
Non-Stationary CT Image
Noise Spectrum Analysis

Michael Balda1, Björn J. Heismann1,2, Joachim Hornegger1

1Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen
2Siemens Healthcare, Erlangen

michael.balda@informatik.uni-erlangen.de

Abstract. We investigate the spatial dependency of noise characteris-
tics in CT images. The perceived image quality depends on the noise-
granularity. Especially in low-dose applications the noise granularity
influences the diagnostic value. A model is presented, that provides
two-dimensional, stationary noise realizations for arbitrary image pixel
locations from which two-dimensional Noise Power Spectrum estimates
can be computed. It fully incorporates the CT reconstruction process
for (indirect) fan-beam reconstruction, the quarter offset of the detector
channels and the detector noise characteristics. It can be used with sim-
ulated and measured data and allows for the assessment of spectral noise
characteristics for arbitrary objects.

1 Introduction

The noise in the reconstructed CT image is influenced by various parameters.
When planning components of a Computed Tomography scanner, like detectors
or X-ray tubes, it is necessary to tune their parameters in a way that leads to the
best achievable objective image quality. In terms of software aspects, different
reconstruction techniques and several noise-reduction algorithms like sinogram
pre-processing exist, which have to be evaluated not only in terms of total noise
reduction but also on their influence on the image quality. These tasks require
methods to assess the image noise characteristics.

Fig. 1 illustrates the typical noise characteristics of a CT image. The noise
texture shows an isotropic grain structure at the center. Towards the bound-
ary it decreases and becomes increasingly oriented. This effect can be observed
in both images of different water phantoms. There are models which analyti-
cally compute the noise variance propagation for the inverse Radon transform
[1], more precise noise propagation models also include local correlations intro-
duced by various reconstruction steps [2]. Additionally, several approaches have
been made, which model the noise propagation from the detector noise transfer
function to the image noise power spectrum (NPS) [3], [4] but these models are
limited by the fact, that the assumptions on the noise transfer functions (like
detector- or focus-noise transfer function) are only valid for the image center.
Objective quality measures of a CT image, however, rely on an assessment of
the noise characteristics throughout the whole image.
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2 Materials and Methods

We develop a model to generate two-dimensional realizations of the image noise
and NPS estimates for arbitrary image positions. It uses a projection noise
model. For any pixel position and projection angle, an ensemble of projection
noise values at the associated detector position is generated. This local detector
noise signal then undergoes all steps of the reconstruction algorithm that influ-
ence the noise characteristics. Back-projection of the according noise signals for
each angle yields a stationary, two-dimensional noise realization for this image
location. This model gives an insight into the noise shaping properties of the
filtered back-projection (FBP). Unlike analytical noise propagation methods, it
can be easily adapted to any FBP-based reconstruction algorithm and various
effects can be incorporated into the model without greatly increasing its overall
complexity.

The characteristics of this noise realization will differ throughout the image
and resemble the CT image noise at a selected location p = (px, py)

T . The value
of an image pixel depends on the attenuation of all beams passing through this
pixel. These beams have associated projection angles φ ∈ [0;π). The model
creates a stationary local noise image patch ip(x) using the following steps for
all projection angles φ ([5] for a concise description of the FBP):

1. Find measured attenuation value: The detector coordinate γ(p, φ) can be
computed as follows:

γ(p, φ) =

(
atan2

(
r(p) · cos(φ− φT (p))

dSOC + r(p) · sin(φ− φT (p))

)
+

β

2
− βa

)
· 1

∆β
(1)

The complete fan angle is β, ∆β is the fan angle between two neighboring
detector channels, βa is the alignment angle due to the quarter offset (βa = 0
for no quarter offset). The distance between X-ray source and origin is de-
noted dSOC, the polar coordinates of p are denoted r(p) for the distance to

Fig. 1. Excerpts (125mm×125mm) of CT images of water phantoms: 300mm diam-
eter (left), 400mm diameter (right).
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the origin and φT (p) for the polar angle. Using γ(p, φ), the according atten-
uation value µ(γ(p, φ), φ) can be interpolated from the measured projection
data.

2. Initialize projection noise model: The projection noise model provides a
noise distribution for the attuenuation values µ(γ(p, φ), φ). The noise in the
attenuation values measured by the detector consists of electronics noise,
quantization noise and quantum noise. The quantum noise depends on the
number of incoming X-ray quanta. A detailed description on how quantum
noise affects the detected attenuation values can be found in [1]. In practice,
the noise effects can either be modeled or assessed by calibration measure-
ments. Usually, the detector noise signal can be assumed to be uncorrelated
and white. In practice minor correlations between the detector channels are
introduced by optical cross-talk.

