
ReCycle: Resolving Cyclic Dependencies in Dynamically
Reconfigurable Aspect Oriented Middleware

Bholanathsingh Surajbali, Paul Grace and Geoff Coulson
 Computing Department,

Lancaster University

Lancaster, UK

{b.surajbali, p.grace geoff} @comp.lancs.ac.uk

ABSTRACT

In aspect-oriented middleware systems, the aspect modules are

typically composed as chains of aspects within the connectors (or

bindings) that join the base software components. However, this

approach can lose or hide information about the dependencies

between multiple aspects in the chain; this is particularly

important when dynamically reconfiguring such a system at run-

time. Without knowledge of these dependencies the system could

reconfigure a new aspect with a dependency to a prior aspect in

the chain resulting in a cyclic dependency and subsequent

deadlock. Furthermore, the problem is harder to detect with the

presence of remote aspects within the connectors as their

dependencies are hidden across address spaces. To resolve cyclic

dependencies that may occur when reconfiguring both local and

remote aspects we propose the use of a reconfiguration cyclic

dependency resolution (ReCycle) model. This approach can be

employed generally in dynamic AOP middleware platforms, and

in this paper we evaluate it within the AO-OpenCom middleware.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: D.2.11 Software Architectures

– Languages (interconnection), Patterns.

General Terms
Design, Management

Keywords

Middleware, dependency, aspect, dynamic reconfiguration.

1. INTRODUCTION
Aspect-oriented middleware platforms provide solutions to create

distributed component-based systems into which aspect modules

representing cross-cutting concerns can be woven. Aspects are

made up of individual code elements that implement the concern

(advices), which are deployed at multiple positions in a

distributed system (join points) that are expressed by pointcuts—a

particular form of composition language. AO-OpenCom[11],

AspectOpenCom[4] ,CAM/DAOP [3], FAC [9], FuseJ [13],

DyMAC [5], and DyReS [14] are examples of aspect-oriented

middleware which allow aspects to be composed and adapted at

runtime. The aspect runtime composition of aspects in such AO

middleware platforms differs from the standard component to

component binding (where there is a direct reference from the

provided interface to the required interface). In these AO

middleware aspects are advice components which are woven non-

invasively at their connector (between the required and provided

interfaces of the base software components) in advice chains with

the aspect reference stored in the advice chain. Then, the aspects

are invoked from the connector chain when a call or execution

occurs from the call or execution of the provided or required

interface.

Unlike components, the dependency of an aspect to another

aspect is not explicitly defined, such that an aspect within a chain

may have a dependency with another aspect located earlier in the

chain, and cause a cyclic dependency while performing

reconfiguration. The potential problem of cyclic dependency is

that it may cause the running system to enter into a deadlock after

performing reconfiguration, when an invocation occurs at the join

point. The cyclic dependency problem is hard to detect since an

AO-Connector, maintains both local and remote advices. For an

AO-Connector containing solely local advices, inspection of the

AO-Connector can reveal the possibility of cyclic dependencies.

However, this is non-trivial when the AO-Connector contains

both local and remote advices, since for remote advices the

visibility of the methods invoked by remote advices is located in

the remote address space from where the AO-Connector is.

In this paper, we present a reconfiguration cyclic dependency

resolution (ReCycle) model for dynamic aspect-oriented,

component-based middleware; this provides the capability to

describe the various kinds of built-in dependency inconsistencies

that affect aspect configuration and reconfiguration at runtime.

This is coupled with a graph-based tool which detects and

resolves cyclic dependency inconsistencies at run-time while

reconfiguration is performed.
We evaluate our approach within the AO-OpenCom platform

for developing dynamic reconfigurable middleware solutions; this

demonstrates the following contributions of our approach:

• Resolution of reconfiguration cyclic dependency. We show

that cyclic dependency inconsistencies can be resolved for one

case-study with minimal performance overhead.

• Transparency. We apply consistent reconfiguration with

minimal developer effort or change to the underlying

component model.

