
Structure Preserving TBox Repair

Using Defaults

Thomas Scharrenbach1, Rolf Grütter1, Bettina Waldvogel1, and Abraham
Bernstein2

1 Swiss Federal Institute for Forest, Snow and Landscape Research WSL
Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

{Thomas.Scharrenbach, Rolf.Gruetter, Bettina.Waldvogel}@wsl.ch
2 University of Zurich, Department of Informatics Zurich, Switzerland

{bernstein}@ifi.uzh.ch

Abstract. Unsatisfiable concepts are a major cause for inconsistencies
in Description Logics knowledge bases. Popular methods for repairing
such concepts aim to remove or rewrite axioms to resolve the conflict by
the original logics used. Under certain conditions, however, the structure
and intention of the original axioms must be preserved in the knowledge
base. This, in turn, requires changing the underlying logics for repair. In
this paper, we show how Probabilistic Description Logics, a variant of
Reiter’s default logics with Lehmann’s Lexicographical Entailment, can
be used to resolve conflicts fully-automatically and receive a consistent
knowledge base from which inferences can be drawn again.

Key words: default logics, unsatisfiability, justifications, TBox repair

1 Introduction

Ontologies have become standard for knowledge representation in the Semantic
Web. While ontologies are usually expressed in Web Ontology Language (OWL)
recommended by the W3C [1], one of the underlying formalisms for reasoning
about data in the ontology is the Description Logic (DL) SHOIN (D), being a
decidable subset of first-order logic [2].
Knowledge may evolve over time and might lead to contradictions in the knowl-
edge base. Contradictions may as well occur when mapping two ontolgies on
each other. In the case of terminological knowledge, this causes concepts to be
inferred unsatisfiable. For example, in Figure 1, the concepts C, D and E are in-
ferred unsatisfiable. Unsatisfiable concepts, in turn, cause the whole knowledge
base to be inconsistent, if there exist assertions instantiating them.
Traditional approaches make the TBox satisfiable again by removing trouble-
causing axioms and (possibly) adding new axioms modelling the unsatisfiabil-
ity 3. This will, anyway, lead to a loss of the information originally specified
in the ontology. However, under certain conditions, all axiomatic information

3 The second case can be seen as axiom rewriting.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

384

should be preserved as much as possible in its original form as well as intuition.
We propose to use default logics for relaxing the axioms that cause the inco-
herency.
Defaults, introduced by Reiter [3] and re-interpreted by Lehmann [4], facilitate
the co-existence of default rules for typical cases together with exceptions from
these rules. When querying the knowledge base, more specific knowledge, i.e. the
exceptions, is preferred to more general knowledge, i.e. the defaults.
Transforming subclass inclusion axioms into defaults requires an extension of
traditional DL reasoning that copes with the properties that come along with
defaults. Probabilistic Description Logics (PDL) [5] is currently the only ap-
proach that is able to provide SHOIN (D) default reasoning, yet as a special
case.
We introduce the ∆-transformation for transforming DL axioms and sets of
these into defaults. We can show that, under certain conditions, transforming
the axioms justifying the unsatisfiability of concepts 4 in the TBox results in a
consistent P-SHOIN (D) knowledge base which re-enables us to draw conclu-
sions.
This work is structured as follows: After introducing preliminaries and custom
notions for methods used in Section 2, we present the proposed transformation
scheme in Section 3. The actual approach along with supporting examples and
formal framework is given in Sections 4 and 5. In Section 6 we give an overview
about related work. We conclude this paper and give an outlook to future work
in Section 7.

2 Unsatisfiable Concepts and Justifications

While we introduce the unsatisfiability of concept descriptions in Description
Logics (DL) and how to justify these, we will not give an introduction to De-
scription Logics in this paper. The interested reader os referred to [2]. For the
rest of this paper, we will restrict ourselves to the DL SHOIN (D), because
the methods presented in this paper build on Probabilistic Description Logics
which is currently defined for SHOIN (D). An extension to the current W3C
recommendation SROIQ(D) will remain for future work.
A concept description U is called unsatisfiable w.r.t. a TBox T , iff T |= U ⊑ ⊥.
A justification for an entailment T |= η is the minimal set of axioms from T such
that the entailment still holds. It is possible to compute the set of all justifica-
tions for an entailment [6] using an adapted version of Reiter’s Minimum Hitting
Set Tree (HST) [7] that originates from the area of Model Based Diagnosis.

