
Denotational Semantics of the XML-λ Query
Language?

Pavel Loupal1 and Karel Richta2

1 Department of Computer Science and Engineering, FEL ČVUT
Karlovo nám. 13, 121 35 Praha 2

loupalp@fel.cvut.cz

2 Department of Software Engineering MFF UK,
Malostranske nam. 25, 118 00 Praha 1

richta@ksi.mff.cuni.cz

Denotational Semantics of the XML-λ Query

Language?

Pavel Loupal1 and Karel Richta2

1 Department of Computer Science and Engineering, FEL ČVUT
Karlovo nám. 13, 121 35 Praha 2

loupalp@fel.cvut.cz

2 Department of Software Engineering MFF UK,
Malostranske nam. 25, 118 00 Praha 1

richta@ksi.mff.cuni.cz

Abstract. In this paper, we define formally the XML-λ Query Lan-
guage, a query language for XML, that employs the functional data
model. We describe its fundamental principles including the abstract
syntax and denotational semantics. The paper basically aims for outlin-
ing of the language scope and capabilities.

1 Introduction

In this paper, we define formally the XML-λ Query Language, a query language
for XML, that employs the functional data model. The first idea for such an
attitude was published in [4]. This research brought in the key idea of a func-
tional query processing with a wide potential that was later proven by a simple
prototype implementation [6].

We can imagine two scenarios for this language; firstly, the language plays
a role of a full-featured query language for XML (it has both formal syntax
and semantics and there is also an existing prototype that acts as a proof-of-
the-concept application). In the second scenario, the language is utilized as an
intermediate language for the description of XQuery semantics. In [3] we propose
a novel method for XQuery evaluation based on the transformation of XQuery
queries into their XML-λ equivalents and their subsequent evaluation. As an
integral part of the work, we have designed and developed a prototype of an
XML-λ query processor for validating the functional approach and experiment-
ing with it.

2 XML-λ Query Language

In this section, we describe the query language XML-λ, that is based on the sim-
ply typed lambda calculus. As a formal tool we use the approach published in
? This work has been supported by the Ministry of Education, Youth and Sports under

Research Program No. MSM 6840770014 and also by the grant project of the Czech
Grant Agency (GAČR) No. GA201/09/0990.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 139–146, ISBN 978-80-7378-116-3.

140 Pavel Loupal, Karel Richta2 Loupal P., Richta K.

Richta’s overview of semantics [5]. For listing of language syntax, we use the Ex-
tended Backus-Naur Form (EBNF) and for meaning of queries the denotational
semantics [5].

2.1 Language of Terms

Typical query expression has a query part — an expression to be evaluated over
data — and a constructor part that wraps a query result and forms the output.
The XML-λ Query Language is based on λ-terms defined over the type system
TE as shown later. Lambda calculus, written also as λ-calculus, is a formal
mathematical system for investigation of function definition and application. It
was introduced by Alonzo Church and has been utilized in many ways. In this
work, we use a variant of this formalism, the simply-typed λ-calculus, as a core
for the XML-λ Query Language. We have gathered the knowledge from [7] and
[1]. Our realization is enriched by usage of tuples.

The main constructs of the language are variables, constants, tuples, projec-
tions, and λ-calculus operations — applications and abstractions. The syntax is
similar to λ-calculus expressions, thus the queries are structured as nested λ-
expressions, i.e., λ . . . (λ . . . (expression) . . .). In addition, there are also typical
constructs such as logical connectives, constants, comparison predicates, and a
set of built-in functions.

Language of terms is defined inductively as the least set containing all terms
created by the application of the following rules. Let T, T1, . . . , Tn, n ≥ 1 be
members of TE . Let F be a set of typed constants. Then:

1. variable: each variable of type T is a term of type T
2. constant: each constant (member of F) of type T is a term of type T
3. application: if M is a term of type ((T1, . . . , Tn) → T) and N1, . . . , Nn are

terms of the types T1, . . . , Tn,then M(N1, . . . , Nn) is a term of the type T
4. λ-abstraction: if x1, . . . , xn are distinct variables of types T1, . . . , Tn and

M is a term of type T , then λx1 : T1, . . . , xn : T1.(M) is a term of type
((T1, . . . , Tn)→ T)

5. n-tuple: if N1, . . . , Nn are terms of types T1, . . . , Tn, then (N1, . . . , Nn) is a
term of type (T1, . . . , Tn)

6. projection: if (N1, . . . , Nn) is a term of type (T1, . . . , Tn), then N1, . . . , Nn

are terms of types T1, . . . , Tn

7. tagged term: if N is a term of type NAME and M is a term of type T then
N : M is a term of type (E → T).