• Flexibility. New dependency consistency can be described

dynamically to evolve with the running application or domain

context without breaking the implementation details of the

instantiated aspect. Moreover, the approach can be applied in

different compositions approaches and tools; for example we

show how both node-local and distributed reconfiguration

cyclic dependency consistency can be avoided in this paper.

The remainder of this paper is organised as follows. Section 2

examines the types of aspect reconfiguration cyclic dependency

that may occur. Then, section 3 describes the design of our

ReCycle model, followed by section 4 which validates the

proposed ReCycle model. Finally we describe related work in

section 5 and offer our conclusions in section 6.

2. ASPECT RECONFIGURATION
In aspect-component middleware, aspects (which are themselves

implemented as component modules) are composed with the base

components (hereafter termed components) using AO-Connectors

[4, 8, 11, 12, 14]. AO-Connectors are the architectural element

offering aspectual composition (weaving) of aspects between a

receptacle and a provided interface of components. AO-

Connectors maintain the meta-data containing references to

aspects instances in an advice chain. For example, it maintains

details of all advised aspects and their types and allows these to be

queried to determine the operations they support and the aspects

currently advising them. It also supports the runtime manipulation

of the chain to add a new advice, or remove or reorder aspects in

the chain of advices.

Figure 1: Aspect-Component Model

A list of advices is attached to the connector between the required

and the provided interface. This capability is illustrated in Figure

1, which shows a caller component connected to a callee

component, and an AO-Connector containing a list of aspects that

get called. Where a call comes from the caller component (arrows

marked CR) then the aspects in the chain are executed first or

otherwise in case an execution is triggered from the Callee

component, the aspect chain is executed in the reverse order, as

highlighted with arrows marked CE) in Figure 1.

We now identify and classify the types of dependency

inconsistencies that can occur in the aspect-component model.

2.1 Use case scenario
To motivate the requirement to resolve cyclic dependency for AO

reconfiguration we present its occurrence within the distribution

framework stack. The AO composition is as follows (see Figure

2): when the message handler is called on the communication

module, the following aspects are enforced, before the execution

of the communication module operation:

i.) Selecting the format of transportation. Format selection

handles the formatting of the message such that it can be

serialised and deserialised for remote invocations and replies.

ii.) Selection of the transportation. Transport selection creates a

transport listener and transport request and binds them to a

socket.

iii.) Deployment handler for the message transfer. The

deployment handler creates the skeleton and binding for the

message transfer as well extracting the object name in the

URI to lookup the correct instance in case of a normal

method call.

Figure 2: Distribution Stack AO Composition scenario

Whenever, the Message Handler component calls the

Communication Module, the list of advices within AO-Connector

chain gets invoked and executed in the following order:

 Format Selection Aspect → Transport Selection Aspect →

Deployment Handler Aspect.

2.2 Cyclic Dependency Occurrence
To cope with the application and environmental demand the

following two dynamic (re)configurations may be required: (i)

new users with limited bandwidth may join, requiring a

Compression aspect to be configured to split data before being

sent; (ii) data may be required to be encrypted using a Security

aspect to protect the users’ privacy.

 Figure 3: Reconfiguration with Cyclic Dependency

Occurrence

The reconfiguration proceeds by weaving the Compression Aspect

after the Deployment Handler Aspect in the AO Connector chain

and the Security Aspect woven after the compression aspect in the

chain, as illustrated in Figure 3. However, both the Compression

aspect and the Security Aspect may have a dependency on the

Format Selection aspect prior to the reconfiguration, causing

cyclic dependencies to occur at the AO Connector such that calls

may not return back to the Security Aspect, causing a deadlock to

occur if the reconfiguration is allowed to proceed. The cyclic call

dependency for Figure 3 when called proceeds as follows:

Format Selection Aspect → Transport Selection Aspect →

Deployment Handler Aspect → Compression Aspect → Format

Selection Aspect.

A more complicated cyclic dependency occurrence is when

remote aspects are attached to the AO-Connector. In the case of

remote aspects, they may have dependencies with other aspects

located on different address spaces, causing the dependency to be

unnoticed while performing reconfiguration.

