
Model and Measurement for Web Application Usability 

from an End User Perspective1 

Philip Lew, Li Zhang, Shouxin Wang 

 

School of Computer Science and Engineering, Beihang University, China 
philiplew@gmail.com, lily@buaa.edu.cn, shouxin_wang@126.com 

Abstract. Determining quality for web applications requires an orientation 

beyond traditional quality models. Researchers have pointed to usability as a 

key component of web application quality. Usability is not a new quality 

characteristic. What is new is that it is a key success factor for web applications. 

For conventional software applications, usability may be a ‘nice to have’, but 

for web applications, it is critical due to the shifts in user expectations and 

business models that enable users to switch applications quickly. There has 

been little or no attention paid to measure software usability from an end-user 

viewpoint using quantitative methods. In this paper, we propose a model for 

web application usability from an end-user viewpoint and the basis for 

measurement and data collection methods to collect user activity and behavior.  

1 Introduction and Background 

Software usability has thus far been researched from two perspectives, usability 

evaluation or testing, and usability design. There are basically two methods for 

usability evaluation, User-based, and Expert-based. User-based methods are 

conducted in a laboratory in a controlled environment with participants and observers 

that evaluate usage based on predefined scenarios.  Expert-based methods are 

heuristic based where experts apply a set of criteria to benchmark usability and make 

recommendations from a design perspective. These evaluation methods are 

subjective; depend on the participants, observers, expert’s participation, procedures, 

and judgment. Both methods are time and resource intensive and hence, expensive 

and not practical for large scale usability evaluation and measurement. 

In the area of usability design, many researchers and designers have developed 

usability guidelines. For example, Massey et al. [1] examined the Microsoft Usability 

Guidelines’ design requirements and the importance of these requirements to end 

users. Others such as Palmer [2] and Zhang [3] have researched web site usability and 

design, but these are not entirely applicable because these are guidelines for design, 

and targeted toward web sites, rather than measuring software in use or from a users 

point of view. There is research specific to usability metrics as in Palmer [2], but these 

are for websites, rather than web applications. 

                                                 
1 Thanks to the support by National Basic Research Program of China（973 project） (No. 

2007CB310803). 



1.1  Importance of Usability 

Usability is one of the most important quality factors for web applications. 

Applications that have low usability are easily left for another as there are many 

alternatives available with another click and another short trial subscription. This is a 

new phenomenon resulting from the Software as a Service (SaaS) business model 

where trials are free so there is no cost factor involved in switching applications. 

Offutt [4] reinforces its connection with usability, stating that users have little loyalty 

and will quickly switch if an application is not easy to use. 

1.2  Reasoning and Approach 

Research has been done but mainly focuses on web sites and is not entirely applicable 

to web applications.  Bruno [5] examined web applications and their many 

characteristics which make them different than traditional applications regarding 

usability.  Ahmad [6] mentions that a user would not tolerate more than 3 clicks to 

achieve their objective.   

Our reasoning is to rationally combine ideas for usability evaluation and design a 

quantitative evaluation measurement framework.  Then, using that framework, we 

utilize Web 2.0 technologies and concepts to collect user behavior and activity 

information to determine software usability from an end user perspective. Previous 

techniques for websites are applicable, but their perspective is to analyze user 

behavior with respect to increasing sales, clicks, user return rates, time per visit. We 

are not directly concerned with more sales (although ultimately greater usability will 

lead to this), nor are we concerned with how many clicks or how long a user stays.   

The remainder of the paper is structured as follows.  Section 2 defines usability 

from an end user perspective for web applications.  Section 3 describes a usability 

model combined with measurement factors. Section 4 discusses measurements 

methods and calculations while Section 5 describes our data collection methodology.  

Section 6 summarizes our contributions and outlines future work.  

2  Defining Usability for Web Applications 

In the process of developing a usability model, it is necessary to examine what 

usability is as defined by others in their research.  Then, we add the two additional 

dimensions for end user viewpoint and for web applications.  