Terms can be interpreted in a standard way by means of an interpretation as-
signing to each constant from F an object of the same type, and by a semantic
mapping from the language of terms to all functions and Cartesian products
given by the type system TE . Speaking briefly, an application is evaluated as
an application of of the associated function to given arguments, an abstraction
’constructs’ a new function of the respective type. The tuple is a member of
Cartesian product of sets of typed objects. A tagged term is interpreted as a
function defined only for one e ∈ E. It returns again a function.

Denotational Semantics of the XML-λ Query Language 141Denotational Semantics of the XML-λ Query Language 3

3 Abstract Syntax

As for evaluation of a query, we do not need its complete derivation tree; such
information is too complex and superfluous. Therefore, in order to diminish the
domain that needs to be described without any loss of precision, we employ
the abstract syntax. With the abstract syntax, we break up the query into logi-
cal pieces that forming an abstract syntax tree carrying all original information
constitute an internal representation suitable for query evaluation. We introduce
syntactic domains for the language, i.e., logical blocks a query may consist of.
Subsequently, we list all production rules. These definitions are later utilized in
Section 4 within the denotational semantics.

3.1 Syntactic Domains

By the term syntactic domain, we understand a logical part of a language. In
Table 1, we list all syntactic domains of the XML-λ Query Language with their
informal meaning. Notation Q : Query stands for the symbol Q representing a
member of the Query domain.

Q : Query XML-λ queries,
O : Option XML-λ options – XML input attachements,
C : Constructor XML-λ constructors of output results,
E : Expression general expressions, yield a BaseType value,
T : Term sort of expression, yield a BaseType value,
F : Fragment sub-parts of a Term,
BinOp : BinOperator binary logical operators,
RelOp : RelOperator binary relational operators,
N : Numeral numbers,
S : String character strings,
Id : Identifier strings conforming to the Name syntactic rule in [2],
NF : Nullary identifiers of nullary functions (subset of Identifier),
Proj : Projection identifiers for projections (subset of Identifier).

Table 1. Syntactic domains of the XML-λ Query Language

3.2 Abstract Production Rules

The abstract production rules listed in Table 2 (written using EBNF) connect
the terms of syntactic domains from the previous section into logical parts with
suitable level of details for further processing. On the basis of these rules, we
will construct the denotational semantics of the language.

4 Denotational Semantics

For description the meaning of each XML-λ query, we use denotational seman-
tics. The approach is based on the idea that for each correct syntactic construct
of the language we can define a respective meaning of it as a formal expression in

142 Pavel Loupal, Karel Richta4 Loupal P., Richta K.

Query ::= Options Constructor Expression
Constructor ::= ElemConstr + | Identifier+
ElemConstr ::= Name AttrConstr ∗ (Identifier | ElemConstr)
AttrConstr ::= Name Identifier
Expression ::= Fragment
Fragment ::= Nullary | Identifier | Fragment Projection

| SubQuery | FunctionCall | Numeral | String | Boolean
Term ::= Boolean | Filter | ’not’ Term | Term BinOper Term
Filter ::= Fragment RelOper Fragment
SubQuery ::= Identifier + Expression
BinOper ::= ’or’ | ’and’
RelOper ::= ’<=’ | ’<’ | ’=’ | ’!=’ | ’>’ | ’>=’
Numeral ::= Digit+ | Numeral ′.′ Digit+
Digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’
Identifier ::= Name
Projection ::= Identifier
Nullary ::= Identifier

Table 2. Abstract production rules for the XML-λ Query Language

another, well-known, notation. We can say that the program is the denotation of
its meaning. The validity of the whole approach is based on structural induction;
i.e, that the meaning of more complex expressions is defined on the basis of their
simpler parts. As the notation we employ the simply typed lambda calculus. It is
a well-known and formally verified tool for such a purpose.

4.1 Prerequisites

The denotational semantics utilizes a set of functions for the definition of the
language meaning. For this purpose, we formulate all necessary mathematical
definitions. We start with the data types and specification of the evaluation
context followed by the outline of bindings to the TE type system. Then, all
auxiliary and denotation functions are introduced.

Data Types. Each value computed during the process of the query evaluation is
of a type from Type. Let E be a type from the type system TE , we define Type as:

Type ::= BaseType | SeqType
SeqType ::= ⊥ | BaseType× SeqType
BaseType ::= E | PrimitiveType
PrimitiveType ::= Boolean | String | Number

Primitive types, Boolean, String, and Number, are defined with their set of
allowed values as usual. The type SeqType is the type of all ordered sequences
of elements of base types3. We do not permit sequences of sequences. The symbol
⊥ stands for the empty sequence of types – represents an unknown type. More

3 We suppose usual functions cons, append, null, head, and tail for sequences.

Denotational Semantics of the XML-λ Query Language 143Denotational Semantics of the XML-λ Query Language 5

precisely, we interpret types as algebraic structures, where for each type τ ∈ Type
there is exactly one carrier Vτ , whose elements are the values of the respective
type τ .

