
KOSIMap: Use of Description Logic Reasoning

to Align Heterogeneous Ontologies

Quentin Reul1 and Jeff Z. Pan2

1 VUB STARLab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
2 University of Aberdeen, Aberdeen AB24 3FX, UK
Quentin.Reul@vub.ac.be; jeff.z.pan@abdn.ac.uk

Abstract. Semantic interoperability is essential on the Semantic Web
to enable different information systems to exchange data. Such interop-
erability can be achieved by identifying similar information in heteroge-
neous ontologies. In this paper, we describe the Knowledge Organisation
System Implicit Mapping (KOSIMap) framework, which differs from ex-
isting ontology mapping approaches by using description logic reasoning
(i) to extract implicit information as background knowledge for every
entity, and (ii) to remove inappropriate mappings from an alignment.
The results of our evaluation show that the use of Description Logic in
the ontology matching task increases coverage.

1 Introduction

Semantic interoperability enables distributed information systems to exchange
data, knowledge, or resources based on common terminologies. These terminolo-
gies are often expressed in the form of ontologies as they provide a explicit
and server-stored conceptualization of a domain based on well-defined seman-
tics. However, the development of OWL ontologies relies on knowledge engineers
to interpret data from domain experts. As a result, two knowledge engineers
may interpret the same data differently. This leads to heterogeneity, such as dif-
ferences in naming and conceptualization, that hinders interoperability among
distributed information systems.

Semantic interoperability is essential on the Semantic Web to both provide
and create services, and perform complex tasks without prior knowledge of avail-
able resources or how to acquire them. Ontology mapping has been recognised as
a viable solution for this problem. Given two ontologies O1 and O2, the task of
mapping one ontology to another is that of finding an entity (i.e. classes, proper-
ties, and instances) in O1 that matches an entity in O2 based on their intended
meaning. Although mappings can be derived manually, this process is time con-
suming and error prone especially as the size and complexity of ontologies in-
crease. Therefore, it is necessary to develop methods to (semi-)automatically
discover similar entities in heterogeneous ontologies. Several surveys reviewing
ontology matching techniques, and tools have been carried over the years [4,
3]. These surveys show that most successful approaches combine different lex-
ical and structural similarity measures to cover lexical descriptions as well as

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

497

the descriptive information provided by semantic relations. For instance, Ctx-
Match [2] (and its successor SMatch [7]) creates logical formulae by mapping
classes in two ontologies to synsets in WordNet [6]. These logical formulae are
then processed by a SAT solver to extract semantic mappings between classes
in two ontologies. Alternatively, the OLA (OWL-Lite Alignment) framework [5]
measures the similarity between two entities in OWL-Lite ontologies based on
their features (e.g. labels, super-classes, properties). However, these approaches
disregard the role of description logic reasoning to extract implicit information
(i.e. logical consequences) about entities as a source of background knowledge.

In this paper, we describe the Knowledge Organisation System Implicit Map-
ping (KOSIMap) framework, which differs from existing approaches by using
description logic reasoning (i) to extract implicit information as background
knowledge for every entity, and (ii) to remove inappropriate mappings from an
alignment. Note that this paper differs from [13] by describing the KOSIMap
framework in detail rather than reporting the results of the Ontology Alignment
Evaluation Initiative (OAEI) 2009 campaign. The rest of the paper is organised
as follows. In section 2, we review some related approaches on ontology map-
ping. Section 3 presents how KOSIMap extracts mappings between entities from
two ontologies. The results of the evaluation testing the core assumptions of
KOSIMap are reported in section 4, while the final section discusses our results
and outlines future work.

