
A MapReduce Algorithm for EL
+

Raghava Mutharaju, Frederick Maier, and Pascal Hitzler

Kno.e.sis Center, Wright State University, Dayton, Ohio

Abstract. Recently, the use of the MapReduce framework for distribu-
ted RDF Schema reasoning has shown that it is possible to compute the
deductive closure of sets of over a billion RDF triples within a reason-
able time span [22], and that it is also possible to carry the approach
over to OWL Horst [21]. Following this lead, in this paper we provide
a MapReduce algorithm for the description logic EL+, more precisely
for the classification of EL+ ontologies. To do this, we first modify the
algorithm usually used for EL+ classification. The modified algorithm
can then be converted into a MapReduce algorithm along the same key
ideas as used for RDF schema.

1 Introduction

The realization of Semantic Web reasoning is central to substantiating the Se-
mantic Web vision [8]. By its very nature, automated reasoning requires a formal
representation of knowledge, and in the Semantic Web at least RDF [14] and
OWL [9] are two languages commonly used for this purpose. OWL, which is
essentially the description logic SROIQ, is considerably more expressive than
RDF, and reasoning with it is therefore computationally more expensive. How-
ever, restricted profiles of OWL 2 (including OWL 2 EL, which is essentially
the description logic EL++ [2]) have been developed [15], and for each of these
polynomial time algorithms exist for standard inferencing tasks.

There is a large amount of data that is exposed on the Web in RDF and OWL
formats. E.g., in a recent discussion of Linked Open Data [5], it is estimated that
there are approximately 4.7 billion RDF triples on the Web interlinked by 142
million RDF links.1 Reasoning with such large amounts of data is inherently
difficult due to the high computational complexity of RDF and OWL reasoning.
At the same time, however, it has been argued that the Linked Open Data cloud
is in need of more expressive schema knowledge, knowledge of a sort expressible
in OWL [10]. In order to reason with such data, scalable reasoning algorithms
are essential, and parallelization of reasoning is one of the obvious routes to
investigate in achieving the required scalability.

The present paper describes the first steps in an effort toward achieving that
end. Specifically, we present a parallel algorithm for classifying EL+ontologies
using MapReduce, which is a programming model and software framework for

1 Some OWL is used as well, usually for indicating that two resources should be
considered equal, using owl:sameAs.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

464

distributed processing of data on clusters of machines. In doing so, we follow the
lead of [21, 22], where the MapReduce framework was successfully applied for
computing RDF Schema closure and for reasoning with OWL Horst.

These publications are part of a recent trend in Semantic Web reasoning
to explore parallelization of reasoning tasks. Some of the most notable recent
developments are the use of the MapReduce framework for RDF [19, 21, 22],
using distributed hash tables for RDF Schema [11], the MaRVIN peer-to-peer
platform for RDF [16], and the approach in [23] for parallel computation of
RDF Schema closures. However, there is relatively little work on attempting to
carry these successes over to OWL reasoning, apart from some investigations into
OWL Horst [18, 21], OWL RL [13], distributed resolution for SHIQ ontology
networks [17], and some preliminary investigations [1, 6].

The remainder of the paper is structured as follows. Background information
on EL+ and the MapReduce framework is provided in Section 2, and the new
algorithm is described in Section 3. An example illustrating how the algorithm
works is also given. Section 4 concludes with directions for future research.

Acknowledgements. We thank Keke Chen, Frank van Harmelen, Spyros Ko-
toulas and Jacopo Urbani for helpful discussions.

2 Preliminaries

2.1 The Description Logic EL
+

Concepts in EL+ [3, 4, 2] are formed according to the grammar

C ::= A | ⊤ | C ⊓ D | ∃r.C,

where A ranges over concept names, r over role names, and C, D over (possibly
complex) concepts. An EL+ ontology is a finite set of general concept inclusions

(GCIs) C ⊑ D and role inclusions (RIs) r1 ◦ · · · ◦ rn ⊑ r, where C, D are
concepts, n is a positive integer and r, r1, . . . , rn are role names.