Variables. An XML-λ query can use an arbitrary (countable) number of vari-
ables. We model variables as pairs name : τ , where name refers to a variable
name and τ is the data type of the variable – any member of Type. Syntactically,
variable name is always prepended by the dollar sign. Each expression in XML-λ
has a recognizable type, otherwise both the type and the value are undefined.

Query Evaluation Context. During the process of query evaluation we need to
store variables inside a working space known as a context. Formally, we denote
this context as the State. We usually understand a state as the set of all active
objects and their values at a given instance. We denote the semantic domain
State of all states as a set of all functions from the set of identifiers Identifier
into their values of the type τ ∈ Type. Obviously, one particular state σ : State
represents an immediate snapshot of the evaluation process; i.e., values of all
variables at a given time. We denote this particular value for the variable x as
σ[[x]]. Simply speaking, the state is the particular valuation of variables. We use
the functor f [x ← v] for the definition of a function change in one point x to
the value v.

4.2 Auxiliary Functions

For the sake of readability improvement, we propose few semantic functions, de-
noted as auxiliary, that should make the denotations more legible. We introduce
functions: isIdent — returns true iff its argument denotes an variable identifier
in a given State, typeOf — returns a type of given argument (one type from the
Type set), valueOf — returns a typed value of an expression, bool — evaluates
its argument as a Boolean value, num — converts its argument into a numeric
value, and str — converts its argument into a string value.

Each expression e has a distinguished type in a state σ. The type can depend
on the state because an expression can contain variables. This type is available
by calling the typeOf semantic function defined in Table 3.

typeOf : Expression × State → Type

4.3 XML Schema-Specific Functions

For utilization of the features offered by the XML-λ Framework we propose
a number of functions working with information available in the type system.
These functions help us to access an arbitrary data model instance. An applica-
tion is informally used for accessing child elements of a given one. More formally,
it is an evaluation of a T -object specified by its name. A projection is generally
used for selecting certain items from a sequence. A nullary function. A T -nullary
function returns all abstract elements from ET . Root Element Access is a short-
cut for a common activity in the XML world — accessing the root element of
an XML document. We type it as a constant of a given type from TE .

144 Pavel Loupal, Karel Richta6 Loupal P., Richta K.

typeOf [[e]](σ) =





⊥ if e is a nullary fragment
Boolean if e ∈ νBoolean

(e is a constant of the type Boolean)
Numeral if e ∈ νNumeral

(e is a constant of the type Numeral)
String if e ∈ νString

(e is a constant of the type String)
τ if isIdent[[e]](σ) and σ[[e]] : τ

(e is a variable of the type τ)
Boolean if e is a relational fragment (filter)

e1 RelOper e2

Boolean if e is a logical expression
e1 BinOper e2, or not e1

Table 3. Types of general expressions

appXMLDoc : E → SeqType
projXMLDoc : SeqType × τ → SeqType
nullXMLDoc : E × T → SeqType
rootXMLDoc : E

4.4 Signatures of Semantic Functions

Having defined all necessary prerequisites and auxiliary functions (recalling that
the SeqType represents any permitted type of value), we formalize semantic
functions over semantic domains as

SemQuery : Query → (XMLDoc → SeqType)
SemOptions : Options→ (State → State)
SemExpr : Expression→ (State → SeqType)
SemTerm : Term → (State → Boolean)
SemFrag : Fragment → (State → SeqType)
SemRelOper : Fragment×RelOper × Fragment→ (State → Boolean)
SemBinOper : Term×BinOper × Term→ (State → Boolean)

4.5 Semantic Equations

We start with the semantic equations for the expressions. Each expression e has
a value SemExpr[[e]](σ) in a state σ. The state represents values of variables. The
result is a state, where all interesting values are bound into local variables.
Resulting values are created by constructors. A constructor is a list of items
which can be variable identifier or constructing expression. Resulting values can
be created by element constructors. Elements can have attributes assigned by
attribute constructors.
Options and Queries. The only allowed option in the language is now the speci-
fication of input XML documents. We explore a function Dom(X) that converts
input XML document X into its internal representation accessible under iden-
tification X#. A query consists of query options, where input XML documents

Denotational Semantics of the XML-λ Query Language 145Denotational Semantics of the XML-λ Query Language 7

SemTerm[[B]] = λσ : State.bool[[B]] if B is a constant of the type Boolean

SemTerm[[F1 RelOp F2]] = λσ : State.SemRelOper[[F1 RelOp F2]]σ

SemTerm[[′not′ T]] = λσ : State.not(SemTerm[[T]]σ)

SemBinOper[[T1 ’or’ T2]] = λσ : State.(SemTerm[[T1]]σ or SemTerm[[T2]]σ)

