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ABSTRACT
The significance of regular path queries (RPQs) on graph-
like data structures has grown steadily over the past
decade. Prominent application areas are XML/XPath,
RDF/SPARQL, analysis of social networks, and queries on
biomedical networks. However, current implementations of
RPQ are restricted either in the type of the graph (e.g.,
only trees), the type of regular expressions (e.g., only single
steps), and/or the size of the graphs. No research has yet
tried to evaluate general RPQs on large graphs, i.e., with
millions of nodes/edges.

The predominant current techniques for dealing with RPQ
use automata. However, we show that this approach, devel-
oped for tree-structured XML, does not work well in gen-
eral graphs. We developed a novel approach for answering
RPQs using ideas from cost-based query optimization. Es-
sentially, our method exploits the fact that not all labels
in a graph are equally frequent. We devise an algorithm
which decomposes an RPQ into a series of smaller queries
by concentrating on rare labels, i.e., those elements of the
query which have fewer matches in the graph. Comparison
of this rather simple method to automata-based techniques
across a wide range of queries and graphs shows that the
automata-based approach is not able to handle large graphs
due to the enormous amount of memory that is required,
and that the cost-based method outperforms the automata-
based approach in all cases.

1. INTRODUCTION
A general regular path query (RPQ) is a regular expres-

sion R evaluated on a directed, labeled graph. Its result
is the set of all paths in G whose concatenation of labels
(edge or node) spells out R. Different flavors of RPQs are
used in a wide range of applications. For instance, XPath
supports a restricted form of RPQs on XML documents [6].
For RDF data, SPARQL supports a simple form of RPQs,
and various proposals exist for enhancing SPARQL with full
RPQs (e.g., [2, 7]). In social communities, relations between
people, events or facts can be queried using RPQ-like pred-
icates [13]. Another important application domain are the
Life Sciences, where understanding the interactions of differ-
ent biological entities is of great importance [1]. Such inter-
actions are often modeled as graphs and RPQs are used to
find specific biochemical pathways between distant nodes [8].

To illustrate the problem and our main idea for solving
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it efficiently, we give some concrete examples. Suppose a
graph of researchers (nodes), either labeled as Professors
or STudents, connected by edges such as Supervised or
Joint work. In this graph, the query P (JP )(JP )? finds all
paths between a professor and direct or indirect co-workers.
(PS)(PS)+(P |T ) finds all paths between a professor and his
doctorate descendants. Now suppose we also model research
prizes as nodes (such as Nobel Prize or Sigmod Award), and
connect them to researchers with edges labeled Honored.
Then, we can find the doctorate predecessors of all Nobel
Prize winners using the query (PS) + PHN . Although an-
swering this query in principle requires to search the entire
graph, it is immediately clear that it is sensible to start the
search at nodes labeled with N , because (a) one such node
must be in any matching path and (b) there are much less
Nobel Laureates than professors. Such reasoning is the basis
of the approach we propose in this paper.

The usual approach to answer RPQs is using automata [4].
Both graph and query are represented as automata, whose
intersection automata is the subgraph specified by the query.
In this process, the graph needs to be translated into a DFA,
which can be of exponential space and time. Therefore, this
only works well for restricted forms of graphs, such as XML,
while space consumption is enormous on general graphs.

In this work, we present an alternative technique, which,
in principle, directly searches the query in the graph. As
searching the whole graph without dedicated start or end
points is not feasible, we developed a technique that is built
on ideas from cost-based query optimization. We gather la-
bels in the query that only occur a few times in the graph
and use these as fix points for a bi-directional search. We
split the query at these rare labels into smaller queries, and
answer these individually. For each of these queries, occur-
rences of the rare labels are start and/or end points, which
makes graph searching much faster. We search all paths be-
tween each two adjacent rare labels as well as at the start
and end of the query, and combine the results to answer the
original query. The main advantage of this approach is that
often we do not need to consider the whole graph, but only
those fractions of it that lie between adjacent rare labels.

Figure 1 gives an example of our idea. Suppose we want
to answer the RPQ a+ b c+ on a graph (Fig. 1b). Since
there is only one edge labeled with b, we use it as rare label
and split the query there. Now, the two smaller queries a+
and b+ have to be answered, using the b edge as end point
or start point, respectively. The result of the original query
is the combination of the smaller queries and the rare label.