2.1  What is Usability? 

ISO 9241-11 defines usability as “the extent to which a product can be used by 

specified users to achieve specified goals with effectiveness, efficiency, and 

satisfaction, in a specified context of use”. ISO 9126 standard defines usability from a 

software product perspective. It treats usability as one of the ‘Quality in use’ metrics 

that are used to evaluate the impact of the use of the software by the user. It is also 



addressed in the standard as “the capability of the software product to be understood, 

learned, and liked by the user, when used under specified conditions’.  

Definitions of usability in research literature and standards include user satisfaction 

and quality with the three concepts usually combined together in some way.  Some of 

the models investigated from existing research such as Abran [7] also depict this.  

Abran’s [7] model extends the ISO 9241 standard definition of usability to include 

learn-ability and security as illustrated below.   

 

Figure 1. Consolidated usability model by Abran[7] 

Learn-ability in their model is defined as the time it takes to learn while security 

includes access audit-ability, access controllability, data corruption prevention, and 

data encryption. Research by Frokjear [8] determined that effectiveness, efficiency, 

and satisfaction had weak correlation and should be measured separately, but did not 

develop any specific models.  

Kappel et al. [9] examined existing usability models and correlated them to ISO 

9241-11 as shown in the table below: 

Table 1. Usability Model Comparisons 

 

2.2  Usability Extensions for Web Applications 

Web applications exhibit some unique characteristics that warrant additional 

considerations or adaptations from usability of conventional ‘shrink-wrapped’ 

software and websites to usability for web applications from an end user perspective. 

 

User Diversity. Conventional software applications were targeted toward a specific 

user group. Web applications reach a very large and diverse user community not only 

common users who may want to try out the software, but also a targeted expert user 

group. So, as stated by Abrahao et al. [10], a large contributing factor of web 

application complexity comes from the need to satisfy requirements of different user 

profiles. 



In the past, “go online” meant getting a website up and running, but today, web 

applications have much more functionality, leading to more user scenarios and since 

users are more diverse, so are the hardware and software platforms that they use.  

What an application is designed for and the way a large diversity users
[11]

 actually 

use the application can be very different. This leads to large quantities of 

unpredictable user scenarios from a user base with broader experience ranges than 

previous conventional software applications which targeted a small user group. 

In addition, web applications differ from conventional websites in that registered 

users are not anonymous. Rather, there is a diverse range of known users with known 

profiles.  

 

Self-serve and Learnability. Previously when there was a software update, new 

feature release, or new software replacing an old one, there was user training. There 

were manuals sold after-market on how to use different kinds of software such as 

“Excel for Dummies”.  Today’s web applications must be easy to learn, yet have the 

complexity to satisfy expert users with little or no documentation or training other 

than online help. As described by Kappel et al. [9], applications must be self-

explanatory. So, as pointed out by Lowe [11], increased emphasis on the user 

interface is one of the major differences between web applications and conventional 

software. SaaS has led to impatient users who do not want to invest too much time to 

learn an application. Thus, learn-ability is a key factor in usability for web 

applications.  

 

Context Driven. Rather than simple information conveyance or e-commerce sites, 

today’s web applications have much more complex functionality than the websites of 

a few years ago. Users will have a broader experience range than previous 

conventional software applications leading to countless and unpredictable user 

scenarios. Considering the ‘specified’ part of the ISO 9241-11 definition, we must 

consider usage context and particular user needs. Bevan [12] indicated that usability 

context includes the user, tasks performed, equipment used, environment, and product 

being used. An application’s effectiveness cannot be measured without relativity to 

others in the same domain, or relative to itself over time.  

3  Defining a Usability Model for Web Applications 

This section defines a usability model for web applications with two main 

objectives. The first is measurement and the second is improving the usability of the 

software under measurement. As opposed to website logging which tracks where user 

activity as related to their purchasing behavior or interest in content, our measurement 

objectives are directed toward measuring user behavior with the goal of making 

software more usable.  Our model and method focuses on the path behavior of the 

users, where they access these functions from, what functions they don’t use and how 

often among others. From these measurements, we can characterize user behavior and 

derive usability. Our model, adapted from Abran [7] has three components that 

determine usability, effectiveness, efficiency, and learn-ability. Our model differs 



from the others in that satisfaction is not an element that impacts usability. Rather 

usability impacts satisfaction and satisfaction is derived from usability and many other 

factors besides usability. Security, a part of Abran’s usability model, has been 

removed and would be a factor influencing satisfaction rather than usability.  