Definition 1 (Justifications). Let T be an TBox. Jη ⊆ T is a justification
for T |= η, iff Jη |= η and J ′ 6|= η for any J ′ ⊂ Jη.

It turns out that the unsatisfiability of a concept description U1 may depend on
the unsatisfiability of another concept description U2, i.e. JU1⊑⊥ ⊇ JU2⊑⊥. In

4 By concepts we consider atomic as well as concept descriptions, if not stated other-
wise.

Thomas Scharrenbach,et al. 385

Fig. 1. Example TBox. Nodes correspond to concepts and arcs correspond to subclass
inclusions. Dotted arcs represent disjoints. The axioms are numbered for referring to
them in the text. Below, the root justifications for the non-purely derived unsatisfiable
concepts are shown.

⊤ A B C D E

F

B ⊓ F

G 1 2 3

4

5

6

7

8

9

10

11

12

Jroot

1C⊑⊥ = {2, 3, 4}, Jroot

2D⊑⊥ = {2, 3, 5, 6}, Jroot

3D⊑⊥ = {3, 5, 8, 9}, Jroot

4B⊓F⊑⊥ = {8, 11}

this case we say that JU2
is more general. The most general justifications for the

unsatisfiable concepts of an ontology are called root unsatisfiable. 5

It should be noted that root justifications are sets of axioms and should not
be mixed up with the notion of root unsatisfiable, partially derived and purely
derived concepts as denoted in [6]. However, there is a correspondence, i.e. every
root unsatisfiable concept description has only root justifications, every partially
dervied unsatisfiable concept description has at least one root justification and
every purely derived unsatisfiable concept description has no root justification.

Definition 2 (Root Justifications). Let J be the set of all justifications for
all unsatisfiable concept description of a TBox T . Then Jroot

U⊑⊥ ∈ J is a root
justification for some unsatisfiable concept description U , iff for any concept
description U ′ there is no JU ′⊑⊥ ∈ J such that JU ′⊑⊥ ⊂ Jroot

U⊑⊥.

Root justifications allow us to resolve only the most general causes for unsatis-
fiablility in a Tbox, which in turn result in the satisfiability of all unsatisfiable
concepts. For example in Figure 1, the partially derived unsatisfiable concept D

will be inferred unsatisfiable for the same reason as is the root unsatisfiable con-
cept C. The unsatisfiability of concept E is purely derived, since it depends on
the unsatisfiability of D. We do not have to distinguish between the unsatisfia-
bility of these concepts as long as we remove the most general causes. Please also
note, that the (root) justification for the concept description B ⊓ F contains its
declaration. If it did not, then Jroot

3D⊑⊥ ⊃ Jroot
4B⊓F⊑⊥ and hence the unsatisfiability

of the atomic concept D would depend on the unsatisfiability of the concept
description B⊓F . This is indeed not the case, and hence this dependency has to

5 Please note that axioms of the form A ⊑ ⊤ are only included in a justification, if A

is a complex concept description, but not, if A is an atomic concept.

386 Structure Preserving TBox Repair using Defaults

be seen as an artifact. Therefore the declaration B ⊓ F is included in the (root)
justification.

3 Resolving Unsatisfiable Concepts

SHOIN (D) fulfils the monotonicity assumption, i.e. adding new axioms does
not invalidate existing entailments or introduce unsatisfiability. Hence, unsatis-
fiability cannot be resolved by just adding new axioms. Repair has to involve
the removal of axioms and is therefore always a non-monotone operation.
The currently most convenient way of resolving unsatisfiability in a TBox is to
remove axioms that are responsible for it. This task is often referred to as OWL-
Debugging. The interested reader may find a more detailed survey of approaches
to OWL-Debugging in [6].
In addition to that, attempts for semi-automatic axiom rewriting have been
made [6], referred to as repair plans. Common modelling errors have been iden-
tified empirically, and according to the kind of axioms that caused unsatisfiabil-
ity, repair plans are generated and proposed to an end-user that decides how to
repair the unsatisfiability.
Instead of doing the repair in SHOIN (D), it is also possible to change the
formalism for knowledge representation and/or inference. We propose that it is
desirable to keep as much of the original intention as well as structure of the
stated axioms as possible. Keeping the axioms’ structure requires some mecha-
nism of how to prefer some of the contradicting axioms over the others to keep
possible models of the ontology consistent.
Default logic is a way of generating a model of preferece for axioms of a first-
order logic knowledge base that soley relies upon the structure of the knowledge
base.