Interestingly, we observed that this method outperforms



Figure 1: a) The RPQ a+ b c+ as an automaton,
b) a path fulfilling the RPQ in a small graph.

the automata-based approach even if graphs (or queries) do
not contain any rare labels, though its advantages are the
more pronounced the less homogeneous the label distribu-
tion is. This particularly is the case in the Life Sciences,
our main target area, where graphs usually have a Zipfian
label distribution (see Section 3). Thus, there are few labels
that occur very frequently, and many labels with very few
occurrences, which is an ideal case for our optimization.

Our idea can also be used for variations of the general
RPQ problem, such as finding the shortest path spelling
out the regular expression, or finding all matching paths
between two given nodes. In this paper, we focus on finding
all matching paths in the graph, which means finding the
set of subgraphs specified by the RPQ.

This paper is structured as follows. Section 2 gives an
overview on related work. In Section 3, we give definitions
of basic concepts. We introduce our cost-based optimization
for directly searching a graph in Section 4. We evaluate our
method in Section 5 and conclude in Section 6.

2. RELATED WORK
As Mendelzon and Wood show, searching acyclic paths

in a graph that match a regular expression is NP-hard [10].
However, they also show that the problem can be solved in
polynomial time if specific restrictions apply to the graph
or to the regular expression. A few approaches have been
proposed to speed up these kinds of queries.

The common approach for answering RPQs is based on
automata joining. An implementation using so-called “Rep-
resentative Objects”are the DataGuides by Goldman and
Widom [4]. They use the minimized DFA of the graph as an
index. However, this index can become much larger than the
original graph, which is a problem for large graphs. Gold-
man and Widom propose “Approximate DataGuides” [5]
which reduce the index size using heuristics, but are still
unfeasible for large graphs (see Section 5).

A lot of work has been done for answering path queries
on semi-structured data, mainly XML, where XPath has
been established as path query language [6]. However, XML
data have a tree structure, so these ideas do not necessarily
work on graphs in general. Additionally, XPath does not
support general RPQs. In contrast, our approach aims at
answering general RPQs on arbitrary graphs. Another area
thoroughly researched in recent years is querying RDF data.
SPARQL is the official W3C recommendation as an RDF
query language, but it does not support regular path queries.
Several extensions to SPARQL have been proposed to allow
RPQs, e.g. [2, 7]. However, there are no new execution plans
behind these proposed query languages.

In the context of biomedical research, additional query
languages have been proposed more recently. Mork et al.
[11] propose a query language for semi-structured biologi-
cal data. Leser [8] proposes a pathway query language for
querying protein interactions or pathway databases. Both
languages support a certain form of RPQs, but neither of
them presents an efficient resolution technique.

There is little work that is directly related to our aims.
Sevon and Eronen [14] describe a method for querying paths
in labeled graphs using context-free grammars. They tra-
verse the graph in a breadth-first way and use a context-
free parser to find matches. While context-free grammars
are more powerful than regular expressions, [14] only focus
on finding paths between fix start and end nodes. Fernandez
and Suciu present another interesting approach using Graph
Schemas [3], which, however, have to be created manually, a
step that seems unfeasible for graphs with millions of nodes.

3. TERMS AND DEFINITIONS
We use labeled directed multigraphs, i.e., a graph G is a

tuple G = (V,E, f, l,Σ), where V is a finite set of nodes, E
is a finite set of edges, l : E → Σ specifies the edge labels Σ,
and f : E → V × V is the connection function, specifying
which nodes are connected by which edges.

The topological properties of a graph can be measured
through node degree and label distribution. A graph is
called scale-free if the node degree distribution asymptoti-
cally follows a power law. That means, the number of nodes
with degree k is P (k) ∼ k−λ for large values of k, where
λ is a constant. Scale-free graphs are the likely outcome of
various random growth processes, and, indeed, many graphs
discovered in biological research are scale-free [9]. Similarly,
the label distribution in a graph is called Zipfian [15] if the
frequency of the labels occurring in the graph follows the
power law F (k) ∼ k−δ, with δ ≈ 1.