Satisfaction in our model is not an element impacting usability, and as shown by 

Frokjaer [8], effectiveness, efficiency, and satisfaction are only weakly correlated so 

they should be analyzed separately.  

Our usability model, shown below in Figure 2, has 3 key components, 

effectiveness, efficiency, and learnability. This layered model, adapted from Kappel 

[9] shows each of these components has a set of non-exclusive measurement elements 

which we denote as User Activity and Behavior factors. Each factor is influenced by a 

number of characteristics determined by the Application Design and environment. 

 
Figure 2. Web application usability model from end-user perspective 

4  Measuring Usability 

Unlike conventional applications, web applications are able collect data on user 

activity and preferences on a wide scale enabling analysis and segmentation of user 

activity. Existing research traces paths and other user activity and tracked data such as 

clicks, time, number of visits, first-time/repeat visitor, etc, but these metrics do not 

apply directly to web applications as they do for websites.  Ahmad [6] developed 

methods for measuring navigational burden which included 3 factors; click distance, 

time taken, and number of errors. Their work cited that users should reach to their 

desired information within 3 clicks and that the maximum acceptable number of 

clicks that the user should click to complete his task is 7. For complex tasks in a web 



application, it may take many more clicks to complete. This, and other principles 

applying to websites such as stickiness do not apply to web applications because the 

length of time that a user spends working in an application is not necessarily directly 

related to usability. Martin [13] also researched user activity and usability and equated 

short time on a page with lack of useful information and more time spent on a page 

with user difficulty.   

Web applications can provide good data on user interaction that can be used for 

usability analysis. Using the ideas from past research, our method begins with 

determining how to mathematically represent user activity, followed by metrics that 

use this representation to measure the usability factors of our model. 

4.1  Measurement Concepts and Notation 

This section defines three general notation methods as the basis for our measurements 

for each of the factors in Figure 2. These notation methods, namely User access and 

User path, are the basis for measuring user activity and behavior and are used for 

determining measurement for the usability factors. 

 
User Access. To measure user activity, we simply measure the number of times a user 

accessed a function or part of the application within a time internal.  This is not novel, 

but extended from normal website analysis into a web application.  As developed by 

Song [14] and shown in the matrix M below, we use the same notation constructs but 

adapt it to apply to application functionality access rather than URL access. 

 

 
Figure 3. User access matrix 

 

In the User access matrix M above: 

• aij is number of times user j within a time period visits a function/url or menu 

item i.  

• There are j users during the time period that access the various functions of the 

system and i functions/url/menu items in the system 

• Each row vector M[m,j] represents all the users that use that part of the system. In 

this instance below, function or part 1 of the application for all users j=1 to m. 



∑
=

m

j
ja

1
1
. 

(1) 

• Each column vector M[i,n] represents the total usage of each part of the system 

for that user. In this instance below for all the functions of the application from 

i=1 to n, for one user, user 1.   

∑
=

n

i
ia

1
1
 

(2) 

Depending on how granular the application is broken up and then organized and 

grouped in the matrix, we can determine user access patterns. Column vectors reflect 

the activity of an individual user or could be groups or segmented by user group. So 

instead of j=1 representing user 1, it would represent the activity of user group 1, i.e. 

administrative users. If we examine the row vector similarity, we can equate this to 

the access similarity across the application by all users depicting usage access characteristics.  

Likewise, we can examine the column vector similarity and determine user diversity and usage 

across groups, and customer access patterns. As described by [15], Hamming distance measures 

the minimum number of substitutions required to change one into the other and as adapted by  

Song [14] for computing vector similarity based on the Hamming distance whereby the smaller 

the value for Hamming distance, the higher the degree of similarity. 