SemBinOper[[T1 ’and’ T2]] = λσ : State.(SemTerm[[T1]]σ and SemTerm[[T2]]σ)

SemTerm[[T1 BinOper T2]] = λσ : State.SemBinOper[[T1 BinOper T2]]σ

Table 4. Semantic equations for terms, relational and binary operators

SemAttrConstr[[N I]]σ = attribute(N,SemExpr[[I]]σ)

SemElemConstr[[NA1...AnI]]σ =

= element(N,σ[[I]], SemAttrCons[[A1]]σ, ..., SemAttrCons[[An]]σ)

SemElemConstr[[NA1...AnE]]σ =

= element(N,SemExpr[[E]]σ, SemAttrCons[[A1]]σ, ..., SemAttrCons[[An]]σ)

SemElemConstr[[N I]]σ = element(N, σ[[I]], nil)

SemElemConstr[[N E]]σ = element(N,SemExpr[[E]]σ, nil)

SemCons[[E1E]]σ = append(SemElemCons[[E1]]σ, SemCons[[E]]σ)

SemCons[[I1E]]σ = cons(σ[[I1]], SemCons[[E]]σ)

SemCons[[]]σ = nil

Table 5. The semantic equation for constructors

SemF rag[[Null]] = λσ : State.nullXMLDoc[[Null]]

SemF rag[[Id]] = λσ : State.σ[[Id]]

SemF rag[[f(E1, ..., En)]] = λσ : State.f(SemExpr[[E1]]σ, ..., SemExpr[[En]]σ)

SemF rag[[F P]] = λσ : State.(SemF rag[[F]] ◦ SemF rag[[P]])σ

SemF rag[[(subquery)(arg)]] = λσ : State.(SemExpr[[subquery]](σ)(SemExpr[[arg]](σ)))

SemF rag[[I1I2...InE]] = SemExpr[[I2...InE]](σ[SemExpr[[E]]σ ← I1])

SemF rag[[N]] = λσ : State.num[[N]] if N is a constant of the type Numeral

SemF rag[[S]] = λσ : State.str[[S]] if S is a constant of the type String

SemF rag[[B]] = λσ : State.bool[[B]] if B is a constant of the type Boolean

SemExpr[[F]]σ = SemF rag[[F]]σ

Table 6. Semantic equations for fragments and expressions

146 Pavel Loupal, Karel Richta8 Loupal P., Richta K.

SemQuery[[O C E]] =

= λδ : XMLDoc.(SemCons[[C]](SemExpr[[E]](SemOptions[[O]](λσ.⊥)(δ)))

SemQuery[[Q]](nil) = nil

SemQuery[[Q]](cons(H, T)) = append(SemQuery[[Q]](H), SemQuery[[Q]](T))

SemOptions[[]] = λσ : State.⊥
SemOptions[[xmldata(X) Y]] = λσ : State.SemOptions[[Y]](σ[Dom(X)← X#])

Table 7. Semantic equations for options and queries

are bound to its formal names, the query expression to be evaluated, and the
output construction commands. First, input files are elaborated, than an initial
variable assignment takes place, followed by evaluation of expression. Finally,
the output is constructed. The whole meaning of a query can be modeled as a
mapping from the sequence of input XML documents into a sequence of output
values of the type of Type.

5 Conclusions

In this paper, we have presented syntax and denotational semantics of the
XML-λ Query Language, a query language for XML based on simply typed
lambda calculus. We use this language within the XML-λ Framework as an
intermediate form of XQuery expressions for description of its semantics. Nev-
ertheless the language in its current version does not support all XML features,
e.g. comments, processing instructions, or deals only with type information avail-
able in DTD, it can be successfully utilized for fundamental scenarios both for
standalone query evaluation or as a tool for XQuery semantics description.

References

1. H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, Volumes 1 (Background: Mathematical Structures) and 2 (Background:
Computational Structures), Abramsky & Gabbay & Maibaum (Eds.), Clarendon,
volume 2. Oxford University Press, 1992.

2. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
markup language (XML) 1.0 (fourth edition), August 2006. http://www.w3.org/

TR/2006/REC-xml-20060816.
3. P. Loupal. XML-λ : A Functional Framework for XML. Ph.D. Thesis, Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, February 2010. Submitted.

4. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,
Proceedings of IDEAS2000, pages 266–274. IEEE Computer Society, 2000.

5. K. Richta and J. Velebil. Sémantika programovaćıch jazyku. Univerzita Karlova,
1997.

6. P. Šárek. Implementation of the XML lambda language. Master’s thesis, Dept. of
Software Engineering, Charles University, Prague, 2002.

7. J. Zlatuška. Lambda-kalkul. Masarykova univerzita, Brno, Česká republika, 1993.