3.1 Probabilistic Description Logics

Recently, a method called probabilistic description logics (PDL) has been pro-
posed [5] that extends a SHOIN (D) knowledge base with probabilistic con-
straints. Such a constraint (A|B)[l, u] can be viewed as assigning the SHOIN (D)
TBox axiom B ⊑ A the belief interval [l, u] with 0 ≤ l ≤ u ≤ 1. The special case
l = u = 1, however, corresponds to to Reiter’s normal defaults [3]. For sake of
readability, we omit the interval and write defaults as (A|B).
As a consequence, PDL can be used as a way of modelling OWL-axioms B ⊑ A

as a set of defaults (A|B). The resulting logic is called P-SHOIN (D). PDL
extends a classical SHOIN (D) TBox by a set of constraints called PBox P.
Together, both of these form a so-called PTBox PT = (T ,P).
In case we restrict these constraints to defaults like above, inferences can be
drawn according to Lehmann’s lexicographical entailment [4]. The PTBox is
partitioned into sets of defaults P0, . . . , PN where P0 contains the most general
defaults and PN the most specific ones. Models are defined as in classical knowl-
edge bases. A default (A|B) falls into partition Pn iff there is a model for the

Thomas Scharrenbach,et al. 387

TBox and the remaining defaults 6 that satisfies A(i) as well as B(i) for a new
individual i. We say that such a model verifies this default. A PTBox is consis-
tent iff there exists a partition for the PBox.
Inferences are drawn according to the lexicographical minimal model for a PT-
Box, where models are ordered lexicographically w.r.t. the number and level of
generality of defaults they violate. Models violating as few of the least specific
defaults as possible have higher preference when ordering the models.

3.2 From DL to PDL: The ∆-Transformation

Using default logic for resolving an unsatisfiable concept of a TBox T , we must
transform a TBox into a PTBox and hence a subset of T into a set of defaults.
We introduce the ∆-transformation for this transformation which changes the
logics from SHOIN (D) to P-SHOIN (D).

Definition 3 (∆-Transformation). Let α = B ⊑ A be a subclass inclusion
axiom in a TBox T , and Un be a set of subclass inclusion axioms being a subset
of T . The ∆-transformation for T maps axioms from T to defaults and sets of
axioms to a (partitioned) PBox.

(i) ∆T (α) = (A|B)
(ii) ∆T (Un) = {∆T (α)|α ∈ Un}
(iii) ∆T (U0, . . . ,UN)

︸ ︷︷ ︸

pairwise disjoint

= ((T \ U0 ∪ . . . ∪ UN)
︸ ︷︷ ︸

new TBox

, (∆T (U0), . . . ,∆T (UN))
︸ ︷︷ ︸

partitioned PBox

)

Please note that the ∆-transformation is bijective, i.e. we can easily define
∆−1

T (A|B) = B ⊑ A.

4 Constraints on the TBox

The most obvious method for resolving unsatisfiable concepts of a TBox is to
remove all the axioms from the justifications proving the unsatisfiability. How-
ever, it clearly suffices to remove only all the axioms of the root justifications
from the TBox, since any (purely) derived unsatisfiable concept will then also
become satisfiable.
Removing axioms from the TBox results in a loss of knowledge. We therefore
propose not to fully remove the axioms but to keep them in a different form,
i.e. as defaults. The ∆-transformtion will be applied to all axioms of the root
justifications for the unsatisfiable concepts of a TBox. In this section, it is shown
that this transformation results in a consistent PTBox, if the TBox fulfils cer-
tain constraints which are explained in the remainder of this section. Conflict
resolving using default logic works only if the axioms justifying the conflict are
on different levels of preference, like it is implied by PDL. Situations where con-
flicting axioms are on the same level of preference must be excluded.

6 T ∪ (P \ P0 ∪ . . . ∪ Pn−1)

388 Structure Preserving TBox Repair using Defaults

This means that all kinds of cycles and situtations where a concept is explicitely
stated to be subclass of one concept and its negation must not be allowed, since
the ∆-transformation will result in an inconsistent PTBox.

