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Abstract

This paper addresses a basic issue in physical design of data warehouses by proposing
a heuristic approach which selects an optimal set of indexes to be created on a ROLAP
implementation. To achieve this goal we simulate a rule-based optimizer which gen-
erates query execution plans that are evaluated according a specific cost model. The
indexes considered belong to two very common categories: tid-list indexes and bitmap
indexes, both accessed via a BT-tree. Finally, we outline a greedy algorithm which
chooses, from a set of candidate indexes, the most promising ones respecting a con-
straint on the disk space devoted to indexing. The validity of the approach is evaluated
with reference to some experimental tests, part of which are aimed at comparing the
relative benefits arising from view materialization and indexing.

1 Introduction

During the design of a data warehouse (DW), the phases aimed at improving the system
performance are logical and physical design. On relational (ROLAP) implementations, the
multidimensional view of data at the logical level is achieved by adopting the so-called star
scheme, composed by a set of dimensional tables, one for each dimension of analysis, and
a fact table whose primary key is obtained by composing the foreign keys referencing the
dimension tables.

A basic requirements of DW users is to obtain quick answers for their queries. One of
the most effective ways to achieve this goal during logical design is view materialization [11].
A view contains aggregated data obtained from the base fact table containing elemental
data; the aggregation level characterizing a view is called its pattern and consists of a set
of attributes from the dimension tables. Also materialized views are modeled according to
the star scheme. Though the impact of materialized views on overall performance is very
strong, using indexing techniques is still fundamental. Indexing, together with all the issues
related to implementing the DW on a specific DBMS, are considered by physical design.

Given the logical scheme of the DW, defining its physical scheme requires to determine
the set of indexes to be built on both fact tables and dimension tables. Typically, the set that
minimizes the workload execution cost respecting a given space constraint is sought. From
the computational point of view, this 1s a very hard problem; in particular, the presence
of several materialized views that can solve the same query creates an undesired inter-
dependence between logical and physical design: in fact, the utility of a materialized view
may depend on the set of indexes created on other views. Thus, a perfect algorithm should
carry out logical and physical design simultaneously; since this approach is unfeasible in
real cases due to its complexity, in practical cases the best view available to solve a query 1s
chosen independently of the physical scheme.

Indexing strongly depends on the features of the specific DBMS: first of all on the cat-
egories of indexes available, but also on the types of execution plans generated and on the
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statistics consulted by the optimizer. The peculiar features of DW applications allow sev-
eral types of indexes, which in operational systems are seldom used due to their high update
cost, to be considered [10]: for instance bitmap indexes, join indexes, and projection indexes
[7, 8].

In this work we focus on physical design; in particular, we propose a heuristic approach
to index selection in relational DWs implemented through star schemes. Given the DW
logical scheme (including materialized views), an OLAP workload, the data volume, and a
constraint defining the disk space devoted to indexes, the goal is to determine the optimal
physical scheme, that 1s, an index set that minimizes the workload execution cost respecting
the space constraint. To this purpose we define a rule-based optimizer model capable of
determining an execution plan for each query. The indexes considered in this work are
tid-list and bitmap indexes, both accessed via a Bt-tree. The queries express aggregations
over selections over the star join between a fact table and a set of dimension tables. A set
of potentially useful candidate indezes is preliminarly determined considering the workload.
Then, a greedy algorithm progressively chooses, from the set of candidate indexes, the most
beneficial ones while satisfying the space constraint.

Despite the high number of indexing techniques devised, only a few works in the litera-
ture focus on the selection of indexes for DWs. In [6] the authors propose both an optimal
algorithm and a set of thumb rules that should be adopted when the problem size is in-
tractable. Rules, that are justified by the adoption of appropriate cost functions, state that
indexes should be created on keys and on attributes involved in joins, as well as when their
size fits into main memory. In [3] the problem of simultaneously choosing views and BT-
tree indexes is investigated; the linear cost function adopted 1s very simple, and no specific
optimizer model is considered.

The paper is organized as follows: Section 2 briefly describes the functional architecture
on which the approach is based; Section 3 analyzes in detail the component responsible of
selecting the execution plan to solve each query; Section 4 describes the cost model adopted;
Section 5 outlines the heuristic algorithm which determines the optimal index set to be built;
finally, Section 6 reports some experimental tests, draws the conclusions on the work carried
out and gives some suggestions for future work.