An RPQ is a regular expression over Σ. We use the com-
mon definition for REs: (1) If a ∈ Σ, then a is a regular
expression specifying L(a) = {a}. If a, b ∈ Σ, then (2) (ab)
is a regular expression specifying L(a)L(b), and (3) (a|b) is a
regular expression specifying L(a)∪L(b). (4) If a ∈ Σ, then
(a)∗ is a regular expression specifying L(a)*. Unnecessary
parentheses may be omitted, and the syntactic sugar opera-
tors + and ? may be used as usual. We also define a special
symbol “.” specifying any single symbol of Σ: L(.) = Σ.

4. COST-BASED OPTIMIZATION
In this section, we present a novel strategy for answering

RPQs: searching the graph instead of matching automata.
The basic idea is simultaneously to search the graph while
advancing the query automaton. The main advantages of
this method are that it is simple, no preprocessing is needed,
we only use space linear in the size of the original graph,
the implementation is easily parallelizable, and cost-based
optimization methods are applicable.

We are not aware of any reported previous work on di-
rectly searching a graph for RPQs. This is probably due
to the fact that the worst-case complexity is bad, and that,
indeed, searching the graph without fix start or end points
is not feasible (shown as baseline in Section 5). However, we
introduce a technique to work around this problem based on
the concept of rare labels. We use labels from the query that
occur a few times at maximum in the graph, and split the



query at these labels. We then answer the subqueries using
the rare labels as fix start or end points. In this section, we
explain this concept in detail.

4.1 Rare Labels

Definition 4.1. Let G be a graph and R be a RPQ. We
call a label occurrence in R mandatory iff it occurs in every
possible result of R in G. We call a label rare iff it occurs
at most m times in G and is mandatory in R.

For example, in the regular expression ab+ c ∗ d?, a and b
are mandatory, while c and d are not. Note that, according
to our definition, rare labels are specific for a query. How-
ever, retrieving them is fast if a list of all labels and their
occurrences in the graph is stored. If this list is indexed by
labels, finding all rare labels for a given query is linear to
the size of the query pattern.

If a query contains a rare label, then any match of the
query in the graph must contain an occurrence of it. There-
fore, we can use the occurrences of rare labels as way-points
during search. If we can find two or more rare labels in a
graph, we can use a two-way search algorithm to find all
matching paths between them, and every additional known
node on the path reduces the search space further.

This idea can be visualized intuitively assuming a graph
of randomly distributed nodes in a 2D space where every
node is connected to its k nearest neighbors. In such a
graph, the number of nodes that are visited in a breadth-
first search correlates with Euclidean distance, i.e., with the
size of a circle around a node. In Figure 2a), we assume that
a query contained two rare labels. Thus, we perform a two-
way search between the two nodes in a breadth-first manner,
during which we visit a number of nodes that correlates with
the size of the circles in the figure (for the full answer, we also
need to search from the rare labels to possible start and end
points; furthermore, rare labels usually are not unique). In
Figure 2b), we assume a third rare label, which reduces the
number of visited nodes by a factor of 2.67. In such graphs,

the search area for n nodes is S = n·π
(n−1)2

· d
2

4
and thus

shrinks linearly to the number of known nodes between the
start and end nodes. Note that this example is only given
as illustration and that the formulas are not valid for arbi-
trary graphs. However, the number of visited nodes always
correlates with the distance (in hops) to a known node, and
thus the general idea also holds for arbitrary graphs.

Figure 2: Illustration of the area that needs to be
searched in a two-way search with different numbers
n of known way-points (only valid for certain type
of graphs, see text).

4.2 Searching the Graph using Rare Labels
For queries that include at least one rare label, we split the

query at these rare labels and use them as fix points in the
search. Searching the graph and advancing in the regular
expression at the same time, we search all paths between
each two adjacent rare labels, all paths from the first rare
label backward to the start of the regular expression, and
from the last rare label forward to the end. As shown above,
the number of nodes that needs to be visited during this
search shrinks with every additional rare label but grows
with increasing numbers of occurrences of rare labels.

Besides keeping the search space smaller, rare labels often
also allow for early stops. If there is no path between any two
adjacent rare labels, then there can be no path fulfilling the
original query, and the search can be stopped immediately.