Definition. (Hamming distance):  For 0],[M >∀ ji ，M [i, j]=1, Hamming distance 

between vectors
n}，{YX 10, ∈ ，n>=1,  

][][),(H iYiXYXd ⊕=∑ . (3) 

 
As an example, the matrix shown in Figure 4 depicts the Hamming distance between 

the last two vertical vectors is 1. This shows node or function access density across 

users and user clustering behavior on a function by function basis.   

 

 
Figure 4. Hamming distance example matrix 

 

User Path. To depict the path of a user from node to node, or function to function, we 

denote their path with a simple two dimensional matrix as shown below. 



 

 
Figure 5. User path matrix - 2 dimensions 

 

For visualization purposes, darker shades represent those paths visited more 

frequently. To extend this measurement method to more than 2 nodes/2 functions, 

dimensions of the matrix are extended as shown in Figure 6. 

 

 
Figure 6. User path – 3 dimensions 

 

As shown in Figure 6, a task is equated to a path and the paths that a user can take 

within a software application are represented by an n-dimensional matrix with n being 

the number of nodes in the path. For example, 5 functions or menus accessed would 

be represented by a 5 dimensional matrix.  The sequential path of a user is represented 

by a vector within the matrix. 

Using this path concept, we extend the work of Song [14] to represent not just 

visitation of individual URL’s or functions by users, but the path of users as shown in 

Figure 7 below. 



 
Figure 7. User path matrix 

 

Using this matrix representation: 

• Each row vector represents a path and it’s corresponding usage across all 

users.  

• Each column vector represents a user’s (or group of users) path usage. 

• Paths can be of different lengths and are ranked with most prevalent paths 

first so the in terms of path frequency: 

∑
=

n

i
ima

1
,
 >∑

=
+

n

i
ima

1
1,
  

(4) 

By extending our logic from analyzing access to parts of an application, the Hamming 

distance between the horizontal vectors (paths) indicates path similarity in usage 

among the users while the difference between the vertical vectors tells us usage 

similarity. We extend this notation further into the functionality of the software as 

granular as necessary depending on our analysis.  For instance, each node can 

represent a function, and functions can lead to other functions, similar to a use case.  

To analyze the similarity of different length paths, we use the Levenshtein distance 

which is more appropriate than the Hamming distance.  Levenshtein distance is a 

metric for measuring the amount of difference between two sequences [15] and 

includes additions and deletions in addition to changes to account for shorter and 

longer paths. 

4.2  Model Factors and Measurement Method 

Each of the notation methods in the previous section serve as a basis for measuring 

the usability factors below.  Note that when measuring the time dimension, this means 

that the factor is measured over calendar time at the desired level of granularity (day, 

week, month, year, etc…) to measure trends.  Measuring a usability factor in the user 

dimension indicates measuring users at different levels of granularity as well (user, 

user group, or all users). In the section below, we list and describe usability factors. 

Each of these factors is input to the three core elements of our model: effectiveness, 

efficiency, learnability.   

This section describes each usability factor in our model. Each factor is described 

using measurement notations in the previous section and where possible calculations 

are proposed. Note that we meaning of node is interchangeable with function or part 



of an application.  In general, the frequency of that path indicates the popularity of 

that task or the usefulness of that part of the application to users. For web 

applications, we can get more granular down to the function and part of a page that 

users are viewing. Examining where users are on each page/part/function of the 

application as indicated by Martin [13] can also tell us about user interest.  In a 

website, if the user never scrolls down, this may indicate useless information as 

perceived by the user.  For an application, we can note which functions are called 

more or less frequently. For instance, every user will do the login task.  For an 

accounting application, 50 percent of users may do the account reconciliation task and 

follow that path through the application. 

 

Effectiveness. In simple terms, effectiveness means getting the job done accurately 

and completely while achieving the stated goals as measured by the quality of the 

solution and number of errors. 