2.3 Analysis
An aspect represents a crosscutting functionality that may be

referenced and shared by other software modules in a running

system. That is AO middleware typically just add/reconfigure at

runtime without knowledge of the chain or taking into

consideration the existing aspects dependencies that may already

be present. So doing, as described above, can potentially lead to

cyclic dependencies. Furthermore, creating two versions of the

aspect by replicating the aspect functionality is not a feasible

solution either and can potentially result in an exponential growth

in versions of the same aspect. To solve the above problems, we

propose the ReCycle model.

3. ReCycle: RECONFIGURAION CYCLIC

DEPENDENCY RESOLUTION MODEL
In this section we describe our ReCycle model to support the

detection of cyclic dependencies that may result in the

configuration and reconfiguration of aspects as well as its

resolution by supporting the following dimensions: (i) describing

aspect dependency; (ii) attaching metadata to entities in the

aspect-component model; (iii) using graph based detection with a

resolution engine capable of parsing the AO-Connector to detect

the occurrence of any cyclic dependency inconsistencies. Each of

the dimensions is now examined in turn.

3.1 Aspect Dependency Metadata
In order to detect cyclic dependencies each aspect-component is

attached with metadata that describes and explains its

functionality as well as the dependency they may have on other

aspect-components. This is used to inform the deployment of the

aspect—i.e. to help manage compositional and reconfiguration

cyclic detection between aspect-components in the aspect-

component model as illustrated. These descriptions are written by

the AO middleware developer in the format as illustrated in the

BNF form of Figure 4.

Figure 4: ReCycle Model BNF Metadata representation

The aspect-instance defines the aspect-component instance aspect

scope, list of aspect required interfaces of the aspect-component

instance and list of provided interfaces for the aspect-component.

Aspect-dependency defines the list of aspect-instance aspect-

type to which the aspect is dependent on as well as the AO-

connector to which it is currently bound with.

The aspect scope refers to the aspect-component instance of

whether it is deployed on the local host, or is remote.

The AO-Connectors tag refers to the list of connectors to

which the aspect-component instance or type is bound with. This

can be zero in case there is no connection dependency for the

aspect-component.

3.2 Attaching Metadata
As described in our previous work in [12] tagged metadata needs

to be kept separate from the main source functionality. This is

because:

1. aspect-components are considered as black-boxes which

provide advices in the form of operations within the provided

interface (but hide their implementation);

2. aspects represent crosscutting functionality such that adding

descriptions by extending the implementation, e.g. through a

new interface, will restrict its applicability to different

applications and domains because it couples the consistency

checking with the aspect-component functionality.

Keeping metadata separate allows both the core functionality and

metadata to be reconfigured independently and transparently from

each other.

Metadata is attached to the aspect-component interfaces and

receptacles at load-time, as they are the only access points

available to other aspect-components to be inspected and inform

runtime decisions. Then to provide for runtime reconfiguration,

since aspect-components are invoked through their operations,

aspect-component operations also need to be annotated. This is

because when reconfiguration is performed at runtime, already

woven aspect metadata might be required to detect cyclic

dependencies at the join point the aspect is accessed via its

operations.

3.3 ReCycle Model
A ReCycle model provides the tool to query and reason about the

annotated aspect-components; and resolve possible sources of

cyclic inconsistency that may result from a dynamic

reconfiguration. The latter retrieves the associated aspect-

component metadata as illustrated in Figure 5, by getting the

annotation file path from the aspect-component and parsing the

Aspect Metadata file (retrieved from the Aspect Metadata

Repository) to extract respective dependencies tags for the aspect-

component (structured as described by the BNF Cycle Metadata

representation from Figure 4). Then, the ReCycle model builds a

graph using the aspect-component instance and its dependencies if

they are connected for the corresponding AO-Connector involved

with the reconfiguration. After the graph is built, the graph is

traversed from the root, the aspect-component contained in the

first-order to the end of the graph.

