally, and as
(C) shows, this constraint is also fulfilled if the HMM is not built by the process,
but fetched from an HMM database.

Fig. 7. Model checking of a formula expressing that each built HMM is calibrated
before it actually emits sequences.

As a third and final example in this paper, we discuss the process that we al-
ready showed in Figure 3 to illustrate the use of the synthesis plugin, which
shows a process that does not (yet) contain any EMBOSS services. A (nu-
cleotide) sequence is fetched from the DNA Data Bank of Japan, and used for a
BLAST search against a protein database. The Uniprot IDs are extracted from
the BLAST result and then processed in a loop that fetches the Uniprot entry
for this ID. The remainder of the loop body is a loosely specified branch, to be
concretized by an appropriate sequence of services. The synthesis plugin has ac-
cess to both the EMBOSS and the DDBJ domain model and can transparently
combine services from both sources.

For this example, we use the complete EMBOSS domain to find an appropri-
ate sequence of services that does something with the protein sequence that is
retrieved within the loop. If we start the synthesis with no further constraints,
several thousand possible solutions are found, even if the length of the solution
is limited. The reason lies in the nature of the EMBOSS domain: many tools
work on the same input type (sequence), some again producing sequences, so
that if the synthesis is only based on the type information, unfathomable many
variations of solutions are possible. This shows that a adequate domain modeling
requires to incorporate as much domain knowledge as possible, far beyond the
mere technical aspects of the different types and services.

In order to get less, but more reasonable results, we can now formulate some
additional constraints for the synthesis. For instance, we might want the sequence
to end with a Display service, displaying the available data directly or applying
some analysis to the sequence and then displaying the result of the analysis. This
can be expressed using formula templates in the synthesis wizard (see Figure 3,
Wizard Step 1). The list of solutions that is offered by the wizard is still long
(100 out of 653 are displayed, see Figure 3, Wizard Step 2), but the proposed
workflows now meet the intention of the process developer.

5 Conclusion

Bio-jETI is a framework for model-based, graphical design, execution and man-
agement of bioinformatics analysis processes. Formal methodology like auto-
matic service composition extends the framework and, in particular, allows for
semantically aware workflow development [9]. In this study we applied the work-
flow synthesis methodology to the EMBOSS suite of sequence analysis tools. As
neither the tool suite itself nor its various interfaces provide ready-to-use seman-
tic annotations, we set up a domain model that uses a high-level, semantically
meaningful type nomenclature to describe the input/output behavior of the sin-
gle EMBOSS tools. Based on this domain model, we demonstrated how working
with the large, heterogeneous, and hence manually intractable EMBOSS collec-
tion is simplified by our service composition methodology.

The challenge of semantics-based service composition in the bioinformatics
application domain has also been addressed by a number of other projects. For
instance, the BioMoby project provides a composition functionality for its ser-
vices. With the MOBY-S Web Service Browser [21] it is possible to search for an
appropriate next service and store the sequence of executed tools as a Taverna
workflow. Similarly, the REMORA web server [22] offers functionality for the
discovery and step-by-step composition of BioMoby services and the DDBJ’s
Web API for biology provides next applicable services according to the outputs
of previously executed services [23]. Another example is the approach taken
by [24], who link meaningful terms from the text of a web page to executable
web services, thereby automatically creating workflows that are suitable within
the current context.

Bio-jETI is unique in its holistic perspective, which covers both the scope of
the process modeling as well as the coverage of individual services and platforms:

– Process development is addressed from a goal-oriented global perspective.
Our loose programming concept allows the user to describe the actually in-
tended workflow as a whole, and the synthesis finds shortest solutions directly
matching the global intent. In contrast, the automatic service-composition
functionality of the approaches mentioned above is limited to small sub-
workflows or even single steps of the analysis process, which come with the
risk that users get stuck when stepwisely trying to construct the globally in-
tended solution. Especially for collections like EMBOSS, where many tools
work on the same data types, a mere local discovery of services is not pro-
ductive with respect to the construction of a multi-step workflow.

– Due to the integration into the jABC framework and the decoupled spec-
ification of service descriptions, any kind of heterogeneous resource at any
location can be integrated. There is no restriction to semantically annotated
services of a particular platform. On the contrary, any service that is avail-
able as a jABC component can be enhanced by a semantic service description
and will immediately be available for synthesis of Bio-jETI processes.

Furthermore, Bio-jETI scores with the seamless, user-friendly integration of
the domain modeling and synthesis methodology into a graphical process man-

agement framework, which, due to the loose programming paradigm, enables
application experts to describe their desires in a way that can be automati-
cally transformed into running solutions. Other approaches to automatic service
composition that we are aware of require their users to work on a far more
technical level. For instance, [25] describe a framework for the composition of
data workflows where a domain ontology is modeled in a first-order logic lan-
guage, and relational data descriptions by formulas over concepts and relations
of the ontology. A similar amount of familiarization is required for GOLOG [26],
which extends the ALGOL programming language by elements of the Situation
Calculus.

All approaches to (semi-) automatically dealing with the large number of
distributed, heterogeneous services that are availablein the bioinformatics ap-
plication domain share the difficult task of finding or defining semantically ap-
propriate service and type descriptions [27]. Projects like the (my)Grid Ontol-
ogy [28], BioCatalogue [29], BioMoby [1], and SSWAP [30] address this issue by
providing knowledge bases that particularly capture bioinformatics data types
and services. We plan to integrate their services and domain knowledge in the
scope of future case studies. The resulting domains will contain far more het-
erogeneous services than the comparatively ’closed’ EMBOSS domain that we
used for the current study, creating new challenges for the client-side software,
challenges that Bio-jETI is designed for.