The CEL algorithm [4] performs classification of an EL+ ontology, i.e., it
computes the complete subsumption hierarchy between all concept names oc-
curring in the ontology. Classification is one of the standard reasoning tasks.
The algorithm first transforms the ontology into normal form, which requires
that all concept and role inclusions are of one of the forms shown in the left part
of Figure 1. This can be done in linear time [2]. For the remainder of the paper,
we assume that input ontologies are in normal form.

The algorithm is formulated in terms of two mappings S and R, where S(X)
maps a class name X to a set of class names, and R(r) maps each role name r to a
set of class name pairs. Intuitively, B ∈ S(A) implies A ⊑ B, and (A, B) ∈ R(r)
implies A ⊑ ∃r.B. For purposes of the algorithm, ⊤ is taken as a concept name.
The mappings are initialized by setting S(A) = {A,⊤} for each class name A

in the input ontology O, and R(r) = ∅ for each role name in O. The sets S(A)
and R(r) are then extended by applying the completion rules shown in the right
part of Figure 1 until no rule is applicable.

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 465

Normal Form Completion Rule

A1 ⊓ · · · ⊓ An ⊑ B R1 If A1, . . . , An ∈ S(X), A1 ⊓ · · · ⊓ An ⊑ B ∈ O, and B 6∈ S(X)
then S(X) := S(X) ∪ {B}

A ⊑ ∃r.B R2 If A ∈ S(X), A ⊑ ∃r.B ∈ O, and (X, B) 6∈ R(r)
then R(r) := R(r) ∪ {(X, B)}

∃r.A ⊑ B R3 If (X, Y) ∈ R(r), A ∈ S(Y), ∃r.A ⊑ B ∈ O, and B 6∈ S(x)
then S(X) := S(X) ∪ {B}

r ⊑ s R4 If (X, Y) ∈ R(r), r ⊑ s ∈ O, and (X, Y) 6∈ R(s)
then R(s) := R(s) ∪ {(X, Y)}

r ◦ s ⊑ t R5 If (X, Y) ∈ R(r), (Y, Z) ∈ R(s), r ◦ s ⊑ t ∈ O, (x, Z) 6∈ R(t)
then R(t) := R(t) ∪ {(X, Z)}

Fig. 1. The CEL algorithm for EL+

The algorithm is guaranteed to terminate in polynomial time relative to the
size of the input ontology, and it is also sound and complete: after termination,
B ∈ S(A) if and only if A ⊑ B holds, for all class names A and B.

2.2 MapReduce

MapReduce is a programming model for distributed processing of data on clus-
ters of machines (each machine being called a node) [7]. The data set to be
processed is divided into multiple chunks, and each chunk is assigned to an idle
node. There are three different types of node, and each type has its own function.

Master: The Master node assigns chunks to Map nodes and passes the inter-
mediate output locations to Reduce nodes. It also takes care of node failures.

Map: Map nodes accept data chunks from the Master and generate intermediate
output according to a user-defined function. In its general form, the function
accepts a key-value pair and returns a set of key-value pairs. The output pairs
are typically written to a local disk, and the location of these is returned to
the Master. The functionality of Map nodes can be represented as

Map : (k1, v1) 7→ list(k2, v2).

Reduce: Reduce nodes are notified of the locations of intermediate output.
They group values by key, and then process the values according to a user-
defined Reduce function. One or more output values is produced. The general
process can be represented as

Reduce : (k2, list(v2)) 7→ list(v3).

There are several prominent implementations of the MapReduce model.2

Using them, developers need only define the Map and Reduce functions. Lower
level and administrative tasks, such as allocating data to nodes and recovering
from failures, are handled by general purpose components of the system.

2 E.g., Hadoop (http://hadoop.apache.org/) is a popular Java implementation.

466 A MapReduce Algorithm for EL+

3 MapReduce for EL
+

We follow the lead of [22], which describes a MapReduce algorithm for comput-
ing RDF Schema closures. However, since the completion rules from Figure 1
are structurally more complicated than the RDF Schema completion rules, we
cannot straightforwardly adopt their approach. In the submitted paper [21], the
authors extend their approach to OWL Horst [20], facing structurally similar
problems. However, due to the specific knowledge bases they are looking at,
they choose a solution which is not applicable in our case. We will return to this
discussion in Section 3.2, after presenting our algorithm.