4.1 Disallow Cycles, Logical and Direct Contradictions

If we allowed for cycles in the TBox, then a justification may also contain this
cycle. In turn, all axioms involved in the conflict are on the same level of pref-
erence and there cannot be a verifying model for any of these axioms.
In the following, we assume every TBox and hence all justifications, to be free
of cycles. Logical contradictions, i.e. concepts of the form A ⊓ ¬A cannot be
resolved by applying the ∆-transformation. There is no valid world w.r.t. [5] for
the concept A ⊓ ¬A.

Corollary 1. If one of the axioms of a TBox T contains a logical contradiction
on the right hand side, then the ∆-transformation of T is inconsistent.

Since logical contradictions do not provide any useful information, we can safely
remove axioms containing A⊓¬A from the TBox without changing the intended
semantics. In the following, we assume every TBox not to contain any logical
contradiction. Default logics require contradictive information to be on different
level of preference in order to provide a consistent way for inference. This mech-
anism is doomed to fail in cases where a contradiction is stated explicitly, i.e.
some concept C is explicitely stated to be a subclass of the concepts A1 and A2

where A1 ⊓ A2 are a logical contradiction.

Definition 4 (Direct Contradictions).
A set of two axioms DC = {C ⊑ A1, C ⊑ A2} from a TBox T is called a direct
contradiction DC for a concept C ∈ T , iff A1 ⊓ A2 is a logical contradiction.

There exists some justification for T |= C ⊑ ⊥ that soley consists of the axioms
of the direct contradiction. Since there cannot exist a model that satisfies A1(i),
A2(i) and C(i) at the same time for a new individual i, the ∆-transformation
of the example TBox will lead to an inconsistent PTBox. Hence default logics
cannot resolve the unsatisfiability of C.

Corollary 2. The ∆-transformation of a TBox that contains a direct contra-
diction results in an inconsistent PTBox.

While logical contradictions can simply be removed from the TBox without loss
of relevant information, the situation for a direct contradiction DC is slightly
more difficult. Removing the axioms of the DC might lead to a loss of information.
Yet there is an option how to resolve a DC.
Considering PDL, we can simply add some new “intermediate” concept to at
least one of the axioms of the direct contradiction. In particular, we replace, e.g.,
the axiom C ⊑ A1 ∈ DC with C ⊑ B and B ⊑ A1 where B is a new concept that
does not yet occur in the TBox. The concept C is still unsatisfiable, but there is
no direct contradiction anymore. We can therefore safely assume the TBox not

Thomas Scharrenbach,et al. 389

Fig. 2. Example TBox where C is inferred unsatisfiable due to the two direct contra-
dictions C ⊑ A,¬A and C ⊑ ∀R.A, ∃R.¬A in the left figure (a).
One possibility for resolving the direct contradictions by adding a new “intermediate”
concept is shown in the right figure (b).

⊤ ∀R.A

A

∃R.¬A

C

(a)

⊤ ∀R.A

A

∃R.¬A

C

E

F

(b)

to contain any direct contradictions.
In the example in Figure 2(a) there exist the direct contradictions DC1 = {C ⊑
A, C ⊑ ¬A} and DC2 = {C ⊑ ∀R.A,C ⊑ ∃R.¬A}. These can be resolved, for
example, by introducing the new concepts E and F in between the subconcept
hierarchy of C ⊑ ¬A and C ⊑ ∃R.¬A, respectively.

5 Consistency of the ∆-Transformed TBox

After having excluded logical as well as direct contradictions and cycles, we have
to show that the PTBox that results from ∆-transforming all axioms from all
(root) justifications is consistent. According to [5], we have to show that the
resulting PBox is a valid z-partiton. We do so soley using the structure of the
justifications for the unsatisfiable concepts.
For each unsatisfiable concept U , we split the union of its justifications into two
parts: one that contains unsatisfiable concepts in the axioms, ΓU , and one that
does not, ΘU . The idea is to iteratively first transform axioms for a new partition
that occur only in some Θ, but not in some Γ , since these are not in conflict
with any other axiom.
Every axiom we transformed and hence removed from some ΘU has its conflicting
axioms in its correponding ΓU set. The conflict for a ΓU0

set is solved, if its ΘU0

set is empty. The next partition is hence formed by all axioms in these ΓU for
which the ΘU set is empty. We can now proceed with step one and, since the
number of axioms is finite, the procedure will terminate eventually.