2 Related Work

OLA [5] relies on OWL-Lite constructs (e.g. rdfs:label, rdfs:subClassOf)
to map entities from two ontologies. More specifically, it first calculates a lo-
cal similarity score by combining the measure of different constructs through a
weighted sum. For instance, the similarity between two classes aggregates the
score for their names, superclasses, and properties. OLA then propagates the
local similarity score to its neighbours. This iterative process ends when the ap-
proximated similarity score does not increase between two iterations. Similarly,
Janowicz [9] computes the similarity between two classes based on the overlap of
their respective ALCNR descriptions in the domain of GIScience. In SIM-DL,
a similarity value of 1 indicates that compared concept descriptions are equal
whereas 0 implies total dissimilarity. For example, the similarity between two
classes is computed by the Jaccard similarity coefficient applied to their sets of
subclasses, while the similarity between two restrictions ∃r .C and ∃s.D is based
on the similarity between the involved roles (i.e. r and s) and fillers (C and D).
Note that none of these approaches use description logic reasoning to extract
implicit information about entities.

Some approaches have also added a debugging component to improve the
quality of the mappings. For example, ASMOV [10] first computes a pre-alignment
from the matrix that results from the similarity calculation by adding mappings
that are maximal within a threshold ζ. This pre-alignment is then subjected
to semantic validation, which detects inappropriate mappings and their causes

498 KOSIMap

based on asserted axioms in the two ontologies. Alternatively, Meilicke et al. [12]
provide non-standard reasoning based on Distributed Description Logic (DDL)
to support the revision of mappings. In this case, mappings are encoded as bridge

rules (e.g. O1:A
≡
−→ O2:B) and DDL reasoning is applied on these bridge rules

to determine inconsistent mappings.

3 KOSIMap

In this section, we present the KOSIMap framework that aligns entities in ontol-
ogy O1 and ontology O2 based on the application of description logic reasoning.
KOSIMap first extracts logical consequences embedded in both ontologies using
a DL reasoner (§3.1). Next, KOSIMap computes three different types of similari-
ties for every pair of entities (§3.2). We then build a matrix storing the combined
values from which a pre-aligment is extracted (§3.3). Finally, we remove inap-
propriate mappings from the pre-alignment. Note that KOSIMap performs each
step consecutively. The source ontology, denoted Os, is described in Example 1
and is based on the Pizza tutorial [8].

Example 1. Suppose we have an ontology Os defined by the following OWL state-
ments:
Namespace(pizzaA: <http://www.owl-ontologies.com/pizza#>)
Ontology (

Class(pizzaA:Pizza Topping partial)
Class(pizzaA:Cheese Topping partial pizzaA:Pizza Topping)
Class(pizzaA:Mozzarella Topping partial intersectionOf(pizzaA:Cheese Topping

restriction(pizzaA:hasSpicyness someValuesFrom(pizzaA:Mild))))
Class(pizzaA:Pepperoni Topping partial intersectionOf(pizzaA:Pizza Topping

restriction(pizzaA:hasSpicyness someValuesFrom(pizzaA:Medium))))
Class(pizzaA:Tomato Topping partial intersectionOf(pizzaA:Pizza Topping

restriction(pizzaA:hasSpicyness someValuesFrom(pizzaA:Mild))))
Class(pizzaA:Pizza partial restriction(pizzaA:hasBase someValuesFrom(pizzaA:Pizza Base)))
Class(pizzaA:Americana Pizzas partial intersectionOf(pizzaA:Pizza

restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Mozzarella Topping))
restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Tomato Topping))
restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Pepperoni Topping))
restriction(pizzaA:hasTopping allValuesFrom(

unionOf(pizzaA:Mozzarella Topping pizzaA:Tomato Topping

pizzaA:Pepperoni Topping))))
Class(pizzaA:Cheesy Pizza complete intersectionOf(pizzaA:Pizza

restriction(pizzaA:hasTopping someValuesFrom(pizzaA:Cheese Topping))))
ObjectProperty(pizzaA:hasBase)
SubPropertyOf(pizzaA:hasBase pizzaA:hasIngredient)
ObjectProperty(pizzaA:hasTopping domain(pizzaA:Pizza) range(pizzaA:Pizza Topping))
SubPropertyOf(pizzaA:hasTopping pizzaA:hasIngredient)
ObjectProperty(pizzaA:topped inverseOf(pizzaA:hasTopping))

)

3.1 Pre-Processing

We first process lexical descriptions of each entity (e.g. labels and names) using
Natural Language Processing (NLP) techniques. We apply three types of NLP
techniques. Firstly, we remove characters, such as ’.’, ’ ’, ’-’ and ’ ’, from the
string. Secondly, We used the Pling-Stemmer from [16] to stem plural words.