3.1 Revising the CEL algorithm

Considering the completion rules in Figure 1, it is rather straightforward to cast
rules R2 and R4 into a MapReduce format, and we will see in Section 3.2 how
this is done. Rules R1, R3, and R5, however, cannot be transformed directly,
and so we first give an alternative formulation of the CEL algorithm. The rules
of the reformulated algorithm are cast into a MapReduce format in Section 3.2.

The reformulation requires an additional function P (which stands for Par-

tial) and an extension of the function R. These serve to split some of the com-
pletion rules from Figure 1 into two rules, explained shortly.

The function P maps each class name X (including ⊤) to a set of pairs (A, B),
where A and B are class names (again including ⊤). Intuitively, (A, B) ∈ P (X)
implies A ⊓ X ⊑ B. Initially, P (X) is set to ∅ for each X.

R is extended to map expressions of the form r ◦ s, for role names r and s,
to pairs of class names (possibly including ⊤). The intuition remains the same,
however: (A, B) ∈ R(r ◦ s) implies A ⊑ ∃(r ◦ s).B. The latter expression is not
a valid EL+ expression, but it is semantically unproblematic. Furthermore, it
causes no problems in the algorithm, since we do not formally deal with such
expressions, and in particular they are not allowed in the input ontology.

We also require another normalization step: Each axiom of the form A1 ⊓
· · ·⊓An ⊑ A, for n > 2, is replaced by n−1 axioms A1⊓A2 ⊑ N1, N1⊓A3 ⊑ N2,
. . . , Nn−2 ⊓ An ⊑ A, where all Ni are class names not occurring anywhere else
in the final knowledge base. This transformation obviously retains the original
subsumption hierarchy between named classes of the original ontology.

Our revised algorithm for EL+ is now identical to the algorithm presented
in Section 2.1, except that the completion rules from Figure 1 are replaced with
those in Figure 2, and the input is now required to be in the modified normal
form. The algorithm terminates if no application of any of the rules extends any
of the sets S(X), R(r), P (X), or O.

Let us explain the rationales behind the new completion rules. The original
rule R1 can be simulated by subsequent applications of R1-1 and R1-2 (note
that an inclusion axiom of the form A ⊑ B—that is, where n = 1—is covered
by R1-2 alone). At the same time, output produced by applying R1-1 is only
used in the precondition of R1-2, and so it does not have any other effect on
the outcome of the overall algorithm. Rule R2 is left untouched apart from

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 467

Normal Form Completion Rule Key

A1 ⊓ A2 ⊑ B R1-1 If A1 ∈ S(X) and A1 ⊓ A2 ⊑ B ∈ O A1

then P (X) := P (X) ∪ {(A2, B)}
(A, B) ∈ P (X) R1-2 If A ∈ S(X) and ((A, B) ∈ P (X) or A ⊑ B ∈ O) A

then S(X) := S(X) ∪ {B}
A ⊑ ∃r.B R2 If A ∈ S(X) and A ⊑ ∃r.B ∈ O A

then R(r) := R(r) ∪ {(X, B)}
∃r.A ⊑ B for A R3-1 If A ∈ S(X) and ∃r.A ⊑ B ∈ O A

then O := O ∪ {∃r.X ⊑ B}
∃r.A ⊑ B for r R3-2 If (X, Y) ∈ R(r) and ∃r.Y ⊑ B ∈ O r (or Y)

then S(X) := S(X) ∪ {B}
r ⊑ s R4 If (X, Y) ∈ R(r) and r ⊑ s ∈ O r

then R(s) := R(s) ∪ {(X, Y)}
r ◦ s ⊑ t R5-1 If (X, Z) ∈ R(r) and (Z, Y) ∈ R(s) Z

then R(r ◦ s) := R(r ◦ s) ∪ {(X, Y)}

Fig. 2. Revised CEL algorithm for EL+. The keys are used in the MapReduce algo-
rithm. Note that in R4, r is allowed to be compound, i.e., of the form s ◦ t.