5.1 Splitting the Root Justifications

Every justification for an unsatisfiable concept U contains at least one axiom
with U on the left-hand side of the subclass inclusion. As such, every justification
can be split up into two sets of axioms: one that contains axioms with U on the
left-hand-side and one that contains the rest. We call the first one the Γ -set of

390 Structure Preserving TBox Repair using Defaults

Table 1. Procedure for ∆-transforming the unsatisfiability splitting for the root justi-
fications for the non-purely derived unsatisfiable concepts in Figure 1. The last column
shows the axioms that are chosen to be ∆-transformed to the partitions P0, P1, P2 of
the resulting PBox during the corresponding Θ- or Γ step (indicated by a bold symbol),
whereas the J -columns show the current contents of the Θ and Γ sets.

Step J (C ⊑ ⊥) J (D ⊑ ⊥) J (B ⊓ F ⊑ ⊥)

1 Θ 2 2, 3, 8 8 P0 = {∆T ({2, 8})}
Γ 3, 4 5, 6, 9 11 - - - - - - - - - - - - - -

Θ ∅ 3 ∅ - - - - - - - - - - - - - -
2 Γ 3, 4 5, 6, 9 11 P1 = {∆T ({3, 4, 11})}

3 Θ ∅ ∅ ∅ - - - - - - - - - - - - - -
Γ ∅ 5, 6, 9 ∅ - - - - - - - - - - - - - -

Θ ∅ ∅ ∅ - - - - - - - - - - - - - -
4 Γ ∅ 5, 6, 9 ∅ P2 = {∆T ({5, 6, 9})}

5 Θ ∅ ∅ ∅ - - - - - - - - - - - - - -
Γ ∅ ∅ ∅ - - - - - - - - - - - - - -

U and the latter one its Θ-set. The splitting for the example of Figure 1 can be
obtained from the first row of Table 1.

Definition 5 (Unsatisfiability Splitting).
Let U0, . . . , UN be the unsatisfiable concepts of a TBox T . Let J root

Ui⊑⊥ be the
union of the root justifications for the unsatisfiability of the concept Ui. The
unsatisfiability splitting for T is defined as:7

J root
Ui⊑⊥ = ΘUi

⊕ ΓUi
where ΓUi

= {X ⊑ Y ∈ J root
Ui⊑⊥|X = Ui}

5.2 Obtaining the Partition by ∆-Transforming the Splitting

For an axiom of the root justifications, there exist three different possibilities
where it my reside:

1. In some ΘUj
but not in any ΓUk

. We denote these axioms with ϑ.

2. In some ΓUk
but not in any ΘUj

. These axioms are denoted with γ.

3. In both some ΘUj
as well as some ΓUk

. In this case the axiom is denoted
with η.

In our example, processing step one, axioms 2 and 8 are of the ϑ type whereas
axioms 4, 5, 6, 9 and 11 are of type γ. Axiom 3 is of type η, since it is contained
in both, ΓC and ΘD. For preparing the proof of the induction, we first proof
some auxiliary lemma stating the important properties of ϑ, γ and η axioms.

7 The operator ⊕ denotes the union of pairwise disjoint sets.

Thomas Scharrenbach,et al. 391

Lemma 1 (Satisfiability of θ, γ and η axioms).

1. If some axiom ϑ is contained only in some ΘUi
but not in some ΓUj

, then
there exists verifying model for ∆T (ϑ).

2. If some axiom γ is contained in some ΓUi
for which the corresponding ΘUi

is empty, then there exists verifying model for ∆T (γ).
3. If some axiom η is contained in both, some ΘUi

and some ΓUj
, then there

cannot exist a verifying model for ∆T (η) w.r.t. these two sets.

We explain the procedure using the example from Figure 1. We alternatively
∆-transform axioms according to 1, the so-called Θ-step, followed by the Γ -step
where axioms are ∆-transformed according to 2. The single steps are visualized
in Table 1.
In our example, step one, we can find a model for each ϑ axiom 2 and 8. In
particular we can obviously find a model in which A ⊓ B is satisfied and some
model in which B ⊓ ¬F is satisfied. On the other hand, all remaining axioms
contain by definition some unsatisfiable concept, which denies the existence of a
model for each of the remaining axioms. So even though axiom 3 is part of ΘD

we are not able to find a verifying model for it 8. Hence, the first partition is
P0 = {2, 8}.
We proceed with the next step and have a look at the Γ sets for which the
Θ set is empty. This is the case for ΓC . We remember that ΘUi

contains at
least one element from each justification for T |= Ui ⊑ ⊥. Hence, for each
justification for T |= C ⊑ ⊥ we ∆-transformed at least one axiom which means
that T \∆−1