Quentin Reul and Jeff Z. Pan. 499

Finally, we ensure that every string is in lower case. For example, the name of
Americana Pizzas is converted to “americanapizza”.

Entities are not only defined by lexical descriptions, but also by the semantics
provided by the axioms in the ontology. For example, the subsumption relation
links two classes according to the genus/species classification. In KOSIMap, we
extract implicit information about every class and object property from the
asserted axioms in the ontologies using a DL reasoner (e.g. FaCT++ [18]). The
set of all named classes occurring in an ontology O is denoted by CNO, while RNO
refers to the set of all named object properties in O.

Classes. The set of subsumers of a class A ∈ CNO, denoted by Sc(A), con-
tains every (implicit and explicit) super-classes and equivalent classes of A

following the classification of the ontology O by a DL reasoner. In Example
1, Sc(Americana Pizzas) = {Americana Pizzas, Cheesy Pizza, Pizza},
whereas the set of explicit parents is {Americana Pizzas, Pizza}.

Table 1. Rules to extract properties associated with classes.

PR1 If ≥ 1 r ⊑ C ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)
then Pc(C) := Pc(C)

S

{r}
PR2 if C ⊑ ∃r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S

{r}
PR3 if C ⊑ ∀r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S

{r}
PR4 if C ⊑ = 1r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S

{r}
PR5 if C ⊑ ≥ 1r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S

{r}
PR6 if C ⊑ ≤ 1r .X ∈ O, r ∈ RNO, C ∈ CNO, & r /∈ Pc(C)

then Pc(C) := Pc(C)
S

{r}

Classes are also described in terms of properties, which provides informa-
tion about the characteristics of a class. Most existing approaches only consider
properties that are explicitly associated with classes. In more expressive ontol-
ogy languages, such as OWL DL, class characteristics can be embedded in the
axioms or be inherited from their subsumers. As a result, we have devised several
rules to extract the properties associated with a class (Table 1). The first rule
(PR1) states that the domain of a named property is a property of that class.
In Example 1, this rule would infer that hasTopping is a property of Pizza.
Rules PR2 to PR6 process every general concept inclusion in the ontology of
the form A ⊑ Rest(r).B, where Rest(r) is a restriction (e.g. someValuesFrom,
allValuesFrom, and minCardinality). Based on these types of general concept
inclusion, we are able to extract the implicit object properties associated with
A. In Example 1, the application of rule PR2 infers that hasBase is a property
of Pizza.

Object Properties. The rdfs:subPropertyOf construct defines the property hi-
erarchy by stating that a property is a subproperty of another. For example,
ontology Os states that hasTopping is a sub-property of hasIngredient. Thus, a

500 KOSIMap

reasoner can deduce that if an individual is related to another by the hasTopping ,
then it is also related to the other by the hasIngredient property. The set of super-
properties of a property r ∈ RNO, denoted Sp(r), includes all the super-properties
of r .

Table 2. Extension rules for binary relation

ER1 If (X , Y) ∈ R(r), r ≡ r− ∈ O, & (Y , X) /∈ R(r)
then R(r) := R(r)

S

{(Y , X)}

ER2 If (X , Y) ∈ R(r), r ≡ r−
◦

∈ O, & (Y , X) /∈ R(r−
◦

)

then R(r−
◦

) := R(r−
◦

)
S

{(Y , X)}
ER3 If (X , Y) ∈ R(r), r ⊑ s ∈ O, & (X , Y) /∈ R(s)

then R(s) := R(s)
S

{(X , Y)}
ER4 If (X , Y) ∈ R(r), (Y , Z) ∈ R(s), r ◦ s ⊑ t ∈ O, & (X , Z) /∈ R(t)