removing the precondition (X, B) 6∈ R(X), which is used only for termination
purposes. Since we have reworded the termination condition, there is in effect
no difference between the two versions of the rule. The reason for rewording is
that the new termination condition is more easily cast into MapReduce format.
The original rule R3 can be simulated by subsequent applications of R3-1 and
R3-2. Rule R3-1 introduces new axioms into O, but since the new axioms are
logical consequences of the knowledge base, they do not affect soundness or
completeness of the algorithm. Note that this also does not cause any problems
with respect to termination, since there is a finite upper bound3 on the number
of possible axioms of the form ∃r.X ⊑ B. Rule R4 is again left unchanged, apart
from the fact that it now also applies to compound expressions of the form s ◦ t.
Note, however, that this extension of R4 is semantically sound, and so it does not
affect the correctness of the algorithm. The original rule R5 can be simulated
by subsequent application of R5-1 and R4—the latter in this case using the
extended form with composed roles. The newly introduced output produced by
applying R5-1 is sound, and so the correctness of the algorithm is again left
unaffected.

It is straightforward to show formally that our revised algorithm is indeed
sound, complete, and terminating. It is also of polynomial worst-case complexity
in the size of the input ontology; this can be shown easily along the lines of
argument for the algorithm presented in [3] for EL++.

3 The upper bound is k · l2, where k is the number of role names, and l is the number
of class names (including ⊤) in O.

468 A MapReduce Algorithm for EL+

3.2 Parallelization using MapReduce

We now convert the completion rules of Figure 2 into MapReduce algorithms
computing the closure of O, S, R and P . Initialization is done by setting S(A) =
{A,⊤} and P (A) = ∅, for each class name A (including ⊤), and R(r) = ∅ for
each role name r. In the discussion below, we freely switch between viewing S,
R, and P as maps and viewing them as sets, and we slightly abuse terminology
by referring to all expressions of the form A ∈ S(X), (A, B) ∈ P (X) or (X, Y) ∈
R(r), in addition to all elements of O, as axioms.

The completion rules are applied in an iterative manner, picking one rule to
apply in each iteration. The rules are interdependent and the results of previous
iterations are reused in subsequent iterations. This is realized by adding the
outputs of each iteration to the database where O, S, R and P are stored.

The general strategy that is followed by all the algorithms is given in Fig-
ure 3. The set of axioms (taken from O, S, P , and R) forms the input. This set
is divided into multiple chunks, and each chunk is distributed to different com-
puting nodes. These first act as map nodes and then as reduce nodes, thereby
completing the parallel application of one of the completion rules.

To give a concrete example, consider rule R2. Each map node first identifies,
in its input chunk, all axioms of the form A ∈ S(X) and A ⊑ ∃r.B and then
outputs them as key-value pairs 〈A, A ∈ S(X)〉 and 〈A, A ⊑ ∃r.B〉, respectively.
In the reduce phase, all pairs with key A end up in the same reduce node, which
can then complete the application of R2 by adding to R.

This idea of casting completion rules into MapReduce closely follows [22].
Note, however, that the rules R1, R3, and R5 from the original CEL algorithm
cannot directly be dealt with using this approach, since each of them has three
preconditions which do not share a common element which could be used as
a key for the reduce phase. In [21], which deals with OWL Horst, a similar
problem occurs, and the authors deal with it by performing part of the operation
in-memory using a central store. This is made possible because of the specific
form of the problematic completion rules for OWL Horst, where one of the
preconditions is always a schema axiom, and because of the specific applications
the authors have in mind, where there is much less schema knowledge than facts.
Note that we cannot adopt this approach for EL+, since a separation along
similar lines would hardly be reasonable for studying classification in EL+. We
hence choose to provide a generic algorithm, based on the revised CEL algorithm.

We refrain from giving detailed descriptions of the MapReduce algorithms
corresponding to all of the completion rules in Figure 2. We do give details for
rules R1-1 and R1-2 in Figures 4 and 5, however. The remaining rules are dealt
with in a completely analogous manner, using the keys shown in Figure 2.