T (P0) 6|= C ⊑ ⊥. As a consequence, we can find a verifying model for
each axiom in ΓC . On the other hand, D ⊑ ⊥ still holds, such that we cannot
find a verifying model for any of the remaining axioms 5, 6 and 9. Hence, the
second partition is P1 = {3, 4, 11}.
For the next Θ-step we find that all of the Θ sets are empty, so we proceed
with the next Γ -step and find that ΓD is the only Γ -set left. Since all conflicting
axioms have already been ∆-transformed, we can for each axiom in ΓD trivially
find a verifying model which results in the next partition P2 = {5, 6, 9}.
In step nine, there are no more axioms left that we could process. The resulting
PTBox is:

PT = (({1, 10, 12})
︸ ︷︷ ︸

T \∆−1

T
(P)

, (

P0

︷ ︸︸ ︷

∆T ({2, 8}),

P1

︷ ︸︸ ︷

∆T ({3, 4, 11}),

P2

︷ ︸︸ ︷

∆T ({5, 6, 9}))
︸ ︷︷ ︸

P

)

Since we found a valid partition w.r.t. PDL, PT is consistent.
We now proof the parts of Lemma 1.

Proof. 1 If some axiom ϑ is contained only in some ΘU but not in some ΓU ′ ,
then ϑ has no unsatisfiable concept on the left-hand side. It also cannot have
an unsatisfiable concept on the right-hand side, because then it would be purely
derived. As such, we can find a model in which both the subconcept and the
superconcept are satisfied.

8 Indeed, axiom 3 is of type η.

392 Structure Preserving TBox Repair using Defaults

Proof. 2 If some axiom γ = U ⊑ A is contained in some ΓU for which the
corresponding ΘU is empty, there has been one axiom removed from every root
justification for T |= U ⊑ ⊥, i.e. the elements that had been in the now empty
ΘU and were ∆-transformed before. Hence U is not unsatisfiable anymore and
A must be satisfiable for the same reasons as in the proof for 1 which proofs the
existence of a model.
It should be noted that in this case, γ has been root unsatisfiable and the ∆-
transformed axioms from the ΘU were part of the root justifications.

Proof. 3 Some axiom η is contained in both, some ΘU and some ΓU ′ . Because
η ∈ ΘU , there still exists some ΓU correspoding to ΘU , which means that there
still exists a justification for U ⊑ ⊥. Hence, we cannot find a model for an axiom
that contains an unsatisfiable concept.
It should be noted that in this case, η = U ⊑ A is part of a justification for some
partially derived unsatisfiable concept.

5.3 Consistency of the ∆-Transformation of the Splitting

It remains to show that we can always find some axioms that fulfil the conditions
of the Θ-step followed by a Γ step. We do this by induction. As stated before,
every justification can be split into non-empty ΘU and ΓU . Since the number of
sets of the splitting of Definition 5 is finite, there has to exist some ΘU0

such
that for all axioms ϑ ∈ ΘU0

follows ϑ 6∈ ΓU . We ∆-transform all of these axioms
into the starting partition P0 and proceed with all axioms γ of the sets ΓU0

that
correspond to ΘU0

. By Lemma 1, part 2, these form the next partition P1.
In the induction step we have to show that having transformed the Γ -axioms

1. either there is some ΘU0
such that ΘU0

is disjoint to all remaining ΓU ,
2. or there is some ΓU0

for which all Θ-axioms have already been ∆-transformed
3. or there are no more axioms left to transform.

Since every ΓUi
refers to a ΘUi

, and since the number of sets is finite, and
justifications cannot be circular, for at least one ΓUi

there has to exist some
ΘUi

that contains neither γ nor η axioms. Please note that we allow the case
ΘUi

= ∅. In case ΘUi
is non-empty we proceed with the Θ-step, if it is empty,

we proceed with the Γ -step. The procedure terminates, if also the Γ sets are
empty.

Theorem 1. Let T be a TBox and P = (P0, . . . , PN) be the partition resulting
from the ∆-transformation of the unsatisfiability splitting of all root justifications
for all unsatisfiable concepts in T .
Then the PTBox PT = (T \ ∆−1

T (P0, . . . , PN),P) is consistent.