then R(t) := R(t)
S

{(X , Z)}

The set of binary relation of an object property r , denoted R(r), is a collection
of ordered pairs of elements on CNO. More specifically, the set R(r) is a subset of
the Cartesian product CNO × CNO. For instance, the statement (A,B) ∈ R(r) is
read as A is r -related to B, and A and B is called the domain and the range of
r respectively. In Example 1, R(hasTopping) contains the binary relation (Pizza,
Pizza Topping). In EL+ [1], we can not rely on OWL semantics to express the
domain and range of an object property r (i.e. ≥ 1 r ⊑ C and ⊤ ⊑ ∀r .C respec-
tively) as number and universal restrictions are not allowed. In this case, the
binary relation (A, B) is contained in R(r) if and only if the axiom A ⊑ ∃r .B is
found in the ontology. In Example 1, R(hasBase) contains (Pizza, Pizza Base).
We have extended standard reasoning with four rules to extract implicit binary
relations (Table 2). The first rule covers symmetric object properties and adds
the inverse binary relation to the set if it has not already been added. The second
rule is similar to the first rule but deals with inverse object properties. In Ex-
ample 1, R(topped) contains (Pizza Topping , Pizza) as topped is the inverse
property of hasTopping and that (Pizza, Pizza Topping) ∈ R(hasTopping).
The last two rules were proposed by [1] and cover role hierarchies and property
chain axioms, such as transitive object properties.

3.2 Similarity Generator

The similarity generator computes three kinds of similarities; namely label sim-
ilarity, property-based similarity, and class-based similarity. We describe each
measure in more detail by calculating the similarity between entities in ontology
Os and entities in Ot (Example 2). Finally, we describe how individual scores
are combined to provide an aggregated value for each pair of entities.

Example 2. Suppose we have an ontology Ot defined by the following OWL state-
ments:
Namespace(p: <http://www.owl-ontologies.com/pizzaB#>)
Ontology (

Class(pizzaB:Topping partial)

Quentin Reul and Jeff Z. Pan. 501

Class(pizzaB:CheesyTopping partial pizzaB:Topping)
Class(pizzaB:Mozzarella partial intersectionOf(pizzaB:CheesyTopping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Mild))))
Class(pizzaB:Tomatoes partial intersectionOf(pizzaB:Topping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Mild))))
Class(pizzaB:JalapenoPeppers partial intersectionOf(pizzaB:Topping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Hot))))
Class(pizzaB:Pepperoni partial intersectionOf(pizzaB:Topping

restriction(pizzaB:hasSpicyness someValuesFrom(pizzaB:Medium))))
Class(pizzaB:AmericanHot partial intersectionOf(pizzaB:Pizza

restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:Mozzarella))
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:Tomatoes))
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:JalapenoPeppers))
restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:Pepperoni))))

Class(pizzaB:PizzaWithCheese complete intersectionOf(pizzaB:Pizza

restriction(pizzaB:hasGarnish someValuesFrom(pizzaB:CheesyTopping))))
ObjectProperty(pizzaB:hasBase domain(pizzaB:Pizza) range(pizzaB:Base))
SubPropertyOf(pizzaB:hasBase pizzaB:hasIngredient)
ObjectProperty(pizzaB:hasGarnish)
SubPropertyOf(pizzaB:hasGarnish pizzaB:hasIngredient)

)

Label Similarity. The most basic feature of entities is their labels, which are
defined through the rdfs:label construct. Labels are human identifiers (i.e.
words) expressed in a vocabulary usually shared by experts in the same domain.
Therefore, we assume that equivalent classes are likely to be modelled using sim-
ilar labels (or names). In KOSIMap, we support several string similarity (e.g. Q-
Gram [17] or SMOA [15]) to calculate the label similarity for each pair of entities.
For example, the label similarity between Americana Pizzas in Os and Amer-

icanHot in Ot based on the Q-Gram similarity (i.e. Q-Gram(“americanapizza”,
“americanhot”)) is 0.571.

Degree of Commonality Coefficient. The property-based and class-based simi-
larity is calculated based on the degree of commonality coefficient (Definition 1).
The DoCCoeff between two sets Ss and St is defined as the sum of the maximum
similarity for each element in source set (i.e. Ss). Note that the coefficient returns
an asymmetric measure to reflect the coverage of the first set by the second.
This follows the observations made by [19], who argues that the similarity be-
tween sets of complex objects is directional and asymmetric.