2 Architectural sketch

In this section we briefly describe the functional architecture on which our approach is based,
sketched in Figure 1, whose components are briefly described in the following:

e The logical scheme is the relational scheme for fact tables (including both base tables
and aggregate views) and dimension tables.

e The workload is a set of queries to be executed on the DW. The queries we consider are
modeled as GPSJ (Generalized Projection-Selection-Join) expressions [2] in the shape
Tp,M OPred X Where ¥ denotes the star join among a fact table and the related dimen-
sion tables, Pred is a conjunction of simple range predicates on different dimension
table attributes, P is a pattern, and M is a set of aggregated measures. Generalized
projection 7p pr defines the pattern P on which tuples have to be aggregated as well
as the aggregation operators to be used for each measure.

e The data volume contains quantitative information about data, such as the size of
tables and the domain cardinality of attributes.

e System constraints include the available disk space reserved to indexing, S, and the
size of the memory buffer for hybrid hash joins, hb.
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Figure 1: Functional architecture for index selection.

The bound workload couples each query in the workload with a reference to the fact
table used to solve it.

The attributes that can be usefully indexed to speed up some queries are called in-
dexable attributes. The set of candidate indexes couples each indexable attribute with
the most convenient index type for it. In this approach, indexes are always built on a
single attribute except for indexes on the fact table primary key. The set of optimal
wndezes to be built includes a subset of candidate indexes as well as all the indexes
built on primary keys of dimension tables and fact tables.

The processing elements which use these objects to accomplish index selection are:

the aggregate navigator which, given a workload and a logical scheme including one or
more materialized views, selects the best view on which each query should be solved
without taking indexes into account;

the indexable attributes selector which, based on the structure of the queries, deter-
mines which attributes of dimension tables can be usefully indexed;

the candidate indexes selector which, for each indexable attribute, evaluates which
type of index is the most convenient;

the optimal indexres selector which selects the indexes to be created out of the set of
candidate indexes;

the cost evaluator used to evaluate both the cost of each index and that of each
execution plan;

the plan generator which given a physical scheme, a query ¢ and the view v on which
¢ should be solved, returns the best execution plan which solves ¢ on v.

The aggregate navigator and the plan generator, together with the cost evaluator, implement
the query optimizer. Decoupling the choice of the view to execute the query and the choice
of the plan to access that view allows for reducing the complexity of optimization, and
reflects the approach adopted in most DBMSs for data warehousing when the presence of
materialized views is meant to be transparent to the user.



3 Plan generation

This section proposes a rule-based model for the plan generator which, given a query and
the view (i.e. the fact table) on which it will be solved, returns the execution plan estimated
to be the “best”. The model is strictly based on the optimizer of Informix Red Brick 6.0 [5],
whose behavior was determined through a black-box analysis. After describing in Section
3.1 the elemental operators appearing in execution plans, in Section 3.2 we explain how the
plan for a query is chosen.

3.1 Operators for execution plans

A query execution plan is a sequence of elementary operators applied to the physical scheme.
Each operator models a function carried out by the DBMS on either tables or indexes and
is characterized by an input and an output; some operators allow a local predicate to be
specified in order to filter the output.

The operators are briefly described below:

e Table scan sequentially scans a table and returns the set of all the tuples that satisfy
a given selection predicate.

e Index scan accesses an index and retrieves the tids of the tuples that satisfy a given
selection predicate.

e Table access accesses a table to get the tuple related to a given tid, which is returned
only if 1t satisfies a given predicate.

e Indexr access accesses an index to retrieve the set of tids of the tuples yielding a given
value for the index key.

e Hash join carries out the natural join between two sets of tuples using the hybrid hash
join algorithm.

o Tid intersection returns the intersection between two sets of tids.

While table scan and index scan always appear at the beginning of a plan, all the others
appear in intermediate positions.?