In the following, we use the term first rare nodes for all
nodes that are starting point of an edge of which the label
is the first rare label, according to the regular expression.
Analogously, last rare nodes are the end nodes of all edges
with the last rare label. Answering RPQs using rare labels
is done in the following 6 steps.

1. Gather all rare labels for the query in the graph.
2. If more than one rare label exists, find the paths be-

tween the first and second rare label, the second and
third etc. using a two-way search algorithm. If no path
can be found in any of these search processes, stop the
search and return an empty result for the query.

3. If more than one rare label exists: Using the results
from step 2, find all paths from the first rare nodes to
the last rare nodes and remove all rare nodes that are
on no path, as these cannot be on a result path.

4. Beginning at all remaining first rare nodes, find all
paths to the beginning of the regular expression,
searching backward.

5. Beginning at all remaining last rare nodes, find all
paths to the end of the regular expression (forward).

6. Using the results, enumerate all paths in the graph
that fulfill the regular expression and return the result.

Figure 3: Search process example for the query
a+ b c+ d e+ (edge labels and directions omitted).

Figure 3 shows the principle of the algorithm. On a sam-
ple graph (edge labels and directions are omitted), the query
a+ b c+ d e+ is executed, assuming that b and d are rare
labels. In step 1, rare label edges are gathered (b and d
edges). In step 2, we search all paths between the end nodes
of the b edges and the beginning of the d edges. These paths
must fulfill the regular expression between the two rare la-



bels, in this case c+. In our example, two such paths can be
found. For one rare edge, no path could be found, thus it is
removed from further consideration in step 3.

In step 4, a one-way backward search is performed, start-
ing at the start nodes of the b edges. The search ends once
all paths have been found that fulfill the first part of the
regular expression (a+). In step 5, we search all paths from
the end of the last rare label to the end of the regular ex-
pression in forward direction. As a last step (not shown in
the picture), we enumerate all paths, combining the results
of the previous steps. In this case, there are 4 distinct paths.

Our approach specifically aims at queries that include la-
bels that do not occur often in the graph. While most
queries used in bioinformatics are interested in these rare la-
bels, there are also queries in which no rare label is present.
These queries cannot be accelerated using the algorithm
presented above. Our implementation uses a brute force
method to resolve these kinds of queries: start a simple
search at every node in the graph. Although this approach
is also highly parallelizable, queries with rare labels can be
answered much faster.

4.3 Cost-based Parameters
The choice of m, the parameter determining which la-

bels to consider rare, is a compromise between treating as
many labels as possible as rare and keeping the number of
occurrences of rare labels small. If a rare label has many
occurrences in the graph, the search space increases because
each occurrence needs to be included in the search. On the
other hand, multiple different rare labels in a query speed
up its execution, as partial paths to be searched are shorter.

The best value for m depends on the graph as well as
the query. Thus, using a fixed value is not the best ap-
proach. We therefore use a cost-based technique for deter-
mining which labels to consider rare. The idea is, if, for a
given query, there are several possible rare labels, we set the
threshold for rare labels higher than if only very few rare
labels can be found. This produces less queries without any
rare labels, while for queries with many potential rare labels,
only labels with a small number of occurrences are included.

Our proposed heuristic works as follows. We acquire a list
of all potential rare labels for a given query. We then reduce
the list depending on the overall number of paths that would
need to be searched in the current configuration. Labels that
produce the most paths are removed first; we can compute
the number of paths between any two adjacent rare labels
r1, r2 as |r1| · |r2|. The overall number of paths is the sum of
all paths between all adjacent pairs. We repeatedly remove
the rare label that produces the most paths, until the sum
of all paths is below a threshold. We found a threshold of
100 to produce good results in most cases.

5. RESULTS
In this section, we compare our cost-based method with

an automata-based implementation, and do further analy-
sis concerning scalability and influence of different kinds of
graphs and queries. All tests were executed on a Quad-Core
AMD Opteron machine with 16 GB of main memory.

5.1 Graphs and Queries
To evaluate the performance of our method, we used

graphs from biological research as well as artificially created
graphs. As an example for real world graphs, we present re-

sults for AliBaba [12], which is a network of protein-protein-
interactions extracted by text mining on all of PubMed. The
graph has about 50,000 nodes and 340,000 edges. Results
for several other biological networks we tested were simi-
lar.All graphs used for the results are roughly scale-free and
roughly have a Zipfian distribution of edge label frequencies.
The artificial graphs were created to specifically fulfill these
properties.