Definition 1 (Degree of Commonality Coefficient). Given two sets Ss and
St, the degree of commonality coefficient between them, denoted DoCCoeff(Ss, St)
is defined as:

DoCCoeff(Ss, St) =
1

max(|Ss|, |St|)

∑

ei∈Ss

max
ej∈St

sim(ei, ej) (1)

where Ss is the source set, St is the target set, and sim(ei, ej) computes the
similarity between pair of elements in the two sets.

Property-based similarity computes the similarity between two entities based on
the set of properties associated with them. KOSIMap first calculates the overlap
between set of super-properties for each pair of properties. Let’s compute the
property-based similarity between hasTopping in Os and hasGarnish in Ot. In
this case, the sets of super-properties for each property is:

502 KOSIMap

– Sp(hasTopping) = {hasIngredient}
– Sp(hasGarnish) = {hasIngredient}

We then calculate the DoCCoeff based on the label similarity (i.e. Q-Gram). In
this case, the property-based similarity is 1. Secondly, we calculate the overlap
between two classes based on their respective sets of inherited properties, which
are generated based in the rules in Table 1. Let’s now consider the similarity
between Americana Pizzas in Os and AmericanHot in Ot. In this case, the
set of inherited properties for each class is:

– Pc(Americana Pizzas) = {hasBase, hasTopping}
– Pc(AmericanHot) = {hasBase, hasGarnish}

We then calculate the DoCCoeff between the two sets. In this case, the similarity
between two elements (i.e. object properties) is computed based on the property-
based similarity between their sets of super-properties. Thus, the property-based
similarity between Americana Pizzas and AmericanHot is 1 as sim(hasBase,
hasBase) = 1 and sim(hasTopping , hasGarnish) = 1.

Class-based similarity computes the similarity between two entities based on
the set of classes associated with them. KOSIMap first computes the overlap
between two classes based in their sets of subsumers. Let’s compute the class-
based similarity between Americana Pizzas and AmericanHot. In this case,
the set of subsumers for each class is:

– Sc(Americana Pizzas) = {Americana Pizzas, Cheesy Pizza, Pizza}.
– Sc(AmericanHot) = {AmericanHot, PizzaWithCheese, Pizza }.

We then calculate the DoCCoeff between the two sets based on the label sim-
ilarity (i.e. Q-Gram). In this case, the class-based similarity between Amer-

icana Pizzas and AmericanHot is 0.706. Secondly, we calculate the class-
based similarity between pairs of object properties based on their set of binary
relations. Let’s now consider the overlap between hasTopping in Os and has-

Garnish in Ot. In this case, the set of binary relations for each object property
is:

– R(hasTopping) = {(Pizza, Pizza Topping), (Americana Pizza, Tomato Topping),
(Americana Pizza, Mozarella Topping), (Americana Pizza, Pepperoni Topping)}.

– R(hasGarnish) = {(AmericanHot, Pepperoni), (AmericanHot, JalapenoPeppers),
(AmericanHot, Mozzarella), (AmericanHot, Tomatoes)}

We then calculate the DoCCoeff between the two sets. As we are dealing with
binary relations, the DoCCoeff between two sets of binary relations combines
the similarity between the first element of two binary relations with the sim-
ilarity between their second elements. In this case, the similarity between two
elements (i.e. classes) is computed based on the class-based similarity calcu-
lated between two classes. For example, the degree of commonality coefficient
between (Pizza, Pizza Topping) and (AmericanHot, Pepperoni) is 0.333
as sim(Pizza, AmericanHot) = 0.333 and sim(Pizza Topping , Pepperoni)
= 0.333. The class-based similarity between hasTopping and hasGranish is 0.593.

Quentin Reul and Jeff Z. Pan. 503

Similarity Aggregation combines the score of the above three types of similarity
to obtain a more complete measure of similarity. The combined score for each
pair of entities is then stored into a similarity matrix (Definition 2), where each
entity in the source ontology corresponds to a row and each entity in the target
ontology corresponds to a column.