3. Generate virtual detector noise signals: A virtual, stationary detector noise
signal is generated, that has constant noise distribution parameters through-
out all channels. In case of rebinning to parallel beam geometry, an addi-
tional reading is generated with identical parameters. It represents the pro-
jection from the opposite direction. If the detector noise cross-talk behavior
should be considered, these signals have to be convoluted with the impulse
response of the detector.

4. Rebin virtual noise signal: The rebinning also influences the NPS. It con-
sists of two steps. First the beams are reordered to parallel beam geometry
with inhomogeneous ray distances. This requires a 2-D interpolation in the
sinogram. In case of a quarter offset, the beams from opposite projection
directions are then sorted into one single reading with the double amount of
channels, finally the readings are resampled to homogeneous ray distances
which requires a 1-D interpolation. In case of direct FBP, this step is omit-
ted.

5. Filtered back-projection: The rebinned virtual noise signal is filtered and
back-projected. The resulting noise pattern is stationary and resembles noise
characteristics as this specific location in the image.

2.1 Algorithm

The algorithm can be summarized as follows.

1. Set projection angle φ = −π/2 +∆φ · r and ∆φ = π/nr

2. Calculate γ(x, φ) according to (1) and interpolate reading dφ[c] at γ to get
attenuation value µ(φ).

3. Initialize detector noise generator with µ(φ).
4. Generate two vectors of noise signal realizations d̃n,i[c] with c ∈ [0;Nd] and

i ∈ {1, 2}.
5. Perform rebinning on d̃n,1 and d̃n,2[c] to get d̂n[cp].

6. Back-project d̃t[cp] onto the noise patch ix.
7. if r < Nr: Set r = r + 1 and GOTO 2;
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The length of the detector noise signal Nd has to be chosen according to the
desired size and field of view (FOV) of the noise resulting image patch ix so that
the image patch is fully covered by the back-projected values of d̃t[c], nr is the
number of desired rotation angle samples.

3 Results and Discussion

The algorithm was tested with several measured and simulated phantoms.
Fig. 2(a) shows the reconstruction of a simulated phantom with marked voxel
locations. This phantom is especially suited to demonstrate the properties of
the proposed method, since the two strongly attenuating bone structures have a
dominating influence on the noise structure of the whole image. Fig. 3 displays
the respective stationary noise patches and the corresponding NPS estimates.
Dominating noise components in directions of strong attenuation (between the
two bones) can be observed. This leads to an increasingly directed noise grain
structure. For the pixel close to the border, there is no such dominant influence
on the noise direction, this leads to a more homogeneous noise structure. The
overall noise is stronger for pixels close to the center and / or near strong attenua-
tors. For testing the noise model on measured data, an elliptic water phantom of
450mm width and 225mm height was used. Fig. 2(b) shows the measured noise
standard deviation from a circular ROI of radius 50mm shifted along the longer
axis of the ellipse. The corresponding model estimates are generated with the
introduced method, an analytic forward projector and a calibrated noise model.
The measurement and the values computed with the model on simulated data
show a good agreement with relative deviations below 5%.

60 100 140 180 220 260 300 340 380 420

0.9

1

1.1

1.2

1.3

1.4

x 10
−3

Pixel coordinate in horizontal directionN
oi

se
 s

ta
nd

ar
d 

de
vi

at
io

n 
of

 a
tte

nu
at

io
n 

va
lu

es
 (

m
m

−
1 )

 

 

Model
Measurement

Fig. 2. Left: Reconstruction of an elliptical water phantom with two femur bone
structures. Noise patches are provided in Fig. 3 for marked voxel locations; Right:
Comparison of noise standard deviation in from measured data and model.
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Fig. 3. Top row: Noise patches for voxels marked in Fig. 2(a) (window center: 0,
width: 4.2 HU); bottom row: normalized NPS estimates computed from noise patches
above.
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4 Conclusion

We have introduced a method to generate stationary noise patches and Noise
Power Spectrum estimates that resemble the noise characteristics of arbitrary
voxel positions of CT images. The NPS estimates show the influence of object
structures and reconstruction properties on the image noise structures. The
model can be easily adapted to various FBP-based reconstruction techniques.
This method can be used as a valuable tool to evaluate the influence of recon-
struction parameters such as reconstruction kernels or noise adapted sinogram-
filters on the quality of the reconstructed image.
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