The behavior of R1-1 and R1-2 can be illustrated using the below axioms.

A ⊓ B ⊑ C

A ⊑ B

A ⊑ D

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 469

ComputeClassificationSet()
{

1. Each node takes a subset of all axioms as input and computes additional elements
for O, S, R or P , depending on the completion rule which is applied.

(a) In the Map phase, based on the rule that is applied in the current iteration,
the set of axioms which satisfy any one of the preconditions of the rule are
found and given as output. In the output 〈key, value〉 pairs, key is the concept
or relationship which is common to both the preconditions of a rule (as indi-
cated in Figure 2). The value is the corresponding axiom (which satisfies the
precondition).

(b) In the Reduce phase, all axioms belonging to the same key are collected from
different nodes and conclusions of the completion rule are computed according
to the completion rule, taking all valid combinations of axioms into account.

2. All outputs are stored in the database, unless they are already contained in it.
3. Call ComputeClassificationSet() again until no selection of a rule results in any

additions to the database.

}

Fig. 3. General strategy followed by MapReduce algorithms for each completion rule.

It readily follows that A is a subclass of both C and D, and one can obtain this
result using R1-1 and R1-2 alone. When the algorithm is initialized, S(X) =
{X,⊤} and P (X) = ∅ for each class name X. When R1-1 is applied (we may
suppose that both axioms are given to a single node), the map function generates
the key-value pair 〈A,A⊓B ⊑ C〉. Other pairs are produced as well (specifically,
〈X, S(X)〉 and 〈⊤, S(X)〉, for each name X). This intermediate output is used
in the reduce phase, which in this example produces the following result: For
key A, v1 = A ∈ S(A) and v2 = A ⊓ B ⊑ C together cause (B,C) to be added
to P (A). This new axiom is added to the set of axioms already present, and all
axioms—old and new—are used in the next map-reduce step.

The map phase of R1-2 then yields the following key-value pairs:

{〈A,A ∈ S(A)〉, 〈B, (B,C) ∈ P (A)〉, 〈A,A ⊑ B〉, 〈A,A ⊑ D〉}

In the reduce phase, since A ∈ S(A) and A ⊑ B are both associated with
key A, B is added to S(A). Analogously, D is added to S(A). These are the only
significant changes made during the iteration. Applying R1-2 again, however,
causes C to be added to S(A) as well. Specifically, when the map function is
invoked, since B is now an element of S(A), the pair 〈B,B ∈ S(A)〉 will be
generated, as will 〈B, (B,C) ∈ P (A)〉. In the reduce phase, since both tuples are
now indexed by the same key (namely, B), they can be used in conjunction. It
is this that allows C to be added to S(A).

470 A MapReduce Algorithm for EL+

map(key, value)

// key: line number (not relevant)

// value: an axiom

{
if(value == A ∈ S(X))

emit(〈A, A ∈ S(X)〉);
else if(value == A1 ⊓ A2 ⊑ B)

emit(〈A1, A1 ⊓ A2 ⊑ B〉);
}
reduce(key, iterator values)

// key: A concept name (e.g. A)

// values: axioms corresponding to a rule precondition

{
for each v1 in values

for each v2 in values

{
if(v1 == A1 ∈ S(X) and v2 == A1 ⊓ A2 ⊑ B)

emit((A2, B) ∈ P (X));
}

}

Fig. 4. MapReduce algorithm for R1-1. The input of the map function is an axiom,
taken from either the ontology O, or else one generated from the sets S, P , or R. Key-
value pairs are generated, which are used in the reduce phase. The reduce function
accepts a key and a list of values. Every possible combination of values is examined to
determine whether R1-1 is applicable. A list of axioms is produced.

4 Conclusion and Future Work

Due to the ever increasing amount of data on the Web, there is a need for
parallelizable approaches to reasoning algorithms. Following the lead of existing
work on scalable implementations of RDF Schema closure, we have in this paper
provided a MapReduce algorithm for the classification of EL+ ontologies. This
approach, we believe, is scalable and will reduce the time needed to compute
classification over large ontologies.