Definition 2 (Similarity Matrix). A similarity matrix, denoted SIMst, is a
matrix with dimension n*m, where n and m are the number of entities in the
source and target ontology respectively. The entries rst ∈ [0,1] denotes the sim-
ilarity between es and et, where es is an entity in the source ontology and et is
an entity in the target ontology.

In KOSIMap, the global similarity (i.e. simg) is computed through a linear
function that balances the impact of each measure by giving it a weight wk and
is defined as:

simg(e1, e2) =
n∑

k=0

wk ∗ simk(e1, e2) (2)

where n is the number of similarity measures considered and wk ∈ [0,1]. Suppose
we assign a weight of 0.3 to the label similarity, 0.2 to the property-based sim-
ilarity and 0.5 to the class-based similarity, then the global similarity between
Americana Pizzas in Os and AmericanHot in Ot is 0.3 ∗ 0.571 + 0.2 ∗ 1 +
0.5 ∗ 0.706 = 0.724. The global similarity for each pair of entities is then stored
into a similarity matrix.

3.3 Mapping Extraction and Refinement

The goal of the final step is to extract a set of mappings from the similarity
matrix. This is normally achieved by discarding all candidate mappings below a
threshold ζ. However, this method may return multiple mappings for each entity
in the source ontology.

As a result, we propose a two-step approach to extract mappings, where
an entity in the source ontology is associated with at most one entity in the
source ontology. The approach first extracts a pre-alignment (i.e. Apre) from the
similarity matrix. A mapping ⟨es, et,≡, rst⟩ is added to Apre if rst is the highest
value for es and if it is bigger than a threshold ζ. Note that if two elements e1

t

and e2
t have a similarity value such that simg(es, e

1
t) = simg(es, e

2
t), then both

⟨es, e
1
t ,≡, simg(es, e

1
t)⟩ and ⟨es, e

2
t ,≡, simg(es, e

2
t)⟩ are added to Apre.

This pre-alignment is then passed through a refinement process, which elim-
inates inappropriate mappings. In KOSIMap, we identify two types of inap-
propriate mappings, namely redundant and inconsistent mappings. Redundant
mappings are encountered when mappings in a pre-alignment Apre can be in-
ferred from existing mappings, while inconsistent mappings occur when a class
in the source ontology is mapped to several classes in the target ontology that are
defined as disjoint. [14] argues that direct siblings (i.e. entities having the same
parent) are disjoint unless it introduces conflicts. As KOSIMap assumes that

504 KOSIMap

the local ontologies are consistent, we consider direct siblings as disjoint entities.
Table 3 shows the final set of mappings between Os and Ot with a threshold
ζ = 0.2. This approach differs from ASMOV [10] in that it checks whether the
information inferred by the mappings can be proven by both the explicit and
implicit knowledge available in the local ontologies.

Table 3. The mapping resulting from the alignment between the two ontologies.

Entity1 Relation Entity2 Strength

Os:Americana Pizza = Ot:AmericanHot 0.724
Os:Cheese Topping = Ot:CheesyTopping 0.567
Os:Cheesy Pizza = Ot:PizzaWithCheese 0.75

Os:Medium = Ot:Medium 0.8
Os:Mild = Ot:Mild 0.8

Os:Mozarella Topping = Ot:Mozzarella 0.487
Os:Pepperoni Topping = Ot:Pepperoni 0.533

Os:Pizza = Ot:Pizza 1.0
Os:Pizza Topping = Ot:Topping 0.533

Os:hasBase = Ot:hasBase 0.861
Os:hasIngredient = Ot:hasIngredient 0.626
Os:hasSpicyness = Ot:hasSpicyness 0.61
Os:hasTopping = Ot:hasGarnish 0.534

4 Evaluation

In this section, we assess the impact of Description Logic reasoning on the compu-
tation of the similarity between two entities and on the extraction of appropriate
mappings.