In case the validation is successful the reconfigured AO-

Connector, chain list is first stored in a reconfiguration repository

having transactional capabilities and the reconfiguration is then

allowed to proceed. However, in case of any cyclic dependency

issue found, based on the composition policy, two alternative

remedy actions can be taken by the ReCycle model in terms of:

either the ReCycle Configurator stopping reconfiguration from

proceeding by calling the rollback operation to drive the system to

the state prior to when the reconfiguration started by restoring the

AO-Connector chain from the reconfiguration repository; or if

appropriate resolution policies are specified these can be deployed

by the ReCycle model and the reconfiguration can proceed (e.g.

removing the cyclic connector or adding a null binder to return

the call and exiting the cyclic loop). If a connector is removed or

updated, the associated AO-Connector meta data is updated for

the respective aspect-component (by updating the aspect

component associated AO-Connector tag meta data).

Moreover, to avoid the potential occurrence of semantic

interactions, the Semantic Resolution model from [12] may be

called by the ReCycle model to reason about the resolved

reconfiguration interaction. In case a semantic conflict is detected

and no policies are defined, the reconfiguration gets aborted by

calling the rollback operation. Otherwise if appropriate resolution

is defined, the semantic valid reconfiguration is allowed to

proceed while ensuring with the ReCycle model it does not result

in any cyclic dependencies.

Figure 5: ReCycle model to resolve Cyclic Dependency

4. VALIDATION
In this section we validate our approach using AO-OpenCom

[11]. We first provide some background on AO-OpenCom and

then validate the extent to which our ReCycle model achieves the

stated goals of cyclic dependency resolution, transparency and

flexibility. Finally we measured the performance and resource

overhead of deploying the ReCycle model.

4.1 AO-OpenCom
The purpose of AO-OpenCom is to build on OpenCom and its

associated reflective meta-models and component frameworks

architectures [2], to provide a distributed AO composition service,

and to allow aspectual compositions to be dynamically

reconfigured. The programming model employs components to

play the role of aspects—i.e. an aspect is simply an OpenCom

component. The AO-OpenCom aspect framework comprises a set

of components that are instantiated across each host. The set of

components is as follows (see Figure 6):

The Configurator manages the other components in the

framework as it is responsible for accepting and handling

(re)configuration requests that will apply to a set of hosts. The

Configurator also caches join point information it receives from

Pointcut-Evaluators in case similar behaviour needs be applied in

the future. The Aspect-Repository holds a set of instantiable

aspect-components e.g. the cache aspect, encryption aspect, etc.

The Pointcut-Evaluator evaluates the pointcuts provided by

the Configurator and returns a list of the matching join points

found within the local address space. Finally, the Aspect-Handler

acts on instructions from the Configurator to weave advices at

join points as well as supporting the invocation of remote aspects.

The main API provided by an AO-OpenCom-enabled instance

for AO (re)configuration is as follows:

Configurator.reconfigure(pc, command, aspect);

 The pc argument specifies a pointcut that picks out the join

points in the target nodes at which the desired reconfiguration

should occur. The command argument offers options for the

action to be taken at the indentified join points: the ‘add’ action is

used to weave the specified aspect at the join points; ‘remove’ is

used to remove it, and ‘replace’ is used to add the specified aspect

after removing an existing aspect of the same type that is assumed

to be already there. The aspect argument can be a direct reference

to a local aspect-component, or an indirect reference to an aspect

stored in an Aspect-Repository, or a reference to an already-

instantiated remotely-accessible singleton aspect. The aspect

weaving order and the type of aspect in terms of (before, after,

around) are also specified in the aspect argument.