End node preference: Multiple paths with the same ending node indicate either more 

than one way to accomplish the same task, different nuances or parameter inputs 

(along the path) to that node, or an individual node’s importance or usage. Different 

frequencies for different paths with the same end node may also indicate preferential 

path/usage to complete a similar function or task.  Using our User path notation: 

1. Identify all vectors that end with the same node 

2. Calculate the Levenshtein distance between these vectors for that end node.  

3. Calculate the mean and standard deviation of the Levenshtein distances 

Conceptually, this can be visualized in Figure 8.  The same end node is represented by 

the vertex, with the differing paths getting to that end node and the spaces between the 

vectors depicting the Levenshtein distance or similarity/dis-similarity. There are 

different ways to interpret the meaning of the number of vectors with the same end 

node and the Levenshtein distances between these vectors. More than one way to 

accomplish the same task increases the effectiveness of the application by giving 

users the choice of completing a function or task.  A close similarity or short 

Levenshtein distance between different paths could also confuse a user depending on 

the task they are trying to complete. 

 
Figure 8. Levenshtein vector similarity 



 

Error rate: This counts the errors that a user makes which can indicate either the 

application is complex (or possibly has defects), or the user is unskilled.  If the user is 

unskilled, then this rate should decrease over time for that user.  If not, then the 

application can be considered complex.  This is calculated as errors/session, or 

errors/task completed where n is the number of sessions or task, and Sum(e) 

represents the total number of errors made by a user/user group in the ith session (S) or 

task (T): 

n

eSum
n

i Si

sER
∑ == 1

)(
 

(5) 

 

n

eSum
n

i Ti

tER
∑ == 1

)(
 

(6) 

 
Backtracking: A user that goes to a function or part of the application and then 

rapidly returns to his original place, or rapidly leaves without accomplishing any task 

negatively impacts efficiency. This can be measured for a given time threshold, for a 

particular user group or for all users. A user currently at node n, or function n, and 

moves to node n+1, and does not surpass the time threshold, and the goes back to 

node n, then increase count  by 1 for that node n, n+1 pair. This is calculated as 

backtracks/session, or backtracks/task completed where n is the number of sessions or 

task, and Sum(b) represents the total number of backtracks by a user/user group in the 

i
th
 session (S, shown below) or task (T): 

n

bSum
n

i Si

sBR
∑ == 1

)(
 

(7) 

Help usage: Using online help can be positive or negative for usability. If used 

frequently, this means that the application is not intuitive or not easily understood. 

Yet, accessing online help and finding what is needed can also be considered positive. 

This can be measured as number of accesses, time per access, per session per user or 

user group.  Using our User access notation, and then all accesses to help from node n 

are counted for node n. This is calculated as help/session, or help/task completed 

where n is the number of sessions or task, and Sum(h) represents the total number of 

help accesses made by a user/user group in the i
th
 session (S, shown below) or task 

(T): 

n

hSum
n

i Si

sHR
∑ == 1

)(
 

(8) 

 



Unused: Using the user access notation above, this tracks the nodes or functions of 

the application that are never or seldom used. This indicates that this part of the 

application is either difficult to use or has limited value, or has limited users who want 

or need this function. This is measured by taking nodes least visited (using a less than 

threshold per time period) for a user or user group.  This is calculated as 

unused/session, or unused/task completed where n is the number of sessions or task, 

and Sum(h) represents the total number of unused nodes by a user/user group in the ith 

session (S, shown below) or task (T): 

n

uSum
n

i Si

sUR
∑ == 1

)(
 

(9) 

 

Efficiency. Efficiency means how fast the task can get done taking into account the 

resources expended. Efficiency factors are tracked over the time dimension and user 

dimension.  

Task length: Longer paths to complete a given task negatively affect efficiency in the 

same context. Using our User path notation method above, we take the average 

number of dimensions for the paths in the application in the time and user dimensions.  