Our next step is to implement this algorithm using the Hadoop framework
and the cloud computing infrastructure available at Wright State University. The
experiences reported in [21, 22] on using MapReduce for RDF Schema indicate
that optimizations, in particular concerning the choice of which completion rule
is applied next, will be crucial for the performance. We intend to use the master
node to monitor the outputs of previous MapReduce steps, and to use this output
to decide which completion rule to apply next.

The results in [21, 22] also indicate that the MapReduce approach requires
rather large datasets to show a pay-off in terms of performance, which in our
case may require the generation of artificial datasets for initial experiments.

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 471

map(key, value)

// key: line number (not relevant)

// value: an axiom

{
if(value == A ∈ S(X))

emit(〈A, A ∈ S(X)〉);
else if(value == (A, B) ∈ P (X))

emit(〈A, (A, B) ∈ P (X)〉);
else if(value == A ⊑ B)

emit(〈A, A ⊑ B〉);
}
reduce(key, iterator values)

// key: A concept (e.g., A)

// values: axioms corresponding to a rule precondition

{
for each v1 in values

for each v2 in values

{
if(v1 == A ∈ S(X))
{

if(v2 == (A, B) ∈ P (X) or v2 == A ⊑ B)

emit(B ∈ S(X));
}

}

Fig. 5. MapReduce algorithm for R1-2

We furthermore consider this line of work on EL+ to be only the starting
point for investigations into more expressive languages, such as EL++, ELP [12],
or even OWL 2 DL.

References

1. Mina Aslani and Volker Haarslev. Towards Parallel Classification of TBoxes. In
Franz Baader, Carsten Lutz, and Boris Motik, editors, Proceedings of the 21st
International Workshop on Description Logics (DL2008), Dresden, Germany, May
13-16, 2008, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.
Available from http://ceur-ws.org/Vol-353/AslaniHaarslev.pdf.

2. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI-05), Edinburgh, UK, 2005. Morgan-Kaufmann Publishers.

3. Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL—A
Polynomial-time Reasoner for Life Science Ontologies. In U. Furbach and
N. Shankar, editors, Proceedings of the 3rd International Joint Conference on Au-
tomated Reasoning (IJCAR’06), Seattle, WA, USA, August 17-20, 2006, volume
4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag,
2006.

472 A MapReduce Algorithm for EL+

4. Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. Efficient reasoning
in EL+. In Proceedings of the 2006 International Workshop on Description Logics
(DL2006), volume 189 of CEUR Workshop Proceedings, 2006.

5. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data – the story so
far. International Journal on Semantic Web and Information Systems, 5(3):1–22,
2009.

6. Jürgen Bock. Parallel Computation Techniques for Ontology Reasoning. In Amit P.
Sheth et al., editors, Proceedings of the 7th International Semantic Web Confer-
ence, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008, volume 5318 of Lec-
ture Notes in Computer Science, pages 901–906. Springer, 2008.

7. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proceedings of the 6th Symposium on Operating System Design
and Implementation (OSDI 2004), December 6-8, 2004, San Francisco, California,
USA, pages 137–150. USENIX Association, 2004.

8. Pascal Hitzler. Towards reasoning pragmatics. In Krzysztof Janowicz, Martin
Raubal, and Sergei Levashkin, editors, GeoSpatial Semantics, Third International
Conference, GeoS 2009, Mexico City, Mexico, December 3–4, 2009. Proceedings,
Lecture Notes in Computer Science, pages 9–25. Springer, 2009.

9. Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Se-
bastian Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C Rec-
ommendation 27 October 2009, 2009. Available from http://www.w3.org/TR/

owl2-primer/.
10. Prateek Jain, Pascal Hitzler, Peter Z. Yeh, Kunal Verma, and Amit P. Sheth.

Linked Data is Merely More Data. In Dan Brickley, Vinay K. Chaudhri, Harry
Halpin, and Deborah McGuinness, editors, Linked Data Meets Artificial Intelli-
gence, pages 82–86. AAAI Press, Menlo Park, CA, 2010.