Figure 6: AO-OpenCom platform Architecture

4.2 Applying the ReCycle Model to AO-

OpenCom
To ensure semantic consistency, the ReCycle model and the

Composition-Policy modules are both encapsulated as aspects and

woven at the AO-connector component join point connecting the

Configurator and the pointcut evaluator component as an ‘after’

advice in the AO-OpenCom platform. Moreover, the Aspect

Metadata file of the ReCycle model is implemented in an XML

file with each aspect annotated with the path to the XML metadata

file.1

4.3 Qualitative Validation
To illustrate the ReCycle model preserving reconfiguration

consistency, we consider the use case scenario reconfiguration. To

1 Since AO-OpenCom also supports remote aspects [11], the respective URL path to

the XML file Annotation Metadata Repository is provided for remote aspects.

perform the reconfiguration outlined in Section 2.1, the

application developer would provide a reconfiguration request by

writing code as shown in Figure 7 (the code is simplified for

presentational purposes).

The Configurator.reconfigure() call takes the given pointcut

and aspect specifications and also specifies that the specified

aspect should be added. This reconfiguration specification

however fails to capture the cyclic dependency by adding the two

aspects at the AO Connector as shown in Figure 3.

Figure 7: Aspect Reconfiguration specification example

4.3.1 Resolution
The Security and Compression aspects in the AO-OpenCom

Application Repository is tagged with appropriate metadata

describing its dependencies on other aspect-components, that is:

the Security and Compression aspects interface is tagged with the

location path of the xml file containing the metadata having the

aspect-dependency tags specifying a corresponding Compression

and Security aspects each have a dependency with the Format

Selection aspect and with an active AO-connector.

When Configurator.reconfigure() is called on the

Configurator of one of the nodes (referred as the ‘initiator’), the

latter calls the Pointcut-Evaluator to locate all the target join

points. On returning the located join points, the ReCycle aspect

gets invoked. The latter evaluates the AO-Connector to build a

aspect dependency graph and using the annotation metadata from

the Format Selection aspect, the graph is updated to detect any

cyclic dependencies that may occur.

In this case, a cyclic dependency is detected such that the

Cyclic Resolution Dependency Engine checks with the

Composition Policy or any ‘condition-action’ policies to resolve

such a cyclic dependency.

The Composition-Policy aspect, as illustrated in Figure 8

specifies the ‘condition-action’ rules in terms if a cyclic

dependency is located and aspect-instance is Security aspect, and

the latter aspect has a dependency connection with a Format

Selection aspect, then the connection needs to be removed, as the

messages format are already set. (Otherwise if the connector

cannot be removed based on the Composition-Policy specification

then the reconfiguration is aborted to avoid the occurrence of

cyclic dependency.)

The Cyclic Resolution Dependency Engine aspect then

instructs the AdviceHandler to remove the AO-Connector

connecting the Security with the Format Selection aspect, thus

resolving any potential cyclic dependencies issue for this

reconfiguration scenario. In case remedy policies were not

specified, the reconfiguration would be aborted with the rollback

operation deployed for any changes.

 Figure 8: Composition Policy Example

4.3.2 Transparency
The approach naturally supports a selectively transparent

approach as the ReCycle aspect and the Composition-Policy

aspect can be pre-configured at application start-up time so that

the application developer who wishes to initiate a run-time

reconfiguration needs only to make the appropriate call to

Configurator.reconfigure(). This achieves complete transparency

of consistency-related mechanisms from the code to invoke a

reconfiguration. At the other extreme, the developer can be

explicit specifying the ReCycle and Composition-Policy aspects

should be put in place for each reconfiguration. In this case, both

aspects are woven on-the-fly (if they are not already present)

before proceeding to perform the requested reconfiguration. Note

that this extreme is still partially transparent as the developer is

protected from the low level details of actually weaving ReCycle.

4.3.3 Flexibility
The use of a separate Aspect Metadata file to attach dependencies

of the aspect-components allows new metadata updates to be

applied without having to recompile existing source-code.

Moreover, our approach adds the ReCycle as an independently-

deployable service which can be used for both local and

distributed reconfiguration. This means that ReCycle imposes no

overhead when it not used, and can be dynamically

woven/unwoven where and when required. We also believe that

the approach, being based upon applying metadata and behaviour

at common architectural elements (i.e. interfaces), can be applied

generally to other AOM not just AO-OpenCom; indeed we see

important future work in the deployment of our model in a wider

range of systems.