Although we have not completed our experiments, we expect the task length follow a 

normal distribution. Using this assumption, if a given task can be completed on 

average of 5 nodes and  less than one standard deviation below the average, for 

example, less than or equal to 3 nodes (if std. dev = 2) ,we can assign a good rating or 

100% . On the other hand, one standard deviation higher than the average, greater 

than 7 nodes, is unacceptable and will get 0% score. To find the score value for in 

between values of 3 to 7, we use interpolation as shown in Table 2 for a user 

completing a task in 6 nodes: 

 

Table 2. Nodes to Complete task & Score Relationship 

 Nodes Score  

X1 3 100% Y1 

X2 X2 Y2 Y2 

X3 7 0% Y3 

 

In the table above we can see that for 3 nodes the score is 100% and for 7 nodes the 

score is 0%. To find the score (Y2) for 6 clicks (X2) we use the following expression 

which in our example yields 0.25 (25%) for 6 clicks: 

4

27
2

12

13

12

13

x
y

xx

xx

yy

yy

−
=

−

−
=

−

−

 

(10) 

Function time: The amount of time spent on any particular node or function could 

indicate the complexity of that part of the application, or value provided to users. 



Frequent paths indicate often executed tasks which should be analyzed for task speed. 

By measuring the task speed or time spent during a function, the standard deviation 

across users indicates the diversity of the user group.  We utilize our User path 

notation to sum the time spent for a path in both user and time dimensions or the User 

access notation to sum the time access per node/session across user and time 

dimensions and compare this to the time spent in the entire application. Let tm,n = time 

for function m or path m (to complete a task), for user n, then: 

FTm =∑
=

n

i
imim

at
1

,,
. 

(11) 

This is the total time for all users for each function  or path m.  Then we can get the 

average by: 

FTavg=FTm /n . (12) 

 

Learn-ability. According to ISO 9126, learnability is the capability of a software 

product to enable the user to learn how to use it.  Over time, if the application is 

highly learn-able, this time will decrease for returning users.  The rate of decrease 

over a time period tells us the user’s speed of learning. For instance, decreasing task 

speed by 20 percent in 10 days is much better than improvement by the same amount 

over 2 months. A user can not keep getting faster and faster, but if they initially have 

great speed increases, this indicates the user learned that task quickly and can find the 

appropriate functions with decreasing effort. Therefore, measuring rate of change over 

time rather is more important than pure speed in itself. 

Learning rate: As users become more familiar with an application, they can get the 

same task done faster. This is measured by the rate at which their speed increases over 

identical paths. By first taking the paths with the highest frequency usage from our 

User path analysis, then we measure the time for each these paths, and after a fixed 

time period, we measure the speed again to get the difference/time period. This can be 

measured in the user and time dimension. Using the same notation from function time, 

we use the difference over a time period T for a path m for measurements taken at 

time t1 and t2. 

LR=(FTavg(t1)- FTavg(t2))/T. (13) 

 

Task time deviation: Lower standard deviation across user groups for a given task 

indicates inexperienced or novice users can catch up and learn quickly and therefore 

be able to complete a task the same as an expert user.  As time progresses, a new 

novice user should catch up to an expert user quickly if the application is easily 

learned. In contrast, measurements of high deviation indicate poorer learn-ability.  

This is measured using our User path method and over the time and user dimensions. 

Using our previous definitions with n = number of measurements, and X representing 

individual measurements of FTm. 



FTstd= 1

)(
2

−

∑ −

n

avg
FTX

 

(14) 

 
Short path:  Similar to backtracking, a node where a user often stops and exits the 

application may indicate a mistake, or confusion. Using our User path method, we fix 

a short path threshold according to the number of dimensions and then a time 

threshold. For instance, by setting dimension threshold to 2 and time threshold to 2 

seconds, we take all paths that have only 2 nodes, with less than 2 seconds spent at 

node 2.  This is calculated as short paths/session, or short paths /task completed where 

n is the number of sessions or task, and Sum(sp) represents the total number of help 

accesses made by a user/user group in the i
th
 session (S, shown below) or task (T): 

 

n

spSum
n

i Si

sSP
∑ == 1

)(
 

(15) 

 

Note that our layered usability model as shown in Figure 2 has dotted lines from the 

Application Design and Environment depicting that these elements influence the 

factors above and some factors may be measurement elements of more than one 

usability component. This is a work in progress as there are several steps left to 

finishing the model including: 