11. Zoi Kaoudi, Iris Miliaraki, and Manolis Koubarakis. RDFS Reasoning and Query
Answering on Top of DHTs. In Amit P. Sheth et al., editors, Proceedings of the
7th International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany,
October 26-30, 2008, volume 5318 of Lecture Notes in Computer Science, pages
499–516. Springer, 2008.

12. Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. ELP: Tractable Rules
for OWL 2. In Amit P. Sheth et al., editors, Proceedings of the 7th International
Semantic Web Conference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008,
volume 5318 of Lecture Notes in Computer Science, pages 649–664. Springer, 2008.

13. Gergely Lukácsy and Péter Szeredi. Scalable Web Reasoning Using Logic Pro-
gramming Techniques. In Axel Polleres and Terrance Swift, editors, Proceedings
of the Third International Conference on Web Reasoning and Rule Systems, RR
2009, Chantilly, VA, USA, October 25-26, 2009, volume 5837 of Lecture Notes in
Computer Science, pages 102–117. Springer, 2009.

14. Frank Manola and Eric Miller, editors. Resource Description Framework (RDF).
Primer. W3C Recommendation, 10 February 2004. Available at http://www.w3.

org/TR/rdf-primer/.
15. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and

Carsten Lutz, editors. OWL 2 Web Ontology Language: Profiles. W3C Recommen-
dation, 27 October 2009. Available at http://www.w3.org/TR/owl2-profiles/.

16. Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teije,
and Frank van Harmelen. Marvin: Distributed reasoning over large-scale Semantic
Web data. Web Semantics: Science, Services and Agents on the World Wide Web,
7(4):305–316, 2009.

Raghava Mutharaju, Frederick Maier and Pascal Hitzler. 473

17. Anne Schlicht and Heiner Stuckenschmidt. Distributed Resolution for Expressive
Ontology Networks. In Axel Polleres and Terrance Swift, editors, Proceedings
of the Third International Conference on Web Reasoning and Rule Systems, RR
2009, Chantilly, VA, USA, October 25-26, 2009, volume 5837 of Lecture Notes in
Computer Science, pages 87–101. Springer, 2009.

18. Ramakrishna Soma and Viktor K. Prasanna. Parallel inferencing for OWL knowl-
edge bases. In 2008 International Conference on Parallel Processing, ICPP 2008,
September 8-12, 2008, Portland, Oregon, USA, pages 75–82. IEEE Computer So-
ciety, 2008.

19. Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu. RAPID: Enabling
Scalable Ad-Hoc Analytics on the Semantic Web. In Abraham Bernstein et al., ed-
itors, Proceedings of the 8th International Semantic Web Conference, ISWC 2009,
Chantilly, VA, USA, October 25-29, 2009, volume 5823 of Lecture Notes in Com-
puter Science, pages 715–730. Springer, 2009.

20. Herman J. ter Horst. Completeness, decidability and complexity of entailment for
RDF Schema and a semantic extension involving the OWL vocabulary. Journal of
Web Semantics, 3(2–3):79–115, 2005.

21. Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri
Bal. OWL reasoning with WebPIE: calculating the closure of 100 billion triples.
In Proceedings of the 8th Extended Semantic Web Conference (ESWC2010), Her-
aklion, Greece, May 30–June 3, 2010. Springer, 2010.

22. Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Scalable
Distributed Reasoning Using MapReduce. In Abraham Bernstein et al., editors,
Proceedings of the 8th International Semantic Web Conference, ISWC 2009, Chan-
tilly, VA, USA, October 25-29, 2009, volume 5823 of Lecture Notes in Computer
Science, pages 634–649. Springer, 2009.

23. Jesse Weaver and James A. Hendler. Parallel materialization of the finite RDFS
closure for hundreds of millions of triples. In Abraham Bernstein et al., editors,
The Semantic Web – ISWC 2009, 8th International Semantic Web Conference,
ISWC 2009, Chantilly, VA, USA, October 25-29, 2009, volume 5823 of Lecture
Notes in Computer Science, pages 682–697. Springer, 2009.

474 A MapReduce Algorithm for EL+