Execution speed for the cost-based method depends on
the query in question. We randomly created sets of 1000
different RPQs with varying properties, differing in query
length, frequency of modifiers (+, *, ?), alternatives and
bracketed parts, frequency of rare labels, and the maximum
number of occurrences of rare labels. We omit results for
different classes of queries due to space constraints and only
report aggregated times. Essentially, the behavior of our
method was as expected: Longer queries are slower, fre-
quency of modifiers may slow down or speed up times, de-
pending on the concrete modifiers, more rare labels increase
performance, and more frequent rare labels decrease speed.

5.2 Comparison
To compare our cost-based method with an automata-

based implementation, we used queries containing rare la-
bels as well as completely random queries to show the differ-
ence. However, we could only use graphs of relatively small
size due to excessive runtime and memory requirements of
the automata-based approach.

Figure 4: Runtime in seconds (logarithmic) to an-
swer 1000 queries a) without and b) with rare labels.

Figure 4 shows the runtime for answering 1000 RPQs for
the cost-based and automata-based implementation. For
queries without rare labels (Figure 4a), the runtimes do not
differ much for small graphs, but for larger graphs, the cost-
based approach executes much faster. We found the same
behavior for graphs with equal distribution of edge labels
(note that not using rare labels in a query essentially has
the same effect as running random queries on graphs with
equally distributed label frequencies).

Figure 4b) compares the automata-based method and the
cost-based method using queries that contain at least one
rare label. It can be seen that the latter always outperforms
the former, and that the difference grows with the graph
size, reaching orders of magnitude for synthetic graphs with
more than 10,000 nodes. The difference is less pronounced,
but still considerable (about 20%) for the AliBaba graph, as
there, the frequency of labels diverges more from the Zipf-
distribution than in the synthetic graphs.

Comparing Fig. 4a) and b), one can see that the query
type has a big influence on the runtime of our method.



Queries that contain rare labels can be answered much faster
than those without. In contrast, we found that for the
automata-based implementation, the runtime for different
queries on the same graph is about equal. The reason is
that preprocessing of the graph (converting it to a minimized
DFA) takes most time, while answering queries is fast.

5.3 Scalability
To test the scalability of our rare label method, we used ar-

tificially created graphs with varying properties. The queries
contain at least one rare labels. We evaluated the effect of
our cost-based optimization by comparing it to a baseline
method, which performs a brute-force search starting at ev-
ery node without considering label frequencies.

Figure 5: Runtime for answering 1000 queries on
synthetic graphs (number of nodes shown). The
steeper line shows the runtime for the baseline.

Figure 5 shows how our implementation scales with the
size of the graph at a fixed node/edge ratio (1:2). The small-
est graph has 10,000 nodes and 20,000 edges, and the largest
graph has 1 million nodes and 2 million edges. The scaling
of the cost-based approach is much better than the expo-
nential scaling of the baseline. Even for the largest graphs
we tested, we can answer a RPQ in few seconds on average.

Figure 6: Runtime for answering 1000 queries on
synthetic graphs with 100,000 nodes and different
numbers of edges. The steep line shows the runtime
for the baseline.

Figure 6 shows how our implementation scales with the
average degree of the graph. Using multiple artificial graphs
with 100,000 nodes, we increased the number of edges (and
thus the average degree), leaving all other properties con-
stant. As a baseline, the execution time for answering the
queries without using rare labels is shown (steep line on the

left). Again, the increase in execution time is favorable com-
pared to the exponential growth of the number of possible
paths in the graph.

6. CONCLUSION
In this paper, we presented a novel approach for answering

regular path queries using cost-based optimization. We use
labels that are infrequent in the graph and also appear in
the query. We use these rare labels as start-, end-, and way-
points when searching the graph using the query converted
into an automaton.

We showed that for a graphs with properties like many
real-world graphs, queries containing rare labels can be an-
swered much faster with the cost-based approach than with
the traditional automata-based method. Furthermore, the
former requires only linear time to preprocess the graph and
is highly parallelizable. We also showed that the cost-based
implementation scales well with the size of the graph and
with its density.
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