5.4 Complexity of the ∆-Transformation of the Splitting

The complexity of the presented procedure is dominated by the complexity
for finding justifications. This in turn depends on the complexity for consis-
tency checking in the tableaux calculus which is - in the case of SHOIN (D) -

Thomas Scharrenbach,et al. 393

NEXPTIME-complete.
It should be noted that the presented approach does not involve any satisfiabil-
ity checks in addition to checking and tracing unsatisability, which have to be
performed anyway.

6 Related Work

In recent years, much progess has been made in the task to explain why a con-
clusion can be drawn from a DL knowledge base by soley using axioms from the
knowledge base itself. Schlobach and Cornet [8] came up with minimal unsatis-
fiable preserving sub-TBoxes (MUPS) which can explain the reason for unsat-
isfiability of concepts. Kalyanpur et al. [6] introduced justification as a form of
minimal explanation for any arbitrary entailment. It could be shown that com-
puting all justifications for an entailment is feasible in the tableaux calculus [6].
In the area of ontology evolution, the main focus usually lies on resolving incon-
sistencies and hence changes mainly occur on instance level or rather restricted
TBoxes [9]. Repair can also be done using higher-order logics like in the Ontology
Repair System [10]. This, however makes changes to the ontology and cannot be
applied easily to OWL ontologies.
Alternatives to do reasoning with incoherent DL knowledge bases are, for ex-
ample, paraconsistent logics [11]. However, these change the notion of inference
and hence their semantics much more than default logic does.
There have been made propositions of how to incorporate default knowledge in
OWL-DL knowledge bases in [12] [13], and [14]. While the first two deal with ap-
plcations of Reiter’s interpretation of defaults, to our knowledge, P-SHOIN (D)
[5] is currently the only formalism providing default reasoning services w.r.t.
Lehmann’s lexicographical entailment for OWL DL knowledge bases for which
an implementation is available [15].

7 Conclusion

We showed that default logics as introduced in [5] provide a way of re-enabling
coherency for incoherent DL knowledge bases. This way, structure as well as
semantics of the original axioms is kept as much as possible. The proposed
approach makes use of justifications, a standard technique for computing reasons
for conflicts in DL knowledge bases. Since these have to be computed anyhow for
repairing the knowledge base, the presented approach does not need to perform
any additional satisfiability checks.
While this paper proofs the correctness of the approach, an implementation and
evaluation on real-world data has to be performed showing whether the approach
is feasible. Comparisons to alternative approaches, for example, what can still be
inferred from the knowledge base after the repair and what not, will also remain
for future work.

394 Structure Preserving TBox Repair using Defaults

References

1. McGuinness, D.L., van Harmelen, F.: OWL web ontology language overview. W3C
recommendation, W3C (February 2004) http://www.w3.org/TR/2004/REC-owl-
features-20040210/.

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
2nd edn. Cambridge University Press, Cambridge, MA, USA (August 2007)

3. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2) (1980)
81–132

4. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell.
15 (1995) 61–82

5. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6-7)
(April 2008) 852–883

6. Kalyanpur, A.: Debugging and Repair of OWL Ontologies. PhD thesis, University
of Maryland, Department of Computer Science (2006)

7. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1) (1987)
57–95

8. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI, Morgan Kaufmann (2003) 355–362

9. Haase, P., Völker, J.: Ontology learning and reasoning - dealing with uncertainty
and inconsistency. In: URSW Pt. 1. Volume 5327 of LNCS. (January 2009) 45–55

10. Bundy, A.: Where’s my stuff? an ontology repair plan. In: Workshop on DIS-
PROVING - Non-Theorems, Non-Validity, Non-Provability. Volume 4., CADE Inc
(July 2007) 2–11

11. Ma, Y., Lin, Z., Lin, Z.: Inferring with inconsistent owl dl ontology: A multi-valued
logic approach. In: EDBT Workshops. Volume 4254 of LNCS. (March 2006) 535–
553

12. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. In: J. Autom. Reas., Morgan Kaufmann (1995) 306–317

13. Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing default logic over description
logic knowledge bases. In: ECSQARU 2009. 602–613

14. Navarro, J.L., Sanchez, J.M., Zurita, J.M.: Default reasoning in web ontology
language. In: Proc. Intell. Systems and Agents (IADIS2007). (July 2007) 35–42

15. Klinov, P.: Pronto: A non-monotonic probabilistic description logic reasoner. In:
ESWC. Volume 5021 of LNCS., Springer (2008) 822–826

Thomas Scharrenbach,et al. 395