4.4 Overhead of ReCycle
We next evaluate the overheads incurred by ReCycle to perform

dynamic reconfiguration. The baseline for our experiments is as

follows; we reconfigure aspects at one join point using AO-

OpenCom without ReCycle (in this case there are no cyclic

dependencies to detect). This was performed as follows:

• the compression aspect and security aspect both instantiated

on a local aspect repository;

• the compression aspect instantiated on the same local node as

the join point (AO-Connector) and the security aspect

instantiated on a remote node;

• both the compression aspect and security aspect instantiated

on separate remote nodes from the join point.

Each node ran on a separate Core Duo 2 processor 1.8 GHz PC

with 2GB RAM, using the Java-based version of the AO-

OpenCom platform. Each measurement was repeated ten times

and the mean value was calculated to discount anomalous results.

The cyclic dependency algorithm used is the single-source

negative-weighted acyclic-graph shortest-path algorithm [6] and

the results of the experiment are shown in Table 1.

It can be observed that on a single node the use of ReCycle

added an average overhead of 5.6% when no conflicts where

managed; there was an extra 8 % when aspects with a cyclic were

woven on the node. The overhead of the ReCycle is mainly

attributed to the use of XML and the parsing of the file structure

before the proper metadata are retrieved, which accounts for the

extra overhead of using ReCycle when detecting cyclic

dependency.

Table 1. Overhead of using ReCycle in AO-OpenCom

Reconfiguration:

Reconfiguration Time in (ms)

Setup A Setup B Setup C

Without ReCycle 390 1356 2651

With ReCycle with no

cyclic dependency

411 1432 2810

With ReCycle with cyclic

dependency

442 1541 3024

Setup A – Security and Compression Aspect woven locally.

Setup B – Security as remote aspect and compression as local

aspect.

Setup C – Both Security and Compression woven as remote

aspects.

A final point to note is that overhead of the ReCycle is determined

by the cyclic graph detection algorithm. An optimised algorithm

detection could be used to reduce the induced overhead of

ReCycle in detecting cyclic dependency.

5. RELATED WORK
There are several cyclic dependency algorithms developed to

detect cyclic cycles among software modules at runtime. JooJ [7]

checks source code of java classes to detect for cyclic

dependencies among java classes. However, JooJ requires the

developer intervention to resolve the occurrence of any detected

cyclic dependencies. Our approach differs from Jool in that the

reconfiguration is entirely managed by the ReCycle Configurator

and in case of cyclic dependencies based on the attached metadata

the Configurator can apply appropriate resolution or rollback from

invalid reconfiguration without the developer assistance.

ByeCycle [15] is a tool that is very similar to JooJ in that it

checks for cycles among java packages. As a result only packages

on which classes depend on are analysed to detect cyclic

dependencies, such that internal invocations occurring within

classes are not detected. AOR [1] tackles cyclic referential

dependencies by reverting the dependency between modules such

that the references points in one direction only. However, this can

potentially lead to semantic interactions concerns, whereby one

aspect could be in mutually exclusive of another. ReDac [10] uses

a configuration framework to detect cyclic dependencies while

composing components. The configuration framework works for

multi-threaded component. However, the approach does not

detect cyclic dependencies in the connector component.

With respect to AOM platforms: CAM/DAOP [3], FAC [9],

FuseJ [13], DyMAC [5], and DyReS [14] none of the existing

platforms provide mechanisms to detect the occurrence of cyclic

dependency while composing and reconfiguring the platforms.