4.1 Method

This evaluation is carried out on a subset of the OAEI Conference track3. Note
that we only consider the ontologies for which a reference alignment is provided
(i.e. EKAW, SOFSEM, SIGKDD, IASTED, CMT, ConfOf and EDAS). The
advantage of the conference track is that it includes ontologies that share the
same domain of discourse (i.e. conference organisation) and that are rich in
various types of axioms. The evaluation consists of two experiments:

1. Explicit vs. Implicit Hierarchy: This experiment compares the role of
description logic in determining the class hierarchy. The first alignment is
computed by applying the class-based similarity to the set of super-classes
for each class in two ontologies. The set of super-classes for a class A is
obtained by traversing the asserted hierarchy from the class itself to the
root node of the ontology. The second alignment is obtained by applying the
class-based similarity to the set of subsumers of each class (§3.1). Note that
the reference alignment only includes mapping between classes.

3 http://nb.vse.cz/~svabo/oaei2009/

Quentin Reul and Jeff Z. Pan. 505

2. Disjointness vs. Siblings: The alignment extraction method relies on dis-
jointness to determine inconsistent mappings. This approach has been ex-
tended to consider direct siblings as disjoint entities. This evaluation focuses
on the impact of siblings on the alignment extraction process. The first
alignment is computed by only considering the explicit disjointness, while
the second alignment is obtained by considering direct siblings. Note that
the direct sibling are computed based on the classified ontology. In both
cases, the weights for label similarity, property-based similarity, and class-
based similarity are set to 0.4, 0.1 and 0.5 respectively. Note that because
we are focusing on the extraction step the similarity measure does not have
an impact on the results.

4.2 Results

The first experiment compares two methods to obtain the class hierarchy. The
first method relies on the explicit class hierarchy, while the second method uses
DL reasoning to extract set of subsumers. We applied the class-based similarity
on the respective sets to compute 21 pairs of alignments. Generally, the highest
f-measure is achieved at the same threshold for the implicit hierarchy as for the
explicit hierarchy. The implicit hierarchy achieves better f-measure in 15 cases.
In 6 of these 15 case, the recall achieved by the two methods is the same, but
the implicit hierarchy yields a better precision. This suggests that the use of
the implicit hierarchy (as background knowledge) improves the coverage of the
ontology mapping task.

Table 4 shows the harmonic mean (H-Mean) f-measure score of each approach
across different thresholds for the 21 tests in the conference test case. We can
see that the use of the implicit hierarchy consistently yields better results than
the use of the explicit hierarchy. Thus, this further suggests that the use of the
implicit hierarchy improves the coverage of the ontology mapping task.

Table 4. H-Mean f-measure at different threshold for the Explicit vs. Implicit Hierarchy experiment.

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Implicit Hierarchy .34 .37 .40 .44 .45 .47 .43 .42 .38
Explicit Hierarchy .29 .32 .35 .36 .40 .44 .42 .40 .37

The second experiment to evaluate the impact of using asserted disjointness
(i.e. explicitly stated in axioms) compared to using implicit disjointness. The
implicit disjointness is obtained by considering direct siblings as disjoint entities
based on the classified ontology. In KOSIMap, the disjointness is only used dur-
ing the alignment extraction process, and thus does not have an impact when
calculating the similarity between two entities. In 15 out of the 21 tests, the use
of direct siblings achieves the same results as those achieved by using the explicit
disjointness. This can be explained by the fact that the set of direct siblings is
identical to the set of disjoint entities for the entities being mapped.

506 KOSIMap

Table 5 shows the harmonic mean f-measure score of each approach across
different thresholds for the 21 tests in the conference test case. We can see that
the use of direct siblings consistently yields better results than the use of disjoint-
ness. We have also performed this experiment by combining both approaches and
have found that this approach always achieves the best result.

Table 5. H-Mean f-measure at different threshold for the Disjointness vs. Siblings.

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Disjoint .26 .33 .43 .52 .57 .57 .42 .34 0

Siblings .27 .34 .45 .54 .59 .58 .43 .34 0

5 Conclusion

In this paper, we presented the KOSIMap framework, which uses Description
Logic reasoning (i) to extract implicit information (i.e. logical consequences)
about every entity, and (ii) to remove inappropriate mappings from an alignment.
The framework first extracts logical consequences embedded in both ontologies
using an OWL DL reasoner. Next, KOSIMap computes three different types
of similarities for every pair of entities. We then build a matrix storing the
aggregated values for every pair of entities from which mappings are extracted.
Finally, we remove inappropriate mappings from the set of all possible mappings.
Note that each step is performed in an ordered and consecutive manner.