Example 1 Let us consider the star scheme derived from the TPC-H [9]:

PART (Partld, Part, Brand, MFGR, Type, Container, Size)

SUPPLIER(Supplierld, Supplier, SNation, SRegion)

ORDER(Orderld, Order, ODate, OMonth, OYear, Customer)

LINEITEM(Partld, Supplierld, Orderld, ShipDate, Qty, ExtPrice, Discount, DiscPrice, UnitPrice, Tax)

and the following GPSJ query on it:
TType,SNation,OYear, SU M (ExtPrice), AV G (UnitPrice) 7 SRegion='West’ (PART M SUPPLIER M ORDER M LINEITEM)

A feasible plan for this query is depicted in Figure 2. a

I Actually, every plan is terminated by an aggregation operator which executes the generalized projection
on the query pattern. This operator is assumed to take no advantage from indexing, thus, it is not considered
here.
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Figure 2: Graphical representation of an execution plan.

3.2 Selection of an execution plan

The decision flow for selecting an execution plan for query ¢ is mainly determined by the
number of conditioned dimension tables, 1.e. tables on which a predicate is expressed in g¢:

e If no conditioned dimension tables are present, the fact table 1s sequentially scanned
(table scan) then joined with all the dimension tables involved in ¢ through a nested-
loop on their primary key indexes (inder access+table access).

e If exactly one conditioned dimension table is present, DT. with condition Pred, the
plan selection algorithm checks if there is an index allowing to access the fact table
from its foreign key referencing DT, (it may be either a single-attribute index on the
foreign key or an index on the primary key of the fact table where the foreign key is
in the first position). If so, for each tuple of DT, that satisfies Pred, this index and
then the fact table are accessed. Otherwise, a hybrid-hash join between DT, filtered
by Pred and the fact table is executed. In both cases, the result is eventually joined
with the other dimension tables requested in output.

e If there are two or more conditioned dimension tables, for each of them the algorithm
decides how to carry out the join with the fact table (nested-loop if there is an index on
the corresponding foreign key in the fact table, hybrid hash otherwise). The join with
each dimension table returns the subset of fact table tids whose related dimension table
tuples satisfy the local predicates. The tid sets obtained from the different conditioned
dimension tables are then intersected, and the resulting tuples of the fact table are
accessed.

As to accessing a conditioned dimension table, if no attribute on which a predicate is
defined and an index is built exists, then a table scan of the dimension table is executed.
Otherwise, all indexes on conditioned attributes are accessed, the tid sets obtained are inter-
sected, possibly further filters on non-indexed attributes are applied, finally the dimension
table is accessed.

4 The cost model

In order to compare different physical schemes, a cost model is necessary to evaluate each
execution plan. According to the cost model adopted in this paper, the cost of a plan is
expressed as the number of logical pages that must be read to execute it [1, 3, 4].

Evaluating the cost of a plan requires a cost function for each single operator appearing
in it; the cost of an operator may depend on the cardinality of the output of the previous
operator. The cost of the full plan is the sum of the costs of all its operators. Table 1 reports
the information required by the cost model, divided in two categories: system information
and database statistics.



System information

b disk page size in bytes
hb | size in bytes of the buffer used for hybrid hash join
Table statistics
NT | number of tuples

t tuple size in bytes
NP | number of disk pages
Index statistics

N K | number of distinct key values
NT | overall number of tids stored
NL | number of leaves

H | height of the Bt-tree

NB | number of disk pages to store a bitmap

Table 1: Statistics used by the cost evaluator.

In the following, the cost function and the output cardinality are reported for each
operator. Function sel(Pred) returns the fraction of tuples satisfying Boolean predicate
Pred.

e Table scan on predicate Pred:

cost = NP
#Houtput = NT x sel(Pred)

e Index scan on range predicate Pred:

y H + [NL * sel(Pred)] , for a tid-list;
cost =
H 4+ [NL*sel(Pred)] + NK x sel(Pred) * NB | for a bitmap

#Houtput = NT x sel(Pred)

e Table access on predicate Pred:

1 #input
cost=NPx|[1—[|1——
NP

Houtput = F#input x sel(Pred)

o Index access:

cost = #l:nput * (H + {%]) , for a ti.d—list;
#input « (H+ 1+ NB) | for a bitmap

output = Finput *
F#outp #inp K



e Hash join between table; and tables:

) i1 x1
#HashPartitions = ’VM-‘

, if #HashPartitions = 1
cost =
#ZHPUtQ*tQ x ##HashPartitions , otherwise

P

output =
F#outp TNT,

* #inputs
e Tid intersection between n sets of tids:

cost =0

Hinput, . #input, W NT — I1; #input;
NT NT NTn-1

Foutput =

5 The index selection algorithm

An attribute a € DT is said to be indexable if at least one query in the workload expresses
a condition on a. A prime? attribute a € FT, a referencing DT, is indezable if at least one
query in the workload expresses a condition on an attribute in DT and is executed on F'T'.