6. CONCLUSION AND FUTURE WORK
In this paper we have demonstrated the need to consider the

occurrence of cyclic dependencies in aspect chains to better

support and ensure consistent reconfiguration in dynamic AO

middleware. We have illustrated the ReCycle model, a general

approach for validating distributed dynamic reconfiguration,

catering for potential cyclic dependencies following a dynamic

distributed reconfiguration. Moreover, our solution does not

change the implementation of the aspect-component, which would

result in breaking the encapsulation of its functionality; this

allows aspects dependencies to be dynamically evolving without

changing the source-code of running aspects. The essence of our

approach is that ReCycle can be encapsulated as an aspect to

resolve any occurrence of cyclic dependency at configuration and

reconfiguration. This means that ReCycle model can be

independently woven and unwoven as required. We believe this

gives the approach strong flexibility and generality that will allow

it to be deployed in a number of AO-Middleware platforms not

just AO-OpenCom.

Turning to future work, we first plan to investigate extending

our approach to cover cyclic dependency in multi-threaded

aspects environments. Then, we also plan to integrate our

semantic resolution model [12] and the ReCycle model to ensure

consistent aspect reconfiguration when building large-scale

distributed middleware applications.

7. REFERENCES
[1] Apel, S., Kastner, C., Batory, D. 2008. Program refactoring

using functional aspects. In Proc. 7th Conference. on

Generative programming and component engineering. ACM

Press, New York, 161-170.

[2] Coulson, G., Blair, G., Grace, P., et al. 2008. A Generic

Component Model for Building Systems Software. In ACM

Transactions on Computer Systems, Volume 26, Issue 1,

February 2008. ACM Press, New York, Article 1.

[3] Fuentes, L., Pinto, M., Troya. J.M.. 2007. Supporting the

Development of CAM/DAOP Applications. In Journal

Software Practice & Experience John Wiley, Vol. 37. 21-

64.

[4] Grace, P., Lagaisse, B., et al. “A Reflective Framework for

Fine-Grained Adaptation of Aspect-Oriented

Compositions”. In Proceedings of 7th Software

Composition, 2008.

[5] Lagaisse, B. and Joosen, W. 2006. True and Transparent

Distributed Composition of Aspect-Component. In

Proceeding Middleware Conference. ACM Press, New

York, NY, 42-61.

[6] Lingas, A., Lundel, E., Efficient approximation algorithms

for shortest cycles in undirected graphs. In Elsevier

Publications Volume 109, Issue 10, 30 April 2009, 493-

498.

[7] Melton, H., Tempero, E., 2007. JooJ: real-time support for

avoiding cyclic dependencies. In Proc. conference on

Computer science. Vol. 62. ACM Press, New York, 87-95.

[8] Pawlak, R., Duchien, G., et al. 2004. JAC: an aspect-based

distributed dynamic framework. In Journal Software

Practice, Volume 34, Issue 12, 1119 - 1148.

[9] Pessemier, N., et al., “Component-based and Aspect-

oriented Systems”. In Proc. Software Composition, 2006.

[10] Rasche, A., Polze, A. ReDAC Dynamic Reconfiguration of

Distributed Component-Based Applications with Cyclic

Dependencies. In Proc. IEEE on OO Real-Time Distributed

Computing, 2008.

[11] Surajbali, B., Coulson, G., Greenwood, P., and Grace, P.

2007. Augmenting reflective middleware with an aspect

orientation support layer. In Proc. 6th Int. workshop

Adaptive and Reflective Middleware, ACM Press, Article 1.

[12] Surajbali, B., Grace, P and Coulson. G. 2009. Surajbali, B.,

Grace, P and Coulson. G. 2009. A Semantic Composition

Model to Preserve (Re) configuration Consistency in Aspect

Oriented Middleware. In Proc.8th International workshop

Adaptive and Reflective Middleware, ACM Press, Article 6.

[13] Suvee, D., et al., “A Symmetric and Unified Approach

Towards Combining Aspect-Oriented and Component-

Based Software Development”. In Proc. 9th International

SIGSOFT Symposium on CBSE, 2006.

[14] Truyen, E., Janssens, N, Sanen, F., et al., 2008. Support for

distributed adaptations in AOM. In Proc. of the 7th

Conference AOSD. ACM Press, New York, 120-131.

[15] Wuestefeld K., Rodrigo Oliveira, B., Beck, K.,

“ByeCycle”, http://byecycle.sourceforge.net/.