The results of our evaluation showed that the use of the implicit hierar-
chy consistently yields better overall f-measure on the OAEI conference track.
We also observed that the use of the implicit hierarchy improves the coverage.
Secondly, we checked whether the use of direct siblings during the alignment
extraction process had a negative impact on the coverage. The overall f-measure
showed that the use of direct siblings consistently yields better results than the
use of disjointness during the alignment extraction process.

Although these results are encouraging, we realise that the approach can be
further improved. For example, the pre-alignment process phase could be im-
proved by iteratively considering another entity in the target ontology when a
mapping has been removed during the mapping refinement phase. Moreover, the
refinement process could be improved by not only considering local logical incon-
sistencies, but by also considering logical inconsistencies in the distributed on-
tologies. For example, Meilicke et al. [12] provide non-standard reasoning based
on DDL to support the mapping revision process.

6 Acknowledgements

The IPAS project is co-funded by the Technology Strategy Board’s Collaborative
Research and Development programme (www.innovateuk.org) and Rolls-Royce
(project No. TP/2/IC/6/I/10292).

Quentin Reul and Jeff Z. Pan. 507

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. 19th
International Joint Conference on Artificial Intelligence (IJCAI-05), 2005.

2. P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: a new ap-
proach and an application. In Proc. 2nd International Semantic Web Conference
(ISWC’03), 2003.

3. S. Castano, A. Ferrara, S. Montanelli, G. N. Hess, and S. Bruno. State of the art
on ontology coordination and matching. Technical report, BOEMIE, March 2007.

4. J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, Berlin, 2007.
5. J. Euzenat and P. Valtchev. An integrative proximity measure for ontology align-

ment. In Proc. ISWC-2003 Workshop on Semantic Information Integration, 2003.
6. C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.
7. F. Giunchiglia and P. Shvaiko. Semantic matching. The Knowledge Engineering

Review Journal (KER), 18(3):265–280, 2003.
8. M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. A practical guide

to building OWL ontologies using the protégé-OWL plugin and CO-ODE tools.
Technical report, University of Manchester, 2004.

9. K. Janowicz. Sim-DL: Towards a semantic similarity measurement theory for the
description logic ALCNR in geographic information retrieval. In On the Move to
Meaningful Internet Systems, 2006.

10. Y. R. Jean-Mary, E. P. Shironoshita, and M. R. Kabuka. Ontology matching with
semantic verification. Web Semantics: Science, Services and Agents on the World
Wide, 2009.

11. H. W. Kuhn. The Hungarian Method for the assignment problem. Naval Research
Logistics Quarterly, 2:83–97, 1955.

12. C. Meilicke, H. Stuckenschmidt, and A. Tamilin. Reasoning support for mapping
revision. In Proc. 23rd Conference on Artificial Intelligence (AAAI-08), 2008.

13. Q. Reul and J. Pan. KOSIMap: Ontology Alignments Results for OAEI 2009. In
Proc. 4th International Workshop on Ontology Matching (OM-2009), 2009.

14. S. Schlobach. Debugging and semantic clarification by pinpointing. In Proc. 2nd
European Semantic Web Conference (ESWC05), pages 226–240, 2005.

15. G. Stoilos, G. Stamou, and S. Kollias. A string metric for ontology alignment. In
Proc. 4th International Semantic Web Conference (ISWC 2005), 2005.

16. F. M. Suchanek, G. Ifrim, and G. Weikum. LEILA: Learning to extract information
by linguistic analysis. In Proc. 2nd Workshop on Ontology Population (OLP2),
2006.

17. E. Sutinen and J. Tarhio. On using Q-Gram locations in approximate string match-
ing. In Proc. 3rd European Symposium on Algorithms (ESA 95), 1995.

18. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. IJCAR 2006, 2006.

19. A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, July 1977.

508 KOSIMap