It is remarkable that, in the physical scheme, each index is independent of the others.
In fact, given an index X on an indexable attribute, the plan generator will always use I.X
in the same way and with the same cost regardless of the contemporary presence of other
indexes. The contribution of I X to the execution cost of query ¢, @Cost(IX, q), depends on
the table on which 7.X 1s built. If 7.X is built on a dimension table attribute, it is accessed
by a scan driven by the selection predicate of ¢; thus, @Cost(IX,q) is the cost of an index
scan operation. If X is built on a prime attribute of the fact table, it is accessed once
for each of the ET tuples of the dimension table that satisfy the selection predicate; thus,
QCost(IX,q) is equal to ET times the cost of index access. Now, it is possibile to define
for 1X a total cost as its global contribution to the workload cost, computed as the sum of
its contributions to the single queries weighted on the query frequencies:

TCost(IX) Zfreq ) - QCost(IX,q)

and a weighted cost as its size in disk pages times its total cost: size P(IX) - TCost(IX).
The weighted cost is used to compare different types of indexes (tid-list and bitmap) built
on the same attribute. Thus, for each indexable attribute a, the corresponding candidate
index IX = (a,index type) is the one whose weighted cost is minimal.

Usually designers reserve a fixed disk space S to store indexes; such space can be parti-
tioned into three parts whose sizes are defined a priori: (1) one part, Spp, for indexes on
dimension table primary keys; (2) one part, Spp, for indexes on fact table primary keys;
and (3) the remaining part for all the other indexes. We assume that only tid-list indexes
are built on primary keys and that primary keys of dimension tables are surrogated, so that
Spp can be easily calculated. Also the space contribution Spp can be easily computed a
priori since the size of each index on the primary key of a fact table only depends on the
number of prime attributes, not on their ordering. Finally, the space contribution for other
indexes i1s S — Spp — Spr.

The pseudo-code for the index selection algorithm is as follows:

2That is, belonging to the primary key.



procedure BuildOptimallndexrSet()
{ C =initializeC(); // C is the set of candidate indewes
O = initializeO(); // O is the set of optimal indexes
Stree =8 —Spp — Spp;  // expressed in disk pages
while (31X € C : sizeP(IX) < Sfree) do
{ I Xmaz = ar.gmal’{IXGC:sizeP(IX)SSfree}{benefitperpage(IXvO)};
0 =0 U {IXmas)};
O =0 — {IXmas}:
Stree = Sfree — st2eP(IXmax);  // stzeP(IX) returns the size of IX in disk pages
if 3FT : attr(IXmaz) € prime(FT) and Va; € prime(FT)3IX € O : a; = attr(IX)
// attr(IX) returns the ordered list of the attributes on which IX is built
// prime(FT) returns the set of prime attributes of F'T
{ IXmin = argmin{IXGO:attr(IX)Gprime(FT)}{decayperpage(IX)}§
0=0 - {Iszn}7
Sfree = Sfree + SZZSP(Iszn)v
O = O U {multInd(attr(IXmin))};
// given a prime attribute a € FT, multInd(a) returns a (multiple) tid-list index on the
// primary key of FT whose first attribute is a
}
)
for each F'T : O does not contain any index on the primary key of FT do
if 31X € C :attr(IX) € prime(FT)
{ IXmin = argmingrxec attr(1x)eprime(pr)}ibene fit Per Page(multind(atir(1X)),0)};
C=0C - {Iszn}7
O = O U{multInd(attr(IXmin))};
}
else
{ a = any prime not indexable attribute of F'T;
O = O U{multind(a)};
}

Function initializeC'() returns the set C' of candidate indexes for the workload; the set
includes, for each indexable attribute, the most useful candidate index selected according
to its weighted cost. Function initializeO() initializes the set of the optimal indexes, O:
for each dimension table, 1t inserts in O a tid-list index built on the primary key. Function
benefitPerPage(1X,0) returns the relative benefit of I X, estimated as:

WCost(0) — WCost(OU{IX})
sizeP(I1X)

benefitPerPage(1X,0) =

where WCost(O) is the execution cost, expressed in disk pages, for the whole workload when
the indexes in O are built. Given index IX on attribute a, function decayPerPage(IX)
returns the relative performance decay due to transforming /X from single-attribute to
multiple-attribute index:

TCost(multInd(a)) — TCost(IX)

decayPerPage(1X) = sizeP(IX)

The algorithm can be subdivided into three distinct sections. The first one initializes the
sets of candidate and optimal indexes as well as the available space for indexes on attributes
others than primary keys, S¢rce. The second section, delimited by the while loop, carries out
a greedy selection of indexes from C' based on the benefit per index page. If, after inserting
a new index in O, it turns out that all the prime attributes of a fact table are indexed,
one of these indexes must be transformed into a multiple-attribute index on the fact table
primary key; the choice is driven by the decay per index page related to the transformation.
It should be noted that the decay per index page can be computed by comparing the total
costs since it is used to decide which single-attribute index on a prime attribute of the
fact table should be transformed into a multiple index on the fact table primary key, and



Vs Sp | sel = 0.1% sel = 2% sel = 10%
100MB _ 190MB | 43.99% (313MB)  1.43% (63MB)  0.01% (63MB)
300MB  198MB | 41.06% (319MB)  1.52% (70MB)  0.01% (63MB)
500MB  226MB | 41.01% (344MB)  1.40% (7T0MB)  0.01% (63MB)

Table 2: Relative cost reduction from primary to full indexing in function of the average
query selectivity and of the space V.S devoted to views. Sp = Spp + Spp 1s the space used
for basic indexing; in parentheses, the space difference between full and primary indexing.

this transformation does not affect execution plans. On the other hand, the benefit per
index page must be computed with reference to the whole workload cost since dropping
an index from O may radically impact on the execution plans adopted. Once all indexes
have been selected, the third section sets up the primary key indexes for the remaining fact
tables. If, for a given fact table, a non-empty set of candidate indexes still exists, the one
whose insertion in O as a multiple-attribute index on the primary key is cheapest 1s chosen.
Otherwise, a non-indexable attribute is randomly chosen to build the multiple index.

6 Experimental tests and conclusions

In this paper we proposed a heuristic approach to the index selection problem starting from
a set of star schemes modeling, at the logical level, both primary data and aggregated views.
The approach has been tested on the TPC-H benchmark; 20 GPSJ queries inspired to those
in the benchmark have been executed varying both their selectivity and the space available
for materialized views and indexes. Tests have been executed both in simulation and using
the Red Brick 6.0 DBMS. The basic results we obtained are summarized in the following:

e The cost model we adopted turned out to be realistic since it determines costs (ex-
pressed as disk pages read) that are constantly about 15% higher than those measured
on the DBMS. Such overhead, that does not invalidate the results, can be ascribed to
the buffering system that is not modeled in the simulations.

e Indexing may considerably reduce the workload execution cost. Table 2 reports the
relative cost reduction, measured as the difference between the cost when only indexes
on primary keys are created (primary indexing) and the cost when all the beneficial
indexes are created (full indexing), in function of the constraint V.S on the disk space
available for view materialization, and of the average selectivity of the queries in the
workload. This saving, that is up to 44%, strongly depends on the workload selectivity;
already for 10% selectivity, it becomes negligible. As to the space for full indexing,
Table 2 shows how it reduces for low selectivities since the average utility of indexes
decreases.

e The plans produced are sound, in fact (1) the indexes created are always used by the
DBMS, and (2) each index created actually reduces the overall execution cost.

An interesting consideration concerns the correlation between the workload selectivity
and the best trade-off between the space used for views and that used for indexing. Figure
3 evaluates the workload cost, for a given global space constraint (700 MB), when the ratio
between the space constraint on views, V.S, and that on indexes, .S, is varied. It is apparent
that the best trade-off changes significatively depending on the workload selectivity: high
selectivities definitely encourage indexing, while at low selectivities view materialization is
more convenient.
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Figure 3: Normalized workload cost with a constant global space constraint.
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