References

1. Wilkinson, M.D., Links, M.: BioMOBY: an open source biological web services
proposal. Briefings in Bioinformatics 3(4) (December 2002) 331–341

2. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European Molecular Biology
Open Software Suite. Trends in Genetics: TIG 16(6) (June 2000) 276–267

3. Bausch, W., Pautasso, C., Alonso, G.: BioOpera: Cluster-aware Computing. In:
Proceedings of the 4th IEEE International Conference on Cluster Computing
(Cluster. (2002) 99–106

4. Eker, J., Janneck, J., Lee, E., et al.: Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE 91(1) (2003) 127–144

5. Altintas, I., Berkley, C., Jaeger, E., et al.: Kepler: An Extensible System for Design
and Execution of Scientific Workflows. In SSDBM (2004) 21–23

6. Oinn, T., Addis, M., Ferris, J., et al.: Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics 20(17) (2004) 3045–3054

7. Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment:
Architecture and Applications. In: Workflows for e-Science. Springer, New York,
Secaucus, NJ, USA (2007) 320–339

8. Margaria, T., Kubczak, C., Steffen, B.: Bio-jETI: a service integration, design,
and provisioning platform for orchestrated bioinformatics processes. BMC Bioin-
formatics 9 Suppl 4 (2008) S12

9. Lamprecht, A., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(Suppl 10) (2009) S8

10. Margaria, T., Kubczak, C., Njoku, M., Steffen, B.: Model-based Design of Dis-
tributed Collaborative Bioinformatics Processes in the jABC. In: Proceedings of
ICECCS, IEEE Computer Society (2006) 169–176

11. Kubczak, C., Margaria, T., Fritsch, A., Steffen, B.: Biological LC/MS Preprocess-
ing and Analysis with jABC, jETI and xcms. In: Second International Symposium
on Leveraging Applications of Formal Methods, Verification and Validation, 2006.
ISoLA 2006. (2006) 303–308

12. Lamprecht, A., Margaria, T., Steffen, B., et al.: GeneFisher-P: variations of Gene-
Fisher as processes in Bio-jETI. BMC Bioinformatics 9 Suppl 4 (2008) S13

13. Lamprecht, A., Margaria, T., Steffen, B.: Seven Variations of an Alignment Work-
flow - An Illustration of Agile Process Design and Management in Bio-jETI. In:
Bioinformatics Research and Applications. Volume 4983 of LNBI., Atlanta, Geor-
gia, Springer (2008) 445–456

14. Steffen, B., Margaria, T., Nagel, R., et al.: Model-Driven Development with the
jABC. In: Hardware and Software, Verification and Testing. (2007) 92–108

15. Margaria, T., Nagel, R., Steffen, B.: jETI: A Tool for Remote Tool Integration.
In: Tools and Algorithms for the Construction and Analysis of Systems. Volume
3440/2005 of LNCS., Springer Berlin/Heidelberg (2005) 557–562

16. Jörges, S., Margaria, T., Steffen, B.: Genesys: service-oriented construction of prop-
erty conform code generators. Innovations in Systems and Software Engineering
4(4) (December 2008) 361–384

17. Lamprecht, A., Margaria, T., Steffen, B.: Supporting Process Development in Bio-
jETI by Model Checking and Synthesis. In: Proc. of 1st Workshop SWAT4LS08,
Edinburgh, United Kingdom, CEUR Workshop Proceedings (November 2008)

18. Steffen, B., Margaria, T., Freitag, B.: Module configuration by minimal model
construction. (1993)

19. Eddy, S.: Profile hidden Markov models. Bioinformatics (Oxford, England) 14(9)
(1998) 755–763

20. Eddy, S.: HMMER: biosequence analysis using profile hidden markov models.
http://hmmer.janelia.org/

21. Dibernardo, M., Pottinger, R., Wilkinson, M.: Semi-automatic web service com-
position for the life sciences using the BioMoby semantic web framework. Journal
of Biomedical Informatics (March 2008)

22. Carrere, S., Gouzy, J.: REMORA: a pilot in the ocean of BioMoby web-services.
Bioinformatics (Oxford, England) 22(7) (April 2006) 900–901 PMID: 16423924.

23. Kwon, Y., Shigemoto, Y., Kuwana, Y., Sugawara, H.: Web API for biology with
a workflow navigation system. Nucl. Acids Res. 37(suppl 2) (July 2009) W11–16

24. Sutherland, K., McLeod, K., Ferguson, G., Burger, A.: Knowledge-driven enhance-
ments for task composition in bioinformatics. BMC Bioinformatics 10(Suppl 10)
(2009) S12

25. Ambite, J., Kapoor, D.: Automatically composing data workflows with relational
descriptions and shim services. In: The Semantic Web. (2008) 15–29

26. Levesque, H.J., Reiter, R., Lespérance, Y., et al.: GOLOG: a logic programming
language for dynamic domains. Journal of Logic Programming 31 (1997)

27. Lord, P., Bechhofer, S., Wilkinson, M.D., et al.: Applying Semantic Web Services
to Bioinformatics: Experiences Gained, Lessons Learnt. In: The Semantic Web
ISWC. (2004) 350–364

28. Wolstencroft, K., Alper, P., Hull, D., et al.: The (my)Grid ontology: bioinformatics
service discovery. International Journal of Bioinformatics Research and Applica-
tions 3(3) (2007) 303–325

29. Goble, C.A., Belhajjame, K., Tanoh, F., et al.: BioCatalogue: A Curated Web
Service Registry For The Life Science Community (April 2009)

30. Gessler, D.: SSWAP - Simple Semantic Web Architecture and Protocol.
http://sswap.info/docs/SSWAP.pdf