• Normalizing each factor input 

• Determining an overall calculation method for usability 

• Determining which measurement elements impact more than one usability 

component as shown by the solid arrows in our model 

• Verifying each factor’s logic through survey or other means 

5 Measurement and Data Collection Methodology 

As researched by Martin [13], we identify users by using a session ID which 

enables us to identify a unique user. Then, implementing our methodology is done 

iteratively where start with inserting code into the application under study.  We begin 

collecting data into our User path and User access matrices which tell us which paths 

and nodes need to be analyzed the most. Then we analyze the data using our 

calculations for each factor.  After doing our calculations, we can determine the need 

for further calculations and what paths to analyze further and then go back and revise 

the data we are collecting or insert more code into the different parts of that path, 

including the separate functions inside the application. Data can then be analyzed in 

many dimensions and aggregations depending on our data schema design. In the 

process of analysis, we may find other factors that should be calculated or others 

currently in the model that should be eliminated. 



6 Summary and Future Work 

The main contributions of the paper are a model for determining usability for web 

applications from an end user perspective combined with measurement methods to 

determine benchmark measurements of usability for web applications. We use the 

term benchmarks because any measurements must be done within domain context of 

different web applications or for different versions of the same application.   

In the future, we need to verify and normalize calculations, and develop an overall 

calculation for usability based on each factor calculated. Each measured factor may 

also impact more than one component of usability. For instance, navigational 

complexity may impact both effectiveness and efficiency. This will require several 

experiments with different applications in the same domain in order to validate and 

perfect our model and measurement methods.  

7 References 

1. Massey, Khatri, and Montoya-Weiss, Online Services, Customer Characteristics and 

Usability Requirements, Proceedings of the 41st Hawaii International Conference on 

System Sciences 2008. 

2. Palmer, J. (2002). Web Site Usability, Design and Performance Metrics, Information 

Systems Research 13(2): 151-167. 

3. Zhang, P., Von Dran, G.M. (2000). Satisfiers and dissatisfiers: A two-factor model for 

website design and evaluation. Journal of the American Society for Information Science 

51(14): 1253-1268. 

4. Wu, Offutt, Modeling and Testing Web Applications, 2002. 

5. Bruno, V., Tam, A., Thom. J. (2005). Characteristics of web applications that affect 

usability: a review. In ACM International Conference Proceeding of the 17th Australia 

conference on Computer-Human Interaction (HCI’05) (pp. 1-4).  

6. Ahmad, Zhang, and Azam, Measuring ‘Navigational Burden’, Proceedings of the Fourth 

Int’l, Conf. on Software Engr. Research, Management and Applications, 2006. 

7. Abran, Khelifi, and Suryn, Usability Meanings and Interpretations in ISO Standards, 

Software Quality Journal, 2003-11, 325-338. 

8. Frokjaer, Hertzum, Hornbaek, Measuring Usability: Are Effectiveness, Efficiency, and 

Satisfaction Really Correlated?, SIGCHI conference on Human factors in computing 

systems 2000, 345-352. 

9. Kappel et al., The Discipline of Systematic Development of Web Applications, 2003, John 

Wiley and Sons. 

10. Abrahao, Pastor, and Olsina, A Quality Model for Early Usability Evaluation, Int’l 

COST294 WS UIQM, 2005.  
11. Lowe, Web system requirements: an overview, Requirements Eng (2003) 8: 102–113. 

12. Bevan, Macleod, Usability Measurement in Context, Behavior and Information 

Technology, 1994 Vol. 13, Pages 132-145. 

13. Martin, Usability Analysis and Visualization of Web 2.0 Applications, 10th IEEE 

International Symposium on Web Site Evolution, 2008, 121-124. 

14. Song et al., An Efficient and Multi-purpose Algorithm Form in Weblogs, International 

Conference on Computer Networks and Mobile Computing, 2001. 

15. Wikipedia, Hamming Distance, 31, May 2009, 

http://en.wikipedia.org/wiki/Hamming_distance. 


